Modal Logics and Types:
Looking Back and Looking Forward

Frank Pfenning

Computer Science Department
Carnegie Mellon University

PEPM'22
January 17, 2022
Invited Talk

1/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

2/37

PEPM 1991

Compiling the Polymorphic A-Calculus

Spiro Michaylov and Frank Pfenning

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

Internet: spiro@cs.cmu.edu and fpQcs.cmu.edu

Abstract

We report some initial results regarding the effi-
cient compilation of the second-order polymorphic
A-calculus (Fz). Our compiler makes strong use of
type information and the strong normalization and
Church-Rosser properties of Fz. Among the concep-
tual tools we develop is a notion of observational
equivalence for Fy, which we use to outline a proof
that our compiler preserves the observable behav-
ior of programs. Our technique compiles functions
of well-understood inductive types to non-functional
data structures, and computation is no longer just f-
reduction. A limited form of partial evaluation with
a simple “Eureka” step is used to help circumvent
provable inefficiencies of some functions in the pure
polymorphic A-calculus. For example, the usual pre-
decessor function on Church numerals is compiled to
a constant-time function.

1 Introduction

ide-effects, and assi, ese
features destroy many of its elegant and useful prop-
erties, and it may be more accurate to say that such
languages are “inspired by” rather than “based on”
the polymorphic A-calculus. The extensions are justi-
fied by the goal of designing and implementing a prac-
tical and efficient language, two criteria which, con-
ventional wisdom holds, are clearly not satisfied by
the polymorphic A-calculus. This general impression
about inefficiency has been formalized and proved by
Parigot [14] who shows that there is no constant time
definition of the predecessor function over Church’s
representation of natural numbers. Attempts at over-
coming this inefficiency have been unsatisfactory ei-
ther because other functions become inefficient, they
give up typing, or they require built-in inductive data
type definition and primitive recursion (see, for exam-
ple, [14] or [6]).

In this paper we describe the principles behind a
compiler for the pure second-order polymorphic A-
calculus (Fy). The original motivation for developing
this compiler was to execute proofs extracted from
proofs in the Calculus of Constructions, although we
cencider the terhninnes we have develaned to he of

3/37

PEPM 1994

Lightweight Run-Time Code Generation

Mark Leone

*

Peter Lee

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA
{mleone,petel}@cs.cmu.edu

Abstract

In this paper we report on our experience with a new
approach to generating optimized code at run time. The

Run-time code generation is an alternative and
to compile-time program analysis and optimization. Static
analyses are inherently imprecise because most interesting
aspects of run-time behavior are uncomputable. By defer-
ting aspects of compilation to run time, more precise infor-
‘mation about program behavior can be exploited, leading to
greater opportunities for code improvement.

The cost of performing optimization at run time is of
paramount importance, since it must be repaid by improved
performance in order to obtain an overall speedup. This pa-
per describes a lightweight approach to run-time code gen-

salient ch ics of our approach, which we term de-
ferred compilation, are as follows:

o It is lightweight. Compile-time specialization climi-
nates the need to process any intermediate represen-
tation of a program at run time. Each part of a com-
piled program that performs run-time code generation
is “hard wired” to optimize and generate code for a
small portion of the input program.

It is largely automatic. Manual construction of code
or run-time code generators is not required.

eration, called deferred il in which compile-ti
specialization is employed to reduce the cost of optimizing
and generating code at run time. Implementation strategies
developed for a prototype compiler are discussed, and the
results of preliminary experiments d

overall speedup are presented.

1 Introduction

Many compiler optimizations depend on compile-time analy-
sis to approximate properties of a program’s run-time behav-
jor. Static analyses are necessarily imprecise because most

Syntactic cues and programmer hints are used to de-
termine which parts of a program should be subjected
to run-time compilation.

Tt is general. Many standard optimizations, such as
strength reduction and function inlining, can be effi-
ciently employed at run time.

We have implemented a prototype compiler, which we
call FABIUS, to evaluate this approach. In preliminary ex-
periments, we have found that the overhead of deferred
compilation is often quite small when compared to the per-

4/37

Runtime Code Generation

m Mark Leone and Peter Lee: Lightweight Runtime Code
Generation, PEPM 1994.

m Deferred compilation in Fabius compiler for ML

m Staging analysis similar to binding-time analysis in partial
evaluation

m Example: from matrix multiplication to sparse matrix
multiplication

m Example: the power function (used in this talk)

m Privately: Sometimes things are faster, sometimes slower. Can
we express and enforce proper staging in the type system?

