o a0 A W N

On the Logical Foundations of Staged
Computation

Frank Pfenning

PEPM'00, Boston, MA
January 22, 2000

. Introduction
. Judgments and Propositions

. Intensional Types

Run-Time Code Generation

. The PML Compiler

. Conclusion

Terminology

e Staged Computation: explicit division of a computation
into stages. Used in algorithm derivation and program
optimization.

e Partial Evaluation: (static) specialization of a program
based on partial input data.

e Run-Time Code Generation: dynamic generation of code
during the evaluation of a program.

Intensionality

e Staged computation is concerned with how a value is
computed.

e Staging is an intensional property of a program.

e Most research has been motivated operationally.

e [his talk: a logical way to understand staging which is
consistent with the operational intuition.
[Davies & Pf. POPL'96] [Davies & Pf.’99]

lLLogical Foundations for Computation

e Specifications as Propositions as Types

e Implementations as Proofs as Programs

e Computations as Reductions as Evaluations

e Augmented by recursion, exceptions, effects, ...

Judgments and Propositions [Martin-Lof]

e A judgment is an object of knowledge.

e An evident judgment is something we know.

e T he meaning of a proposition A is given by what counts as
a verification of A.

e A is true if there is a proof M of A.

e Basic judgment: M : A.

Parametric and Hypothetical Judgments

e Parametric and hypothetical judgments

1A, A EM DA
[

e Meaning given by substitution

IfC, 2 AFN: C
and "M : A
them ' = [M/z]N : C

e Order in I irrelevant, satisfies weakening and contraction.

e Hypothesis or variable rule

ar

VvV
[,z AFx . A

Implication and Function Types

e Reflecting a hypothetical judgment as a proposition.

[, x:AF-M . B
r-)eAM:A—B

I

Fr'-M:A— B I‘I—N:A_>

'-MN : B B

e How do we know these rules are consistent?

e Martin-LOof's meaning explanation.

e Summarize as local soundness and completeness.

local Soundness

e [ocal soundness: the elimination rules are not too strong.

e An introduction rule followed by any elimination rule does
not lead to new knowledge.

e \Witnessed by local reduction

D
,z:A+ M : B E D’
—T —R
' (A\z:A.M): A— B FTEN:A = [N/z]M : B
—F

(A .M)N : B

e D’ exists by the substitution property of hypothetical
judgments.

Local Completeness

e [ocal completeness: the elimination rules are not too weak.

e \We can apply the elimination rules in such a way that a
derivation of the original judgment can be reconstituted

from the results.

e \Witnessed by local expansion
D,
V
D Lz ArM:A— B Mz Az A

::>E
rFM:A—B roA- Mg:B ; b

rF(OzAMz):A—B

ar

e D’ exists by weakening.

Reduction and Evaluation

e Reduction: (Az:A. M) N =g [N/x]M at any subterm.

e |L.ocal soundness means reduction preserves types.

e Evaluation = reduction + strategy (here: call-by-value)

Values V 1= Xx:A.M|...

ANCA. M — \x:A. M

M — dx:A. M’ N — V/ [V /z]M' — V
MN —V

10

Towards Functional Programming

e Decide on observable types.

e Functions are not observable
— allows us to compile and optimize.

e Functions are extensional
— we can determine their behavior on arguments, but not
their definition.

e Evaluate M only if -+ M : A.

o If x1:Aq,...,zn:An - M : A then we may evaluate
Vi/z1,..., Va/xn] M.

11

LLogical Foundations for Staged Computation

e Staging Specifications (as Propositions as Types)

e Staged Implementations (as Proofs as Programs)

e Staged Computations (as Reductions as Evaluations)

e Augmented by recursion, exceptions, effects, ...

12

Desirable Properties

e |.ocal soundness and completeness.

e Evaluation preserves types.

e Conservative extension (orthogonality).

e Captures staging.

