Proof Theory and Its Role in
Programming Language Research

Frank Pfenning
Carnegie Mellon University

Januar y 14, 2015 PLMW 2015, Mumbai

How Do We Write Correct Programs

* We rarely do, but ...

* |n practice, programming and informal
reasoning go hand in hand
— Operational: how does the program execute
— Logical: what does it accomplish

 Decompose into parts (e.g., functions,
modules) so we can reason locally

Coherence

Operational and logical views should be
coherent

And both should be as simple as possible

Composed of parts we can reason about
separately as much as possible

— Not just for programs, but for the language itself

Logic is inevitable — why wait?

Codesigh of Computation and Logic

* Fortunately, logic is computational
e Key: creating a mutual fit — requires considerable
ingenuity, persistence, luck
— Runtime code generation and ??
— Partial evaluation and ??
— Dead code elimination and ??
— Distributed computation and ??
— Message-passing concurrency and ??
— ?? and lax logic
— ?? and temporal logic
— ?? and epistemic logic
— ?? and ordered logic

Key Ingredients

e Judgments, leading to propositions
* Basic style of proof system

— Natural deduction

— Sequent calculus

— Axiomatic proof system

— Binary entailment

* Proof reduction and equality

Example: Hypothetical Judgments

* Basic judgment: A true, for a proposition A

i~al i Ay true, ..., A, true = At
* Hypothetical judgment < rue, ... An true rue

T
* Defined via substitution property (not rule)

' A true I', Atruet C true
I' = C true

* Which entails hypothesis rule

h
I' Atrue = A true yP

With Proof Terms

* Basicjudgment: M : A
* Hypothetical judgment = typing judgment

x1:AL, oA EM A
r

* Defined via substitution property (dashed
line), which entails the hypothesis rule

I'-M:A I''o:AFN:C

... bt h
CHM/ZIN:C 0 TomArz.A4

Internalize Hypothetical Judgment

 Form a proposition whose definition (via an
introduction rule) reflects the judgment

I', Atrue = B true
I'HAD B true

Byl

e Use the definition of the judgment, to
determine the elimination rule

I'FAD Btrue T'F A true
I' = B true

OF

Terms Construct and Apply Functions

* Logical rules become familiar typing rules

I'v:AFN: B 31 '-N:A>B T'-M: A
M. N:A>DDB '-NM:B

OF

* Introduction rules construct terms
 Elimination rules destruct term

 Computation arises when a destructor is
applied to a constructor

Harmony in Natural Deduction

* Introduction rules construct proofs that verify
e Elimination rules construct proof that use
* Harmony between intro and elim rules

— Any introduction of A followed an elimination of A
can be reduced (local reduction)

— Any proposition A can be proved by an
introduction (local expansion)

Proof Reduction is Computation

* On proofs
D
LA+ B
1 €
'-FADDB FFADE subst. £ in D
'k B — TI'+B

* On proof terms
I'z:AFN: B
I'-(M.N):ADB ! '-M:A
['F (O N)M: B 2 T M B

Example: Runtime Code Generation

* Key computational idea: we have a quoted
source expression available at runtime

* Distinguish
— Ordinary variables, bound to values

— Expression variables, bound to source code

* Need to quote and evaluate expressions

— In a logically correct way

Categorical Judgment

* Judgment form, with variables

uBy, ..., ug: By ;51:1:141, . ,xn:A@ -M: A

~~ N~

expression variables value variables

 We can only substitute an expression without
reference to value vars for an expression var

A:oeM:A AuwA;T'FN:C
.................................... re——— ESUbSt

Quotation Continued

* We also have a new hypothesis rule

eh
AuA;I'Fu: A yP

 We would like to internalize “A stands for a
source expression” as a proposition

Internalizing a Categorical Judgment

e Judgment u:A means A is valid
A;eHM:A
A ;' quote M : 1A

)

A;T'FM:OA Au:A;TEN:C
A ;T (letquoteu =M in N) : C

LE

* One can check harmony
(let quote u = quote M in N) = [M /u]N

Which Logic is This?

* Axiomatically, we find

-U(AD B) D (UADUB)
- A D OOA
FLAD A

FAn
A

* This defines the intuitionistic modal logic S4
* Conservatively extends intuitionistic logic

€cC

* We can have a type theory with quote/eval

Validity and Necessity

* Expression variables correspond to
assumptions of validity (u:A < A valid)

* The box modality internalizes this as a
proposition (A valid & LIA true)

* Judgmentally, we only need hypothetical and
categorical judgments

— Natural deduction and harmony do the rest

— Generally, very little “new” is needed

Codesign Revisited

Runtime code generation and 1S4 (A valid)
Partial evaluation and temporal logic (A @ t)
Dead code elimination and modal logic IT (A irr)
Distributed computation and IS5 (A @ w)

Concurrency and (intuitionistic) linear logic (linear
hypothetical judgment)

Generic effects and lax logic (A lax)
?? and epistemic logic (K knows A)
?? and ordered logic (ordered hyp. Judgment)

Summary

* Codesign of programming language and its
logic can be powerful
— You’ll know when it is right
— But it is hard

* There are many parameters
— Style of system (ND, SEQ, HIL, ...)
— Judgments (hypothetical, categorical, linear, ...)
— Relating proof reduction to computation
— Equality, for a full type theory

Some Advice

Focus on what you can express, not what you
can’t

Measure success by the constructs omitted, not
those included

Design, program and reason, iterate

Syntax is important

Semantics is even more important, both
operational and logical

Know when to give up

