
Modal Logic Revisited

Frank Pfenning

The Scottfest

In honor of Dana Scott on his 70th Birthday

Pittsburgh, Pennsylvania

October 12, 2002

1



Source

[1] Dana Scott, Advice on Modal Logic. In: Philosophical

Problems in Logic: Some Recent Developments, K.

Lambert (ed.), pp. 143–173, Dordrecht Reidel, 1970.

Based on a talk presented during a colloquium on free

logic, modal logic and related areas held at the University

of California at Irvine, May 1968.

Claimer: I am not making this up.

Disclaimer: The quotes may be taken out of context.

2



A Quote

Everyone knows how much more pleasant it is to give

advice than to take it. Everyone knows how little heed

is taken of all the good advice he has to offer.

Nevertheless, this knowledge seldom restrains anyone,

least of all the present author. He has been noting the

confusions, misdirections of emphasis, and duplications

of effort current in studies of modal logic and is, by

now, anxious to disseminate all kinds of valuable advice

on the subject.

3



Classical Modal Logic in Computer Science

• Reasoning about [concurrent] programs

– A. Pnueli, The Temporal Logic of Programs, 1977.
ACM Turing Award, 1996.

• Reasoning about hardware; model-checking

– E. Clarke and A. Emerson, Synthesis of
Synchronization Skeletons for Branching Time
Temporal Logic, 1981.
R. Bryant, E. Clarke, A. Emerson, K. McMillan;
ACM Kanellakis Award, 1999.

• Knowledge representation

– From frames to KL-ONE to Description Logics
[MacGregor’87] [Borgida’89] [Baader’91]

4



A Quote

I feel it is important to be thinking of D as fixed in

advance. This does not mean that one knows all the

elements of D in any constructive sense, [. . .]. Maybe,

in the future we shall understand the logic of potential

totalities (through intuitionism possibly?) but for the

present our simple two-valued logic demands this

idealization.

5



Intuitionistic Modal Logic in Computer Science I

• Logical frameworks / Modal λ-Calculus

[F. Pfenning & H.C. Wong’95]

• Staged computation / Run-time code generation

[F. Pfenning & R. Davies’96]

[P. Wickline, P. Lee, F. Pfenning, R. Davies’98]

• Partial evaluation / Binding-time analysis

[Davies’96] [Z. Benaissa, E. Moggi, W. Taha, T.Sheard’99]

• Monadic meta-language / Type systems for effects

[S. Kobayashi’97] [P.N. Benton, G.M. Biermann, V.C.V. de

Paiva’98] [F. Pfenning & R. Davies’01]

6



Intuitionistic Modal Logic in Computer Science II

• Intensionality / Meta-programming

[J. Despeyroux, F. Pfenning, C. Schürmann’97]

[A. Nanevski’02]

• Proof irrelevance / Dead code elimination

[F. Pfenning’01] [S. Awodey & A. Bauer’01]

• Code mobility / Distributed computation

[J. Moody & F. Pfenning]

7



A Quote

Before embarking on details, here is one general piece

of advice. One often hears that modal (or some other)

logic is pointless because it can be translated into some

simpler language in a first-order way. Take no notice of

such arguments. There is no weight to the claim that

the original system must therefore be replaced by the

new one. What is essential is to single out important

concepts and to investigate their properties.

8



Run-Time Code Generation

• Ordinary evaluation: compile, then run binary code

• Run-time code generation: generate additional code while

program runs and then execute it

• Used for optimization, particularly in system code

• Status in 1995: white magic (super-hacker required!)

• Intuitionistic modal logic as organizing principle!

• R. Davies and F. Pfenning,

A Modal Analysis of Staged Computation, 1996.

9



A Quote

So my advice is to continue with the two-valued logic

because it is easy to understand and easy to use in

applications; then when someone has made the other

logic workable a switch should be reasonably painless.

10



Run-Time Code Generation via Modal Types

• Follow methodology of judgments [Martin-Löf’83]

• Need source expression to generate code

• Introduce a judgment of source expressions

• Internalize the judgment as a type, 2A

• Which modal laws will 2A satisfy?