13

Some Design Principles

e EXplicit: put the power of staging in the hands of the
programmer, not the compiler.

e Static: staging errors should be type errors.

e Implementable: can achieve expected efficiency
improvements.

14

Focus: Run-Time Code Generation

e Generate code for portions of the program at run-time to
take advantage of information only available then.

e Examples: sparse matrix multiplication, regular expression
matchers, ...

e Implementation via code generators or templates.

15

Requirements

e [0 “compile” at run-time we need a source expression.

e Enable optimizations, but do not force them.

e Distinguish terms from source expressions.

e The structure of (functional) terms is not observable:
extensional.

e [he structure of source expressions may be observable:
intensional.

16

Categorical Judgments

M : A— M is a source expression of type A.

Do not duplicate constructors or types.

Instead define: M is a source expression if it does not
depend on any (extensional) terms.

M A ifr -FM: A

A is valid (categorically true)
if A has a proof which does not depend on hypotheses.

17

Generalized Hypothetical Judgments

e Generalize to permit hypotheses u::B.

u1:iB1,...,um::Bm;x1:A1,... o0 A F M 1 A

A I

e Meaning given by substitution

If (Ayu::B),T-N:C
and A;--M:B (ie., A+FM: B)
then A; T+ [M/u]|N : C

e New hypothesis rule

*

(A,u::B);lT+tu:B var

18

Reflection

e A — proposition expressing that A is valid.

e M :0OA — M is a term which stands for
(evaluates to) a source expression of type A.

e Introduction rule.
AN -FM:A

[
A;I"=boxM :0OA g

e Premise expresses
A is valid, or
M is a source expression of type A.

19

Elimination Rule

o Attempt:
AN TTHM:OA -
AT HFunbox M : A

e Locally sound (by weakening):

E77

D
. : D!
AN -FM:A o —
AT +FboxM:0OA N THM:A

E

O
A; T Funbox (box M) : A

e Definable later: eval : (0DA) — A.

20

Failure of Local Completeness

e Elimination rule is too weak.

e Not locally complete: M:OA = f 77 box (unbox M).

D
D ATHM:OA
::>E ! DE
A= M:OA AT +Funbox M : A

Or7¢7

A; T Fbox(unbox M) : OA

e Also cannot prove: +H0(A — B) —» 0OA — OB.

21

Elimination Rule Revisited

e Elimination rule
AN THM:0OA (A,uA);TEN:C
AN IFHlet boxu=MinN : C

e Locally sound

D

A -FM:A E

[]
A TEbox M :0OA d (A,uA);TEN:C

AN IFHlet boxu =boxMinN : C

g/
AT F[M/U]N : C

::>R

OF

22

Local Completeness

e L.ocal expansion

D
A TEM:OA

*

D (A,u::A);-I—u:AvarDI
—Er A;TEM:0A (A, u::A); - boxu:OA

O
AT F(let boxu =Minboxu) : OA E

e On terms:

M : 0A =g let boxu = Minboxu

23

Summary of Reductions

e Reductions as basis for operational semantics.

o (\z:A.M)N =p [N/z]M

e let boxu =boxMinN =g [M/u]|N

e EXpansions as extensionality principles.

e M: A— B=—p (A\z:A. M x)

o M :0A —=—pf (let boxu = Minboxu).

24

Some Examples

e Application

F Az:O0(A — B). \y:0OA.
let boxu = zinlet boxw = yinbox (v w)
. 0(A—~ B) »>0A — OB

e Evaluation

F Ax:O0A.let boXxu = zinu
O0A — A

e Quotation

= Axz:O0A.let boxu = zinbox (boxu)
. 0A — OOA

25

LLogical Assessment

e O satisfies laws of intuitionistic Sy4.

e Cleaner and simpler formulation through judgmental
reconstruction.

e Can be extended to capture <.

e (An aside: model Moggi’'s computational meta-language

OA Value of type A
SOA Computation of type A
SOA = (A of lax logic

26

Operational Semantics

e Values \xz:A. M and box M.

e Rules

boxM «— boxM

M — box M’ M /u]N — V
(let boxu = MinN) -V

e boX M may or may not be observable since M is guaranteed
to be a source expression even if functions are compiled.

e Fully compatible with recursion, effects.

