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quantification, side-effects, and assignment. These

We report some initial results regarding the effi-
cient compilation of the second-order polymorphic
A-calculus (Fz). Our compiler makes strong use of
type information and the strong normalization and
Church-Rosser properties of F2. Among the concep-
tual tools we develop is a notion of observational
equivalence for F2, which we use to outline a proof
that our compiler preserves the observable behav-
ior of programs. Our technique compiles functions
of well-understood inductive types to non-functional
data structures, and computation is no longer just /r-
eduction. A limited form of partial evaluation with
a simple “Eureka” step is used to help circumvent
provable inefficiencies of some functions in the pure
polymorphic Lcalculus. For example, the usual pre-
decessor function on Church numerals is compiled to
a constant-time function.

1 Introduction

The polymorphic A-calculus has been considered as
the basis for programming languages with a notion
of explicit type abstraction and application, such as
Pebble [4], Ponder [8], Russell [7], Quest [5], and FX-

89 [10]. All of these reach far beyond the polymor-
phic ~-calculus and contain features such as built-in
data types and data type definitions, recursive types,
recursive function definitions, subtypes and bounded
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features destroy many of its elegant and useful prop-
erties, and it may be more accurate to say that such
languages are “inspired by” rather than “based on”
the polymorphic Ycalculus. The extensions are justi-
fied by the goal of designing and implementing a prac-
tical and efficient language, two cxiteria which, con-
ventional wisdom holds, are clearly not satisfied by
the polymorphic A-calculus. This general impression
about inefficiency has been formalized and proved by
Parigot [14] who shows that there is no constant time
definition of the predecessor function over Church’s
representation of natural numbers. Attempts at over-
coming this inefficiency have been unsatisfactory ei-
ther because other functions become inefficient, they
give up typing, or they require built-in inductive data
type definition and primitive recursion (see, for exam-
ple, [14] or [6]).

In this paper we describe the principles behind a
compiler for the pure second-order polymorphic J-
calculus (F2). The original motivation for developing
this compiler was to execute proofs extracted from
proofs in the Calculus of Constructions, although we
consider the techniques we have developed to be of
more general interest. Our compiler deals with the
efficiency problem by compiling junctions to repre-
sentations in terms of first-order data constructors,
taking advantage of the type information that is avail-
able after type reconstruction. In fact, it relies on
types more heavily than any other compiler we know
of. Furthermore, it makes use of optimizations which
statically eliminate redundant computation. Apply-
ing the result of compiling the usual definition of the
predecessor function with our compiler to the repre-
sentation of a number requires only a constant and
very small number of computation steps. It is impor-
tant to note that while the predecessor function is our
benchmark, there is no special code in the compiler
recognizing the predecessor or other special syntac-
tic forms—it is based entirely on types, techniques of
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Runtime Code Generation

Mark Leone and Peter Lee: Lightweight Runtime Code
Generation, PEPM 1994.

Deferred compilation in Fabius compiler for ML
Staging analysis similar to binding-time analysis in partial
evaluation
Example: from matrix multiplication to sparse matrix
multiplication
Example: the power function (used in this talk)

Privately: Sometimes things are faster, sometimes slower. Can
we express and enforce proper staging in the type system?
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PEPM 2000

On the Logical Foundations of Staged
Computation

Frank Pfenning

PEPM’00, Boston, MA
January 22, 2000

1. Introduction

2. Judgments and Propositions

3. Intensional Types

4. Run-Time Code Generation

5. The PML Compiler

6. Conclusion
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Curried Functions

Express some staging but do not enforce

A function τ → (σ → ρ) takes a value of type τ and returns a
code generator of type σ → ρ.

The power function, first version

power : nat→ (nat→ nat)
power = λb. λe. if e = 0 then 1 else b ∗ power b (e − 1)

power 2 7→∗ λe. if e = 0 then 1 else 2 ∗ power 2 (e − 1)

Possibly better: swap arguments

power : nat→ (nat→ nat)
power = λe. λb. if e = 0 then 1 else b ∗ power b (e − 1)

power 2 7→∗ λb. if 2 = 0 then 1 else b ∗ power b (2− 1)
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Restaging

Restage

power : nat→ (nat→ nat)
power = λe. if e = 0 then λb. 1

else let f = power (e − 1) in λb. b ∗ f b
power 0 7→∗ λb0. 1
power 1 7→∗ λb1. b1 ∗ (λb0. 1) b1
power 2 7→∗ λb2. b2 ∗ (λb1. b1 ∗ (λb0. 1) b1) b2

=βv λb2. b2 ∗ b2 ∗ 1

If we could ensure we get the source of the result, we may be
able to generate pretty good code
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Quotation

Frank Pfenning. On the Logical Foundations of Staged
Computation, PEPM 2000. [Davies & Pf 1996]

Insight: In order to compile at runtime we must have a
quoted source expression

Quotation is analyzed in (classical) modal logic

Are there suitable intuitionistic versions?