11



Ordinary Terms and Types

• Basic judgment: M : A “M is a proof term for A”
“M has type A”

• Parametric and hypothetical judgment (may reorder
assumptions):

x1:A1, . . . , xn:An︸ ︷︷ ︸
value variables Γ

` M : A

• Hypothesis rule: Γ, x:A ` x : A

• Substitution property:

If Γ ` M : A

and Γ, x:A ` N : C

then Γ ` [M/x]N : C.

• λ-abstraction, application, β-reduction as usual.

12



Source Expressions

• Categorical judgment: M :: A if • ` M : A.

• M :: A “M is a source expression of type A”

• Hypothetical judgment:

u1::B1, . . . , uk::Bk︸ ︷︷ ︸
expression variables

; x1:A1, . . . , xn:An︸ ︷︷ ︸
value variables

` N : C

• Additional hypothesis rule: (∆, u::A); Γ ` u : A

• Substitution property:

If ∆; • ` M : A

and (∆, u::A); Γ ` N : C

then ∆;Γ ` [M/u]N : C.

13



Source Expression Types

• Type: 2A “terms denoting expressions of type A”

• Introduction and elimination rules

• Constructor:
∆; • ` M : A

2I
∆;Γ ` boxM : 2A

• Destructor:

∆;Γ ` M : 2A (∆, u::A); Γ ` N : C
2E

∆;Γ ` let boxu = M in N : C

• Reduction:

let boxu = boxM in N −→ [M/u]N

14



A Quote

Of course an elimination metatheorem can be justified

on the basis of the axioms; this may often be the case.

Thus my advice is to leave the elimination problems to

the development of the theory rather than having them

complicate the formalization.

15



Run-Time Code Generation as Intuitionistic S4

• Curry-Howard isomorphism applied to modal logic S4!

• 2A as a generator for binary code of type A

• ` eval : 2A→A

λx. let boxu = x in u

Generate code for A and execute it

• ` apply : 2(A→B)→ 2A→ 2B

λf. λx. let boxu = f in let boxw = x in box (u w)

Compose the generators for a function and its argument

• ` quote : 2A→ 22A

λx. let boxu = x in box (box u)

Quote a generator

16



Contributions of Modal Logic

• Capture staging for run-time code generation

• A staging error in the program is a type error!

• Construct boxM compiles to a code generator

• Construct let boxu = M in N binds u to a generator

• Expression variable u calls code generator

• (Aside: other computational interpretations possible!)

• Logic is quite familiar: intuitionistic S4

• Incorporated into MetaML
[Z. Benaissa, E. Moggi, W. Taha, T.Sheard’99]

• Kripke interpretation:

Possible worlds as stages in a computation!

17



Type Systems for Effects

• Monadic meta-language: generic framework to introduce

effects into a pure language (mutable arrays, exceptions,

call/cc, memoization, input/output, etc.)

• Type system to distinguish pure and effectful expressions

• Widely used as a practical programming technique [Haskell]

• Kripke interpretation:

Possible worlds as states in an effectful computation!

18



Stable and Ephemeral Values

• Re-interpret value and expression typing judgments

• W :: A — “W is a stable value of type A”

• W is available in all future worlds (states)

• W cannot be changed by an effect (e.g., assignment)

• Internalize: 2A are terms denoting stable values

• V : A — “V is an ephemeral value of type A”

• V is available only in the present world (state)

• V can be destroyed or changed by an effect

19



Possible Values

• E ÷ A — “E is a computation of type A”

• E may be effectful (change worlds)

• Internalize: 3A are terms denoting computations

• Unlike classical modal logic, 2 and 3 are not interdefinable

(with and without negation)

• There are 6 distinct modal operators

2, 3, 23, 32, 323, 232

20



A Quote

Here is what I consider one of the biggest mistakes of

all in modal logic: concentration on a system with just

one modal operator.