5/37

PEPM 2000

On the Logical Foundations of Staged
Computation

Frank Pfenning

PEPM'00, Boston, MA
January 22, 2000

1. Introduction

. Judgments and Propositions
. Intensional Types

. Run-Time Code Generation

. The PML Compiler

o a0 b W N

. Conclusion

6/37

Curried Functions

m Express some staging but do not enforce

m A function 7 — (0 — p) takes a value of type 7 and returns a
code generator of type o — p.

m The power function, first version

power : nat — (nat — nat)
power = A\b. \e.if e = 0 then 1 else b x power b (e — 1)

power 2 —* Xe.if e = 0 then 1 else 2 x power 2 (e — 1)
m Possibly better: swap arguments

power : nat — (nat — nat)
power = Xe. Ab.if e = 0 then 1 else b x power b (e — 1)

power 2 —* \b.if 2 =0 then 1 else b power b (2 — 1)

7/37

m Restage

power : nat — (nat — nat)
power = Me. if e =0 then \b.1
else let f = power (e —1)in Ab.bxf b

power 0 —* A\bg. 1
power 1 +—* \by. by x (Abg. 1) by
power 2)\b2. bg * ()\bl. b1 * ()\bo. 1) bl) b2
=8,)\b2 b2 * b2 *1
m If we could ensure we get the source of the result, we may be
able to generate pretty good code

8/37

m Frank Pfenning. On the Logical Foundations of Staged
Computation, PEPM 2000. [Davies & Pf 1996]
Insight: In order to compile at runtime we must have a
quoted source expression

Quotation is analyzed in (classical) modal logic

Are there suitable intuitionistic versions?

If so, which of the many modal logics should it be?

9/37

Example Revisited

m Type O7 for a (source) expression of type T

power : nat — O(nat — nat)
(code later)

m Axiomatically

FA
— Nec
FOA
FO(A— B) — (DA— OB) (dist—)
FOA— A (eval, axiom T)
FOA— OOA (requote, axiom 4)
/A — OA (but true for some A)

m An intuitionistic version of S4!

10/37

A Curry-Howard Correspondence

Prefer a system of natural deduction

Add term assignment and operational semantics
[Pf & Wong 1995] [Ghani, de Paiva, Ritter 1998] [Davies & Pf 2001]

m Erasing terms yields a system of natural deduction for S4
m Principal judgment
UL 5001,y lUm i Om s X1 i T,y Xn :Tpb e T
A r

m u; will be bound to source expressions of types o;
m x; will be bound to values, as usual, of types 7;
A:-Fe:o A;lTFe:00 Auio;TkHe 7
o/ OE

A;THboxe:Oo A;THletboxu=c¢cine : 7’
x:Tel h uoeA h
St ==y
A;TEx:T P A;TFu:o P

11/37

m Stepping rules (selection) correspond to proof reductions
box e value
let box u = box ein e’ — [e/u]é
m Observations on substitution
[v/x] box €’ = box €
[e/u] box ¢ = box ([e/u] €)
m Satisfies the usual substitution and type soundness properties

m Typing guarantees proper staging

12/37

Example Revisited

m Quote the codel!

power : nat — O(nat — nat)
power = Xe. if e =0 then box (\b.1)
else let box f = power (e — 1) in box (Ab. b f b)

power 0 —* box (Abp. 1)

power 1 —* box (Ab1. by % (Abg. 1) by)

power 2 —* box (Aby. by x (Aby. by * (Abg. 1) by) b2)
=3, box ()\bg. b2 * b2 * 1)

m Now Oo is a compiled to a generator for code of type o

m (Curried) functions are back to normal

13/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

14 /37

Oddities in a Sequent Calculus

m Erasing terms yields a system of natural deduction

® In sequent calculus, we replace v :: o with B valid and x : 7
with A true

By valid, ..., B, valid ; A1 true, ..., A, truet C true

A r
m Show here some sequent calculus rules
A - A true A, Avalid ; T+ C true
—— OR oL
A ;T F DA true A ; OA true, T + C true

A; T, A true - C true
A, Avalid ; T+ C true

validL

m Some oddities:
m The proposition A does not change in validL
m There is no validR
15/37

Decomposing Box

m We stratify the syntax [Benton 1994] [Reed 2009]

Validity V. = 1A
Truth A o= A1—>A2|A1XA2|...’J,V

m Judgments A true and V valid
m Independence principle: validity cannot depend on truth

