
Fundamentals of
Substructural Type Systems

Frank Pfenning

Computer Science Department
Carnegie Mellon University

January 19, 2025
POPL Tutorialfest

Apologies for impressionistic style and lack of references
Some of the more recent ideas joint with

Sophia Roshal, Junyoung Jang, Brigitte Pientka
1 / 51

Why Substructural Types?

Memory management (Rust)

Race-free concurrency (Oxidized OCaml)

Session types for communication (many libraries)

Effect handlers (Koka, Effekt)

Efficient program reasoning (Verus, linear Dafny)

Implicit computational complexity

Quantum computing

Sharpening general benefits of static type systems

Modularity and compositionality
Static error detection
Verifiable documentation

2 / 51

Modal Types

Substructural types are part of a larger family of modal types

Comonadic types

Quotation and metaprogramming
Phase distinction

Monadic types

Explicating or isolating effects
Advanced program structure

3 / 51

Why Not Substructural Type Systems

Too difficult to understand or use effectively

Infectious in programs

Too many ad hoc designs

Insufficient benefits

The PL community is making progress on all of these!

4 / 51

This Tutorial

Focus on fundamental principles of substructural type systems

Avoid specializing to particular applications

A step towards mitigating their shortcomings?

5 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

6 / 51

Positive Linear Types

Negative types: observe behavior of values by interaction

A⊸ B (linear) functions
A N B (lazy) pairs

Positive types: directly observe structure of values

A⊗ B (eager) pairs (v ,w)
1 unit value ()
⊕ℓ∈L{ℓ : Aℓ} injections k(v)

Rules for judgment v : A (closed values = observables)

v : A w : B

(v ,w) : A⊗ B () : 1

(k ∈ L) v : Ak

k(v) : ⊕ℓ∈L{ℓ : Aℓ}

7 / 51

Examples of Types and Values

8 / 51

Programs

Expressions e, organized by type

Typing judgment (linear natural deduction)

x1 : A1, . . . , xn : An︸ ︷︷ ︸
stand for values

⊢ e : C︸ ︷︷ ︸
computes to value

Dynamics

Properties of substructural types should be evident
Otherwise as high level as possible
Use global environment

9 / 51

Pairs, Introduction

Introduction rule
Γ ⊢ e1 : A ∆ ⊢ e2 : B

Γ ; ∆ ⊢ (e1, e2) : A⊗ B
⊗I

Context join Γ ; ∆ (often written as Γ,∆)

(Γ, x : A) ; ∆ = (Γ ; ∆), x : A (x ̸∈ ∆)
Γ ; (∆, x : A) = (Γ ; ∆), x : A (x ̸∈ Γ)

(·) ; (·) = (·)
error otherwise

Bottom-up: distribute variables between premises

10 / 51

Pairs, Elimination

Elimination rule

Γ ⊢ e : A⊗ B ∆, x : A, y : B ⊢ e ′ : C

Γ ; ∆ ⊢ match e ((x , y) ⇒ e ′) : C
⊗E

Substitution-based reduction obscures linearity

match (v ,w) ((x , y) ⇒ e ′(x , y)) −→ e ′(v ,w)

11 / 51

Substructural Operational Semantics (SSOS)

Configuration of semantic objects
eval e (evaluate e)
retn v (return value v)
susp f (wait on value to be returned)
bind x v (bind x to v)

Reduction matches the left-hand side of a rule and replaces it by the right-hand
side. For example:

bind x v · eval x −→ retn v

Binding of x to v is deallocated!