If so, which of the many modal logics should it be?
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Example Revisited

Type 2τ for a (source) expression of type τ

power : nat→ 2(nat→ nat)
(code later)

Axiomatically
` A

` 2A
Nec

` 2(A→ B)→ (2A→ 2B) (dist→)
` 2A→ A (eval, axiom T)
` 2A→ 22A (requote, axiom 4)

6` A→ 2A (but true for some A)

An intuitionistic version of S4!
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A Curry-Howard Correspondence

Prefer a system of natural deduction

Add term assignment and operational semantics
[Pf & Wong 1995] [Ghani, de Paiva, Ritter 1998] [Davies & Pf 2001]

Erasing terms yields a system of natural deduction for S4

Principal judgment

u1 :: σ1, . . . , um :: σm︸ ︷︷ ︸
∆

; x1 : τ1, . . . , xn : τn︸ ︷︷ ︸
Γ

` e : τ

uj will be bound to source expressions of types σj
xi will be bound to values, as usual, of types τi

∆ ; · ` e : σ

∆ ; Γ ` box e : 2σ
2I

∆ ; Γ ` e : 2σ ∆, u::σ ; Γ ` e′ : τ ′

∆ ; Γ ` let box u = e in e′ : τ ′
2E

x : τ ∈ Γ

∆ ; Γ ` x : τ
hyp

u :: σ ∈ ∆

∆ ; Γ ` u : σ
vhyp
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Dynamics

Stepping rules (selection) correspond to proof reductions

box e value
let box u = box e in e ′ 7→ Je/uKe ′

Observations on substitution

[v/x ]box e ′ = box e ′

Je/uK box e ′ = box (Je/uK e ′)
Satisfies the usual substitution and type soundness properties

Typing guarantees proper staging

12 / 37



Example Revisited

Quote the code!

power : nat→ 2(nat→ nat)
power = λe. if e = 0 then box (λb. 1)

else let box f = power (e − 1) in box (λb. b ∗ f b)

power 0 7→∗ box (λb0. 1)
power 1 7→∗ box (λb1. b1 ∗ (λb0. 1) b1)
power 2 7→∗ box (λb2. b2 ∗ (λb1. b1 ∗ (λb0. 1) b1) b2)

=βv box (λb2. b2 ∗ b2 ∗ 1)

Now 2σ is a compiled to a generator for code of type σ

(Curried) functions are back to normal
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Oddities in a Sequent Calculus

Erasing terms yields a system of natural deduction

In sequent calculus, we replace u :: σ with B valid and x : τ
with A true

B1 valid , . . . ,Bm valid︸ ︷︷ ︸
∆

; A1 true, . . . ,An true︸ ︷︷ ︸
Γ

` C true

Show here some sequent calculus rules

∆ ; · ` A true

∆ ; Γ ` 2A true
2R

∆,A valid ; Γ ` C true

∆ ; 2A true, Γ ` C true
2L

∆ ; Γ,A true ` C true

∆,A valid ; Γ ` C true
validL

Some oddities:
The proposition A does not change in validL
There is no validR
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Decomposing Box

We stratify the syntax [Benton 1994] [Reed 2009]

Validity V ::= ↑A
Truth A ::= A1 → A2 | A1 × A2 | . . . | ↓V

Judgments A true and V valid

Independence principle: validity cannot depend on truth

∆ ` V valid

∆ ; Γ ` ↓V true
↓R

∆,V valid ; Γ ` C true

∆ ; Γ, ↓V true ` C true
↓L

∆ ; · ` A true

∆ ` ↑A valid
↑R

∆ ; Γ,A true ` C true

∆, ↑A valid ; Γ ` C true
↑L

∆ ; Γ,A true ` A true
id

∆,V valid ` V valid
idv
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Symmetry and Beauty Restored

We can define 2A , ↓↑A
↑ and ↓ form are adjoint

2A is a comonad

We can populate the validity layer!