AF V valid R A,V valid ;T F C true m
A;THLV true A; T,V truet C true
A - A true A; T, A truet C true
A+ TA valid R A TA valid ; T+ C true
A; T, A true - A true d A,V valid & V valid d

16/37

Symmetry and Beauty Restored

We can define OA £ |[1A

[
m T and | form are adjoint
m OA is a comonad
m We can populate the validity layer!
Validity V = Vj— VQ‘ Vi X Vs ’ ’TA
Truth A = A1—>A2|A1XA2|...|J,V

m The left and right rules for the validity layer are identical to
those in the truth layer (except for 1 and |)
m We reason the same way in both layers
m Modal logic: the meaning of the logical connectives does not
depend on the world we are in

17/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

18/37

m Now we can depopulate the truth layer

Validity V Vi Vo|Vix Vol ...]1A
Truth A = |V

m Define OV £ 1]V
m Since 1 and | are adjoint, this forms a (strong) monad

m This is now lax logic!
[Fairtlough & Mendler 1994] [Benton, Bierman, de Paiva 1998]

m Relabel the layers

Truth A = Al—)A2|A1><A2“TL
Lax Truth L == |A

m [/ax means that L is true under some constraints

m Independence principle: Truth may not depend on lax truth!

19/37

Monadic Programming

m Briefly return to natural deduction
m We write ¢ + 7 for ¢ has lax type 7
m Still have e : o if e has type o

m No assumption w < 7 can ever be introduced, so we only have
value variables x : &
m Slight variant of the usual bind/return

AbFc+7 Ate:tr
Y TE
At boxc:Tr Al unbox e =7
Abte:o AFc+lo A,X:Jl—c’+riE
1
Afreturne = |o Abletreturnx =cinc +r

Atc+lo Ax:okFé:0o

1E
AFletreturnx =cine' : o

20/37

Ghost Code

We can fully populate the lax layer to represent “ghost code”

Used for proof /verification

m In type theory, this modeling proof irrelevance
Observable ¢ 1= o1 —o02|o1 xXo2]|... |17
Ghost T u= non|nxn|...|lo
m Programs in ghost layer do not affect observables, by

independence principle

m Ghost code can be erased

21/37

Combining Quotations and Ghosts

m We need at least two set of shifts!

Quoted p = prorp2|prxp2]...|fio
Extensional o 1= o1 — oo xox]|... |17 | p
Ghost T ou= momn|lnxnl|.. |l

m Special case in type theory [Pf 2001]

m Generalize further to a set of modes?

22/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

23/37

[Reed 2009] [Chargin, Pf, Pruiksma, Reed 2020]

Each proposition has an intrinsic mode m of truth

m We have a preorder m > k

m Proof of Ay may depend on hypothesis A, only if m > k
m Contexts W = |V, A, (modes can be distinct)
B V> kif m>kforevery A, e VW

WV + Ay presupposes V > k
For¢> m> k

Props Am = Am— Bm|Am X Bm|...|1T7A| 15 A0

If m > k then k may depend on m, but m is independent of k

For example, valid > true > lax.

24/37

Adjoint Logic, Continued

Rules for the connectives are uniform in the mode

Language at a mode may have only subset of the connectives

Present as a sequent calculus

m Natural deduction also works
m Axiomatic system also exists

Adjoint logic as “module calculus” for combining logics

Satisfies cut elimination once and for all

25/37

Rules of Adjoint Logic

\llll—A,,, \Ug,Am'_Ck (lemZk)

— id cut
AnbE An Vi, U, - G
V. A, F B, Ui kA, Vo,Bnt G (V1 >m)
— =R —L
VA, — Bn Vi, Uy A, — B B Gk
U A VARG (k>1)
———— 1R L
V1A VA G
VA (V> A) . W, A F G
W CA W, LA G
VE G V, Ap, Am = Gk
weaken —— contract

\U,Aml_Ck \UyAml_Ck

26/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

27/37

Back to Partial Evaluation

m Rowan Davies. A Temporal-Logic Approach to Binding Time
Analysis, LICS 1996.

m Modes are binding times 0,1,2,...

m Each layer populated with all logical connectives

m We only have the down shifts [T A, 1 (generically |A)
m Represents the next-time operator OA £ ¢§+1At+1

m First, sequent calculus

\U |_ At+1 R \U, At+1 '_ Cs
v \I/At+1 \Uv \l/At+1 F Cs

m Mode structure t > s for all t and s (others possible)
m Essentially, we obtain the modal logic K with only