Configuration is ordered (for sequential computation), except for bindings

Theorem:
eval e −→∗ retn v iff e evaluates to v
(e.g., under substitution-based semantics)

Significant: no bindings in the final configuration
12 / 51

Pairs, Dynamics (selected rules)

eval (match e ((x , y) ⇒ e ′))
−→ eval e · susp (match _ ((x , y) ⇒ e ′))

retn (v ,w) · susp (match _ ((x , y) ⇒ e ′))
−→ bind x v · bind y w · eval e ′ (x , y “fresh”)

13 / 51

Injections

Statics

(k ∈ L) Γ ⊢ e : Ak

Γ ⊢ k(e) : ⊕ℓ∈L{ℓ : Aℓ}
⊕I

Γ ⊢ e : ⊕ℓ∈L{ℓ : Aℓ} (∆, xℓ : Aℓ ⊢ eℓ : C) (∀ℓ ∈ L)

Γ ; ∆ ⊢ match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L : C
⊕E

Dynamics (selected)

eval (match e (ℓ(xℓ) ⇒ eℓ)ℓ∈L)
−→ eval e · susp (match _ (ℓ(xℓ) ⇒ eℓ)ℓ∈L)

retn k(v) · susp (match _ (ℓ(xℓ) ⇒ eℓ)ℓ∈L)
−→ bind xℓ v · eval ek (xℓ “fresh”)

14 / 51

Intuitionistic Linear Logic

Coheres with (intuitionistic) linear logic

A ⊢ A
hyp

Γ ⊢ A ∆ ⊢ B

Γ ; ∆ ⊢ A⊗ B
⊗I

Γ ⊢ A⊗ B ∆,A,B ⊢ C

Γ ; ∆ ⊢ C
⊗E

· ⊢ 1
1I

Γ ⊢ 1 ∆ ⊢ C

Γ ; ∆ ⊢ C
1E

(k ∈ L) Γ ⊢ Ak

Γ ⊢ ⊕ℓ∈L{ℓ : Aℓ}
⊕I

Γ ⊢ ⊕ℓ∈L{ℓ : Aℓ} (∆,Aℓ ⊢ C) (∀ℓ ∈ L)

Γ ; ∆ ⊢ C
⊕E

But: types may be recursive, though contractive

Exponential !A to be discussed later

15 / 51

Top-Level Recursive Definitions

Support mutually recursive top-level definitions

decl F (x1 : A1) . . . (xn : An) : C
defn F x1 . . . xn = e
e ::= . . . | F e1 . . . en

(Partially) internalize the typing judgment

Technically: Linear Contextual Modal Type Theory

F :: (∆ ⊢ C)
F = (x . e)
e ::= . . . | F [η] (for a substitution η : ∆)

F closed, so may be reused even in a linear type theory

First-order linear programs = positive types + metavariables

Examples

16 / 51

Some Observations

No garbage (= bind semantic objects) [Girard & Lafont’87]

eval e −→∗ retn v (or diverges)
Proof is not difficult

Drop and copy can be defined for any positive type

Weakening and contraction are logically admissible

Mostly, sharing is better than copying

17 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

18 / 51

Typechecking

Two principal ideas

Bidirectional typing

Γ ⊢ e : A ⇝

{
Γ ⊢ e ⇐ A e checks against A
Γ ⊢ e ⇒ A e synthesizes A

Γ ⊢ e ⇐ A assumes Γ, e, and A are given
Γ ⊢ e ⇒ A assume Γ, e are given, A synthesized

Context generation (“additive resource management”)

Γ ⊢ e ⇔ A ⇝ Γ ⊢ e ⇔ A / ∆

In Γ ⊢ e ⇔ A / ∆

Γ contains all variables lexically in scope
∆ picks out the variables actually used in e
Γ ⊢ e : A / ∆ implies Γ ⊇ ∆ and ∆ ⊢ e : A