27

Desirable Properties Revisited

LLocal soundness and completeness. yes

Evaluation preserves types. yes

Conservative extension (orthogonality). yes

Captures staging.
captures intensional expressions reflectively

Enables, but does not force optimizations.

28

Observable Intensional Types

e Source expressions must be manipulated explicitly during
computation.

e Source expressions are evaluated in contexts

let boxu=MIn...u...
where u is not inside a box constructor.

e Source expression could be interpreted, or compiled and
then executed.

e A case construct for source expressions(!) which does not
violate a-conversion can be added safely.
[Despeyroux, Schirmann, Pf. TLCA'97] [Schiirmann & Pf.
CADE’'98] [Pitts & Gabbay '00]

29

Some Applications

e [ype-safe macros
e Meta-programming
e Symbolic computation

e (An aside: Mathematica does not distinguish

22 22
box (22 —1) and 22°° — 1, but should!)

30

Non-Observable Intensional Types

e ODbtain a pure system of run-time code generation.

e \We may compile box M to a code generator.

e [his generator is a function of its free expression variables
u; (value variables x; cannot occur free in M!)

e Implemented in the PML compiler (in progress).

31

The PML Language

[Wickline, Lee, Pfenning PLDI'98] (in progress)

Core ML (recursion, data types, mutable references)
extended by types OA (written [A]).

Lift for observable types (similar to equality types).

Staging errors are type errors (but ...).

Memoization must be programmed explicitly.

32

Structure of the Compiler

e Standard parsing, type-checking.

e “Split” (2-environment) closure conversion.

e Standard ML-RISC code generator for unstaged code.

e Lightweight run-time code generation (Fabius [Lee &
Leone’'96]).

33

Closed Code Generators

Compiling box M where M is closed.

Compile M obtaining binary B (using ML-RISC).

Write code C to generate B.

Generate binary for box M from C (using ML-RISC).

Backpatching for forward jumps and branches at code
generation time (run-time system).

34

Open Code Generators

e Compiling let boxu =Nin ... boxM...

e At run-time, u will be bound to a code generator.

e [he generator for M will call the generator w.

e Planned: pass register information (right now: standard
calling convention).

e Planned: type-based optimization at interface (Fabius).

35

Nested Code Generators

e Special treatment for nested code generators to avoid code
explosion.

e Conceptually:

box M +— Ax:unit. M
let boxu =MinN — let valz = Min[z()/u]N

e Observationally equivalent, but prohibits any optimizations.

36

Invoking Generated Code

e Compiling let boxu =Nin...u..

e Call code generator for w.

e Jump to generated code.

., u not “boxed”.

37

Example: Regular Expression Matcher

datatype regexp

= Empty (x e empty string *)
| Plus of regexp * regexp (* rl + r2 union *)
| Times of regexp * regexp (* rl r2 concatenation *)
| Star of regexp (x r* iteration *)
| Const of string (x a letter *)

(* aux function *)
val acc : regexp -> (string list -> bool)
-> (string list -> bool)

acc r k s — true
iff s = s1@sy» where s1 € L(r) and k s» < true for some s1 and

SD.

fun accept r s = acc r List.null s

38

Unstaged Implementation

fun acc (Empty) k s = k s
| acc (Plus(rl,r2)) k s =
acc rl k s orelse acc r2 k s
| acc (Times(rl,r2)) k s =
acc rl (fn ss => acc r2 k ss) s
| acc (Star(r)) k s =
k s orelse
acc r (fn ss => if s = ss then false
else acc (Star(r)) k ss) s
| acc (Const(str)) k (x::s) =
(x = str) andalso k s
| acc (Const(str)) k (nil) = false