A= B)— (A= |B) (dist —)

m For example, we cannot define eval

28/37

Terms and Operational Semantics

m Switch to natural deduction

VEe:Ty Vie: T
/ LE
W Fnexte: |11 VI preve: Try1
m Step only at time 0, postpone others to future
(Ax.e) v =g [v/x]e (Ax. e) valueg
erriyr € e, e
next e —; next ¢’ prev e —;.1 prev €
ers e e el € € el €
AX. e i1 Ax. € X eyl X € € i1 €] €

29/37

Example Revisited

m Canonical forms: if -+ v : |7 and v valueg then v = next e
and - Fe:m
m We proceed in stages, globally
m Evaluate underneath abstractions (but only reduce at time 0)
power : nat — | (nat — nat)
power = \e.next \b. prev
(up- An. if n =0 then next 1

else next (b= prev (p (n—1))))

power 0 —* next (\b. 1)
power 1 +—* next (\b. b« 1)
power 2 —* next (\b.bx b= 1)

30/37

S4 and Runtime Code Generation
Decomposing Modalities

Lax Logic and Monadic Programming
Adjoint Logic

K and Partial Evaluation

Substructural Adjoint Logic

31/37

m There are three related origins of adjoint logic
m Nick Benton. A Mixed Linear and Non-Linear Logic, CSL 1994.
m Vivek Nigam & Dale Miller. Algorithmic Specifications in
Linear Logic with Subexponentials, PPDP 2009.
m Jason Reed. A Judgmental Deconstruction of Modal Logic, 2009.

Benton: Two modes (linear and nonlinear) with shifts

Nigam & Miller: a preorder of substructural modes with exponentials
Reed: modal logic with a preorder of modes and shifts

Intuitionistic linear logic, with U > L

Nonlinear A, = TA.
Linear AL = AL —o0 BL ’ AL ® BL ’ e ’ \l’AU

Define 1A, £ [1A,

m Benton's LNL populates the nonlinear layer
Nonlinear A, == Ay — By|AyxBy|...|TA
Llnear AL = AL —0 BL | AL ® BL | - | \LAU

32/37

Generalize to Substructural Adjoint Logic

m Each mode has a set of structural properties o(m) C {W, C}
among Weakening and Contraction

m Requires: If m > k then o(m) 2 o(k)

m Obtain general cut elimination

m Only two rules change

VEC (Weo(m) V. An, Ant G (C € a(m))

weaken contract
VA, G v, A, F G

m Substructural adjoint logic generalizes subexponentials
[Nigam & Miller 2009] [Chaudhuri 2010]

m Allow modes as in adjoint logic; distinguished mode L
m The modalities |™A, are substructural
m Decomposed to |A = |1 AL

33/37

Substructural Adjoint Logic

Integration of layers with different structural properties
General cut elimination

Conservative extension over each mode

Computational interpretations
m Example: concurrent programming with linear and nonlinear
futures [Blelloch & Reid-Miller 1999] [Pruiksma & Pf 2020]
m Example: message passing concurrency with multicast and
persistent servers [Pruiksma & Pf 2021]
m Modal/linear logics: Encode validity/nonlinear reasoning via
OAor A

m Substructural adjoint logic: Reason natively in each logic and
switch between them

34/37

m Then [1994-2000]:

m OA: Modal logic S4

m Intensionality and runtime code generation

m OA: Lax logic

m Ghosts and monadic programming with effects
m Next A: Modal logic K

m Partial evaluation

m F X and G A: Mixed linear/nonlinear logic

= In between [2000-2018]:

m Modal types as a standard tool in programming languages
m Subexponentials

= Now [2018-2022]

L,{,Ag and 1" Ax: Substructural adjoint logic

Key ingredient: independence principle

All of the above are instances of the same framework
All of the above can be coherently combined

35/37

Some Puzzles

m Possibility (CA) vs. lax truth (O A)
[Reed 2009] [Licata & Shulman 2016]
m Polarization [Levy 2001] [Laurent 2003]

m Looks the same, but how do we best integrate or relate it
m For example, AT — B~ combines distinct polarities/modes

Mode-generic programming

From simple to contextual and dependent types

From modular language to modular reasoning [Pruiksma 2022]
More structure in shift modalities [Licata & Shulman 2016]

36/37

Seminal work
Nick Benton, Vivek Nigam & Dale Miller, Jason Reed

Collaborators on this and closely related work
Rowan Davies,
lliano Cervesato, David Walker, Kevin Watkins, Aleks Nanevski,
Brigitte Pientka, Dennis Griffith, William Chargin, Stephanie
Balzer, Aditi Gupta,
Klaas Pruiksma

37/37