19 / 51

Some Interesting Rules

x : A ∈ Γ

Γ ⊢ x ⇒ A / (x : A)
var

Γ ⊢ x ⇒ A′ / ∆ A′ = A

Γ ⊢ x ⇐ A / ∆
⇒/⇐

Γ ⊢ e1 ⇐ A / ∆1 Γ ⊢ e2 ⇐ B / ∆2

Γ ⊢ (e1, e2) ⇐ A⊗ B / ∆1 ; ∆2

⊗I

Γ ⊢ e ⇒ A⊗ B / ∆1 Γ, x : A, y : B ⊢ e ′ ⇐ C / ∆2

Γ ⊢ match e ((x , y) ⇒ e ′) ⇐ C / ∆1 ; (∆2 \ x \ y)
⊗E

∆ \ x checks that x is in ∆ and removes it

Ensure variables are actually used

(∆, x : A) \ x = ∆
(∆, y : B) \ x = (∆ \ x), y : B (x ̸= y)
(·) \ x = error

20 / 51

Some More Interesting Rules

(k ∈ L) Γ ⊢ e ⇐ Ak / ∆

Γ ⊢ k(e) ⇐ ⊕ℓ∈L{ℓ : Aℓ} / ∆
⊕I

Γ ⊢ e ⇒ ⊕ℓ∈L{ℓ : Aℓ} / ∆ (Γ, xℓ : Aℓ ⊢ eℓ ⇐ C / ∆ℓ ∆ℓ \ xℓ = ∆′) (∀ℓ ∈ L)

Γ ⊢ match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L ⇐ C / ∆ ; ∆′ ⊕E

∆′ must be the same in all branches

L ̸= { } is significant in ⊕E so ∆′ is defined

21 / 51

Summary So Far

Positive linear types + metavariables

Variables must be used exactly once

Algorithmic type-checking

Bidirectional typing
Context generation
Join ∆1 ; ∆2 and removal ∆ \ x operations

Evaluation with global environment

Bindings are deallocated when read
No “garbage” (semantic objects bind x v)
Related version with global heap has related property

22 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

23 / 51

Affine Types

Rust is based on affine types

Variables can be used at most once

Ideas carry over surprisingly easily

The expressions of the language do not change at all!

24 / 51

Join and Remove Revisited

Join remains the same

(Γ, x : A) ; ∆ = (Γ ; ∆), x : A (x ̸∈ ∆)
Γ ; (∆, x : A) = (Γ ; ∆), x : A (x ̸∈ Γ)

(·) ; (·) = (·)
error otherwise

Remove allows variables not to be used

(∆, x : A) \ x = ∆
(∆, y : B) \ x = (∆ \ x), y : B (x ̸= y)
(·) \ x = (·) no longer error

25 / 51

Least Upper Bounds for Branches

Variables may be used in some branches but not others

Γ ⊢ e ⇒ ⊕ℓ∈L{ℓ : Aℓ} / ∆ (Γ, xℓ : Aℓ ⊢ eℓ ⇐ C / ∆ℓ ∆ℓ \ xℓ = ∆′
ℓ) (∀ℓ ∈ L)

Γ ⊢ match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L ⇐ C / ∆ ; (
⊔

ℓ∈L∆
′
ℓ)

⊕E

Variable is used if used in at least one branch

(Γ, x : A) ⊔ (∆, x : A) = (Γ ⊔∆), x : A
(Γ, x : A) ⊔ ∆ = (Γ ⊔∆), x : A (x ̸∈ ∆)

Γ ⊔ (∆, x : A) = (Γ ⊔∆), x : A (x ̸∈ Γ)
(·) ⊔ (·) = (·)

error otherwise

26 / 51

Examples

27 / 51

Dynamically

All bindings are introduced as semantic objects [bind x v] which need not be used

Variable rule
[bind x v], eval x −→ retn v

Theorem
eval e −→∗ [bind xi wi] · retn v iff e evaluates to v

We can map affine to linear types and explicitly deallocate

At the end of scopes where variables are unused (∆ \ x)
At the end of branches where variables are unused (

⊔
ℓ∈L ∆ℓ)

28 / 51

Strict Types

The Haskell compiler performs strictness analysis (for efficiency)

Annoying warnings about unused variables in ML

A variable is strict if it is used at least once

Dynamically, when the program runs

Again, ideas carry over surprisingly easily

The language of expressions does not change at all

29 / 51

Join and Remove Revisited

Only need to reconsider join, remove, least upper bound

Join changes:

(Γ, x : A) ; (∆, x : A) = (Γ ; ∆), x : A new!
(Γ, x : A) ; ∆ = (Γ ; ∆), x : A (x ̸∈ ∆)

Γ ; (∆, x : A) = (Γ ; ∆), x : A (x ̸∈ Γ)
(·) ; (·) = (·)

Remove reverts: variables must be used

(∆, x : A) \ x = ∆
(∆, y : B) \ x = (∆ \ x), y : B (x ̸= y)
(·) \ x error

30 / 51

Least Upper Bound Revisited

Least upper bound no longer allows weakening

(Γ, x : A) ⊔ (∆, x : A) = (Γ ⊔∆), x : A
(Γ, x : A) ⊔ ∆ error for x ̸∈ ∆

Γ ⊔ (∆, x : A) error for x ̸∈ Γ
(·) ⊔ (·) = (·)

31 / 51

Examples

32 / 51

Dynamics

Bindings are introduced as required. For example

retn (v ,w) · susp (match _ ((x , y) ⇒ e ′))
−→ bind x v · bind y w · eval e ′ (x , y “fresh”)

Become provisional, once read

bind x v · eval x −→ [bind x v] · retn x

Theorem
eval e −→∗ [bind xi wi] · retn v iff e evaluates to v

Implies each variable is read at least once

33 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

34 / 51

Combining Systems

Linear logic [Girard’87]

Embed by translation A→ B ≜ !A⊸ B
Elegant theoretically, but difficult to work with

LNL [Benton’94]

Linear and nonliner logics combined by adjoint operators
We can natively program in linear or nonlinear modes
And switch between them

Generalize LNL to a set of related modes

Adjoint types [Reed’09] [Pruiksma et al.’18] [Jang et al.’24]

35 / 51

Modes

Assume a set of modes and a preorder n ≥ m between them

Each mode has an intrinsic set of structural properties σ(m)

W ∈ σ(m) means weakening (variables need not be used)
C ∈ σ(m) means contraction (variable may be reused)
Exchange is always assumed (variable order is irrelevant)

n ≥ m implies σ(n) ⊇ σ(m)

Necessary so structural rules don’t sneak in through the back door

36 / 51

Shifts

Each type has an intrinsic mode Am

Shifts ↑mk Ak and ↓nmAn transition between modes

Typical example U,A, L with

σ(U) = {W,C} (Unrestricted)
σ(A) = {W} (Affine)
σ(L) = { } (Linear)

with
U > A > L

Syntax defaults back to a more generic notation

Positive types Am ::= Am × Bm | 1 | +ℓ∈L{ℓ : Aℓ
m} | ↓nmAn

Negative types Am ::= Am → Bm | Nℓ∈L{ℓ : Aℓ
m} | ↑mk Ak

37 / 51

Typing

Typing changes subtly, but fundamentally

Account for m ≥ k

Define ∆ ≥ m if n ≥ m for all y : Bn in ∆

Independence principle

∆ ⊢ e : Am presupposes ∆ ≥ m
Maintain that for Γ ⊢ e ⇔ Am / ∆ we have ∆ ≥ m

38 / 51

Expressions

New construct for ↓A (positive) and ↑A (negative)