Validity V ::= V1 → V2 | V1 × V2 | . . . | ↑A
Truth A ::= A1 → A2 | A1 × A2 | . . . | ↓V

The left and right rules for the validity layer are identical to
those in the truth layer (except for ↑ and ↓)

We reason the same way in both layers
Modal logic: the meaning of the logical connectives does not
depend on the world we are in
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Lax Logic

Now we can depopulate the truth layer

Validity V ::= V1 → V2 | V1 × V2 | . . . | ↑A
Truth A ::= ↓V

Define ©V , ↑↓V
Since ↑ and ↓ are adjoint, this forms a (strong) monad

This is now lax logic!
[Fairtlough & Mendler 1994] [Benton, Bierman, de Paiva 1998]

Relabel the layers

Truth A ::= A1 → A2 | A1 × A2 | . . . | ↑L
Lax Truth L ::= ↓A

L lax means that L is true under some constraints

Independence principle: Truth may not depend on lax truth!
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Monadic Programming

Briefly return to natural deduction

We write c ÷ τ for c has lax type τ

Still have e : σ if e has type σ

No assumption w ÷ τ can ever be introduced, so we only have
value variables x : σ

Slight variant of the usual bind/return

∆ ` c ÷ τ
∆ ` box c : ↑τ

↑I
∆ ` e : ↑τ

∆ ` unbox e ÷ τ
↑E

∆ ` e : σ

∆ ` return e ÷ ↓σ
↓I

∆ ` c ÷ ↓σ ∆, x : σ ` c ′ ÷ τ

∆ ` let return x = c in c ′ ÷ τ
↓E1

∆ ` c ÷ ↓σ ∆, x : σ ` e′ : σ

∆ ` let return x = c in e′ : σ
↓E2
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Ghost Code

We can fully populate the lax layer to represent “ghost code”

Used for proof/verification

In type theory, this modeling proof irrelevance

Observable σ ::= σ1 → σ2 | σ1 × σ2 | . . . | ↑τ
Ghost τ ::= τ1 → τ2 | τ1 × τ2 | . . . | ↓σ

Programs in ghost layer do not affect observables, by
independence principle

Ghost code can be erased
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Combining Quotations and Ghosts

We need at least two set of shifts!

Quoted ρ ::= ρ1 → ρ2 | ρ1 × ρ2 | . . . | ⇑σ
Extensional σ ::= σ1 → σ2 | σ1 × σ2 | . . . | ↑τ | ⇓ρ
Ghost τ ::= τ1 → τ2 | τ1 × τ2 | . . . | ↓σ

Special case in type theory [Pf 2001]

Generalize further to a set of modes?
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Adjoint Logic

[Reed 2009] [Chargin, Pf, Pruiksma, Reed 2020]

Each proposition has an intrinsic mode m of truth

We have a preorder m ≥ k

Proof of Ak may depend on hypothesis Am only if m ≥ k
Contexts Ψ ::= · | Ψ,Am (modes can be distinct)
Ψ ≥ k if m ≥ k for every Am ∈ Ψ

Ψ ` Ak presupposes Ψ ≥ k

For ` ≥ m ≥ k

Props Am ::= Am → Bm | Am × Bm | . . . | ↑mk Ak | ↓`mA`

If m > k then k may depend on m, but m is independent of k

For example, valid > true > lax.
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Adjoint Logic, Continued

Rules for the connectives are uniform in the mode

Language at a mode may have only subset of the connectives

Present as a sequent calculus

Natural deduction also works
Axiomatic system also exists

Adjoint logic as “module calculus” for combining logics

Satisfies cut elimination once and for all
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Rules of Adjoint Logic

Am ` Am

id
Ψ1 ` Am Ψ2,Am ` Ck (Ψ1 ≥ m ≥ k)

Ψ1,Ψ2 ` Ck

cut

Ψ,Am ` Bm

Ψ ` Am → Bm

→R
Ψ1 ` Am Ψ2,Bm ` Ck (Ψ1 ≥ m)

Ψ1,Ψ2,Am → Bm ` Ck

→L

Ψ ` Ak

Ψ ` ↑mk Ak

↑R
Ψ,Ak ` C` (k ≥ `)

Ψ, ↑mk Ak ` C`

↑L

Ψ ` A` (Ψ ≥ A`)

Ψ ` ↓`mA`

↓R
Ψ,A` ` Ck

Ψ, ↓`mA` ` Ck

↓L

Ψ ` Ck

Ψ,Am ` Ck

weaken
Ψ,Am,Am ` Ck

Ψ,Am ` Ck

contract
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Back to Partial Evaluation

Rowan Davies. A Temporal-Logic Approach to Binding Time
Analysis, LICS 1996.

Modes are binding times 0, 1, 2, . . .