39

Staged Version, Part I

(x val acc : regexp ->
[(string list -> bool) -> (string list -> bool)] x*)
fun acc (Empty) = box (fn k => fn s => k s)

| acc (Times(rl,r2)) =
let box al = acc ri
box a2 = acc r2
in
box (fn k => fn s => al (fn ss => a2 k ss) s)
end
| acc (Star(rl)) =
let box al = acc ri
box rec aStar =
box (fn k => fn s
k s orelse
al (fn ss => if s = ss then false
else aStar k ss) s)

Il
v

in
box (fn k => fn s => aStar k s)
end

40

Staged Version, Part II

| acc (Const(c)) =
let box c’ = 1lift ¢ (* c : string *)
in
box (fn k => (fn (x::s) => (x = ¢’) andalso k s
| nil => false))
end

(* val accept3 : regexp -> (string list -> bool) *)

fun accept3 r
let box a = acc r
in

a List.null

end

41

Example

Times (Const "a", Empty)

=>
let box al =
box (fn k => (fn (x::s8) => (x = "a") andalso k s
| nil => false))
box a2 = box (fn k => fn s => k s)
in
box (fn k => fn s => al (fn ss => a2 k ss) s)
end
=>

box (fn k => fn s =>
(fn k => (fn (x::s) => (x = "a") andalso k s
| nil => false))
(fn ss => (fn k => fn s => k s) k ss) s)

42

A Sample Optimization

Substitute variable for variable, functional value for linear
variable.

box (fn k => fn s =>
(fn k => (fn (x::s) => (x = "a") andalso k s
| nil => false))
(fn ss => (fn k => fn s => k s) k ss) s)

box (fn k => fn s =>
(fn (x::8’) => (x = "a") andalso
(fn ss => (fn k => fn s => k s) k ss) s’
| nil => false)) s)

box (fn k => fn s =>
(fn (x::s8’) => (x = "a") andalso k s’
| nil => false)) s)

43

Run-Time Code Generation Summary

e L ogical reconstruction vields clean and simple type system
for run-time code generation.

e Application of Curry-Howard isomorphism to intuitionistic
Sa.

e Distinguish expressions from terms (valid from true
propositions).

e Enables optimizations without prescribing them.

e (Partially) implemented in the PML compiler.

44

Some Issues

e Lift for functions? Top-level? Modules?

e Memoization? Garbage collections for generated code?

e Some inference?

e Empirical study (cf. Fabius).

45

Implicit Syntax

e Derived (logically) from Kripke semantics of Sg.

e Similar to quasi-quote in Lisp-like languages.

e Operational semantics defined by translation.

fun acc (Empty) = ‘(fn k => fn s => k s)
| acc (Times(r1,r2)) =

‘(fn k => fn s => “(acc rl) (fn ss => “(acc r2) k ss) s)
| acc (Star(rl)) =

‘(fn k => fn s =>
k s orelse
“(acc rl) (fn ss => if s = ss then false

else “(acc (Star(rl))) k ss) s)

e Note bug!

46

Relation to Two-Level Languages

e Conservative extension of Nielson & Nielson [book version].

e Evident from implicit syntax.

e Allows arbitrary stages [Gliick & Jgrgensen PLILP'95].

e [wo-level languages are one-level languages with modal
types.

47

Relation to Partial Evaluation

e Partial evaluation prescribes optimization.

e Computation proceeds in discrete transformation steps.

e NO analogue of eval : OA — A.

e Logical foundations through intuitionistic linear time
temporal logic. [Davies LICS'96]

e Combination subject to current research
[Moggi, Taha, Benaissa, Sheard ESOP’'99] [Davies & Pf.]

e Soundness problems in the presence of effects.

48

Conclusion

e Cleaner, simpler systems through judgmental analysis and
logical foundation.

e [wo-level languages are one-level languages with modal
types.

e Put the power of the staged computation into the hands of
the programmer, not the compiler!

e Staging errors should be type errors.

49