↓A is observable, a “pointer” (address) ⟨v⟩

v : An

⟨v⟩ : ↓nmAn

↓I
Γ ⊢ e ⇐ An / ∆

Γ ⊢ ⟨e⟩ ⇐ ↓nmAn / ∆
↓I

Γ ⊢ e ⇒ ↓nmAn / ∆ (m ≥ r) Γ, x : An ⊢ e ′ ⇐ Cr / ∆′

Γ ⊢ match e (⟨x⟩ ⇒ e ′) ⇐ Cr / ∆ ; (∆′ \ xn)
↓E

↑A represents a suspension

Expressions suspend susp e and force e.force

39 / 51

Typing

In each elimination, we need to enforce independence

For example

Γ ⊢ e1 ⇐ Am / ∆1 Γ ⊢ e2 ⇐ Bm / ∆2

Γ ⊢ (e1, e2) ⇐ Am × Bm / ∆1 ; ∆2

×I

Γ ⊢ e ⇒ Am × Bm / ∆1 (m ≥ r) Γ, x : Am, y : Bm ⊢ e ′ ⇐ Cr / ∆2

Γ ⊢ match e ((x , y) ⇒ e ′) ⇐ Cr / ∆1 ; (∆2 \ xm \ ym)
×E

40 / 51

Context Operators Discriminate on Modes

Join

(Γ, x : Am) ; (∆, x : Am) = (Γ ; ∆), x : Am provided C ∈ σ(m)
(Γ, x : Am) ; ∆ = (Γ ; ∆), x : Am (x ̸∈ ∆)

Γ ; (∆, x : Am) = (Γ ; ∆), x : Am (x ̸∈ Γ)
(·) ; (·) = (·)

Removal

(∆, x : Am) \ xm = ∆
(∆, y : Bk) \ xm = (∆ \ xm), y : Bk (x ̸= y)
(·) \ xm = (·) provided W ∈ σ(m)

Least upper bound

(Γ, x : Am) ⊔ (∆, x : Am) = (Γ ⊔∆), x : Am

(Γ, x : Am) ⊔ ∆ for x ̸∈ ∆ provided W ∈ σ(m)
Γ ⊔ (∆, x : Am) for x ̸∈ Γ provided W ∈ σ(m)

(·) ⊔ (·) = (·)
41 / 51

Adjoint Dynamics

Bindings based on modes

Provisional if allowing weakening

Kept if allowing contraction

Theorem (as before)

eval e −→∗ [bind xi wi] · retn v iff e evaluates to v

42 / 51

Examples

A given expression may have multiple types and modes

Allow overloading

Different instance may be compiled to different code

Live code

43 / 51

Summary

Adjoint type system with linear, affine, strict, unrestricted modes

Subject to monotonic preorder and independence principle

We have a full (identical) language of expressions at each mode

Elegant, mutually conservative integration

See [Jang,Roshal,Pf.,Pientka’24] for negatives and empty sums lazy products

44 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

45 / 51

Recovering Comonads

A special cases where a layer is impoverished

Define !AL = ↓U
L↑U

LAL the exponential of linear logic

U contains only ↑U

LAL

Define V > U with σ(V) = σ(U) = {W,C}
Define 2AU = ↓V

U↑V
UAU the necessity of intuitionistic S4

V contains only ↑V

UAU

Additional metaprogramming patterns can be expressed

46 / 51

Recovering Strong Monads

Define U > X with σ(U) = σ(X) = {W,C}
Define ⃝AU = ↑U

X↓U
XAU the strong monad of lax logic

X contains only ↓U

XAX

47 / 51

Outline

Linear types (what are they?)

Fundamental properties and algorithms

Statics (type checking)
Dynamics (computation)

Other substructural types (wait, there are more?)

Integrating type systems (how?)

Modal types (where do they fit?)

Principal modes

48 / 51

Principal Modes

Expressions do not mention types

Rules are uniform

Types are given, but not modes
Collect constraints W ∈ σ(m), C ∈ σ(m), m ≥ k, m = k
Solve constraints for most general solution
Any instance is a valid typing and vice versa
Recursion requires a fixed point iteration

Recent, unpublished work [Roshal & Pf.’24]

49 / 51

Examples

50 / 51

Summary

Substructural types from very few principles

Modes with intrinsic structural properties
Monotonic preorder with independence principle
Shifts to go between them
Uniform set of typing rules
Uniform set of computation rules

Extends to (some) modal types

Implemented in the Snax compiler

See OPLSS’24 lectures
Other optimizations like static memory reuse

51 / 51