21



New Judgmental Principles

• If ∆;Γ ` M : A then ∆;Γ ` M ÷ A

A value is a trivial computation

• If ∆;Γ ` E ÷ A and ∆;x:A ` F ÷ C then ∆;Γ ` 〈〈E/x〉〉F ÷ C

We can compose certain computations

• Internalize as types:

∆;Γ ` E ÷ A
3I

∆;Γ ` diaE : 3A

∆;Γ ` M : 3A ∆;x:A ` E ÷ C
3E

∆;Γ ` let diax = M in E ÷ C

22



Laws of Possibility in Intuitionistic S4

• ` here : A→3A

λx:A.diax

A value is a trivial computation

• ` chain : 33A→3A

λx.dia (let dia y = x in let dia z = y in z)

We can compose certain computations

• ` lift : 2(A→B)→ (3A→3B)

λx:2(A→B). λy:3A. let boxu = x in dia (let dia z = y in u z)

We can lift stable functions to act on computations

23



A Quote

One bit of advice seems needed at this juncture: the

aim of logic is not solely to provide completeness

proofs. The real aim is conceptual clarification.

24



Monadic Meta-Language

• Usually (ML, Haskell) all values are stable

• Define

A ⇒ B = (2A)→B

©A = 32A

• ⇒,© form a monad [Moggi’89]

• Axiomatically:

` : A ⇒ ©A

` : ©©A ⇒ ©A

` : (A ⇒ B) ⇒ (©A ⇒ ©B)

25



Contributions of Modal Logic

• Possible worlds as states of computation

• Understanding of monads via intuistionistic S4 modalities

• Cleaner, more tractable λ-calculus

• Many effects in programming languages are specific

instances (mutable reference, exceptions, continuations,

input/output, concurrency, non-determinism, etc.)

26



A Quote

Up to this point, our indices of possible worlds have

been too vague, too abstract. [. . ..] That is, an analysis

of the individual must be attempted. The method is

not yet discredited, because it has not really been

carried out in sufficient detail. [. . ..] One essential step

to take in this analysis is to make the elements more

specific. [. . ..] My advice is to work on this problem.

27



Mobile Code and Distributed Computation

• L. Caires & L. Cardelli, A Spatial Logic for Concurrency,

2000, 2002

– Classical logic

– Multiple modal operators for time, space, and names

– In the tradition of temporal logics

• Our goal: a constructive and logical foundation for mobile

code and distributed computation

• Disclaimer: Unfinished work in progress

[J. Moody & F. Pfenning]

28



A Re-Interpretation of Modal Operators

• Kripke interpretation:

Each world corresponds to a locus of computation
Reachability corresponds to (asymmetric) connections

• M :: A — “M can be computed anywhere”
boxM : 2A is fully mobile

• M : A — “M can be computed here”

• E ÷ A — “E can be computed somewhere”
diaE : 3A can be computed at some unknown world

• Example definable operator: M : 32A

A mobile value is computed somewhere

• Example definable operator: M : 23A

A mobile reference to a computation (resource) somewhere

29



Logical laws interpreted

• ` 2A→A

We can reach the current machine (reflexivity)

• ` 2A→ 22A

We can forward mobile code (transitivity)

• ` 2(A→B)→ 2A→ 2B

We can compose mobile code

• ` A→3A

Here is somewhere (reflexivity)

• ` 33A→3A

We can forward access to resources (transitivity)

• ` 2(A→B)→ (3A→3B)

We can send mobile code to a resource location

30



A Quote

We have to consider not only of the flow of time but

also of alternative courses of events. — No, come to

think of it, that is not the answer either, for that only

makes the individual concept ‖τ‖ fatter but not more

amusing. — Or maybe it does. (Oh my, I see that

much more thought and experimentation are needed to

make the ideas into something useful. In any case I feel

that a precise and general semantical framework is

essential, and that is, as I have been trying to indicate,

now available.)

31



Summary: Modal Logic in Computer Science

• Classical

– Temporal logics [1977]: reasoning with concurrency

– Description logics [1987]: knowledge representation

– Spatial logics [1998]: reasoning about mobile programs

• Intuitionistic

– S4 [1996,2001]: staged computation, effects, mobility(?)

– Linear-Time Temporal Logic [1996]: partial evaluation

– Others [2000,2002]: intensionality, proof irrelevance, . . .

32



A Final Quote

Postscript (December, 1969)

This paper was written very hastily in the latter part of

May, 1968. The haste is apparent and the style

intolerable; I find it now very painful reading.

33