Each layer populated with all logical connectives

We only have the down shifts ↓t+1
t At+1 (generically ↓A)

Represents the next-time operator ©A , ↓t+1
t At+1

First, sequent calculus

Ψ ` At+1

Ψ ` ↓At+1

↓R
Ψ,At+1 ` Cs

Ψ, ↓At+1 ` Cs

↓L

Mode structure t ≥ s for all t and s (others possible)

Essentially, we obtain the modal logic K with only

↓(A→ B)→ (↓A→ ↓B) (dist→)

For example, we cannot define eval
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Terms and Operational Semantics

Switch to natural deduction

Ψ ` e : τt+1

Ψ ` next e : ↓τt+1

↓I
Ψ ` e : ↓τt+1

Ψ ` prev e : τt+1

↓E

Step only at time 0, postpone others to future

(λx . e) v 7→0 [v/x ]e (λx . e) value0

e 7→t+1 e
′

next e 7→t next e′

e 7→t e
′

prev e 7→t+1 prev e′

e 7→ e′

λx . e 7→t+1 λx . e
′ x 7→t+1 x

e1 7→t+1 e
′
1 e2 7→t+1 e

′
2

e1 e2 7→t+1 e
′
1 e
′
2
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Example Revisited

Canonical forms: if · ` v : ↓τ1 and v value0 then v = next e
and · ` e : τ1

We proceed in stages, globally

Evaluate underneath abstractions (but only reduce at time 0)

power : nat→ ↓(nat→ nat)
power = λe.next λb.prev

(µp. λn. if n = 0 then next 1
else next (b ∗ prev (p (n − 1))))

e

power 0 7→∗ next (λb. 1)
power 1 7→∗ next (λb. b ∗ 1)
power 2 7→∗ next (λb. b ∗ b ∗ 1)
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Linear Logic

There are three related origins of adjoint logic
Nick Benton. A Mixed Linear and Non-Linear Logic, CSL 1994.
Vivek Nigam & Dale Miller. Algorithmic Specifications in
Linear Logic with Subexponentials, PPDP 2009.
Jason Reed. A Judgmental Deconstruction of Modal Logic, 2009.

Benton: Two modes (linear and nonlinear) with shifts

Nigam & Miller: a preorder of substructural modes with exponentials

Reed: modal logic with a preorder of modes and shifts

Intuitionistic linear logic, with U > L

Nonlinear AU ::= ↑AL

Linear AL ::= AL ( BL | AL ⊗ BL | . . . | ↓AU

Define !AL , ↓↑AL

Benton’s LNL populates the nonlinear layer

Nonlinear AU ::= AU → BU | AU × BU | . . . | ↑AL

Linear AL ::= AL ( BL | AL ⊗ BL | . . . | ↓AU
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Generalize to Substructural Adjoint Logic

Each mode has a set of structural properties σ(m) ⊆ {W ,C}
among Weakening and Contraction

Requires: If m ≥ k then σ(m) ⊇ σ(k)

Obtain general cut elimination

Only two rules change

Ψ ` Ck (W ∈ σ(m))

Ψ,Am ` Ck

weaken
Ψ,Am,Am ` Ck (C ∈ σ(m))

Ψ,Am ` Ck

contract

Substructural adjoint logic generalizes subexponentials
[Nigam & Miller 2009] [Chaudhuri 2010]

Allow modes as in adjoint logic; distinguished mode L
The modalities !mAL are substructural
Decomposed to !mAL , ↓mL ↑

m
L AL
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Substructural Adjoint Logic

Integration of layers with different structural properties

General cut elimination

Conservative extension over each mode

Computational interpretations

Example: concurrent programming with linear and nonlinear
futures [Blelloch & Reid-Miller 1999] [Pruiksma & Pf 2020]
Example: message passing concurrency with multicast and
persistent servers [Pruiksma & Pf 2021]

Modal/linear logics: Encode validity/nonlinear reasoning via
2A or !A

Substructural adjoint logic: Reason natively in each logic and
switch between them
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Summary

Then [1994–2000]:

2A: Modal logic S4
Intensionality and runtime code generation
©A: Lax logic
Ghosts and monadic programming with effects
Next A: Modal logic K
Partial evaluation
F X and G A: Mixed linear/nonlinear logic

In between [2000-2018]:

Modal types as a standard tool in programming languages
Subexponentials

Now [2018–2022]

↓`mA` and ↑mk Ak : Substructural adjoint logic
Key ingredient: independence principle
All of the above are instances of the same framework
All of the above can be coherently combined
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Some Puzzles

Possibility (3A) vs. lax truth (© A)
[Reed 2009] [Licata & Shulman 2016]

Polarization [Levy 2001] [Laurent 2003]

Looks the same, but how do we best integrate or relate it
For example, A+ → B− combines distinct polarities/modes

Mode-generic programming

From simple to contextual and dependent types

From modular language to modular reasoning [Pruiksma 2022]

More structure in shift modalities [Licata & Shulman 2016]
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