
On the Logical Foundations of Staged
Computation

Frank Pfenning

PEPM’00, Boston, MA
January 22, 2000

1. Introduction

2. Judgments and Propositions

3. Intensional Types

4. Run-Time Code Generation

5. The PML Compiler

6. Conclusion

1



Terminology

• Staged Computation: explicit division of a computation

into stages. Used in algorithm derivation and program

optimization.

• Partial Evaluation: (static) specialization of a program

based on partial input data.

• Run-Time Code Generation: dynamic generation of code

during the evaluation of a program.

2



Intensionality

• Staged computation is concerned with how a value is

computed.

• Staging is an intensional property of a program.

• Most research has been motivated operationally.

• This talk: a logical way to understand staging which is

consistent with the operational intuition.

[Davies & Pf. POPL’96] [Davies & Pf.’99]

3



Logical Foundations for Computation

• Specifications as Propositions as Types

• Implementations as Proofs as Programs

• Computations as Reductions as Evaluations

• Augmented by recursion, exceptions, effects, . . .

4



Judgments and Propositions [Martin-Löf]

• A judgment is an object of knowledge.

• An evident judgment is something we know.

• The meaning of a proposition A is given by what counts as

a verification of A.

• A is true if there is a proof M of A.

• Basic judgment: M : A.

5



Parametric and Hypothetical Judgments

• Parametric and hypothetical judgments

x1:A1, . . . , xn:An︸ ︷︷ ︸
Γ

`M : A

• Meaning given by substitution

If Γ, x:A ` N : C
and Γ `M : A
them Γ ` [M/x]N : C

• Order in Γ irrelevant, satisfies weakening and contraction.

• Hypothesis or variable rule

var
Γ, x:A ` x : A

6



Implication and Function Types

• Reflecting a hypothetical judgment as a proposition.

Γ, x:A `M : B
→I

Γ ` λx:A.M : A→ B

Γ `M : A→ B Γ ` N : A→E
Γ `M N : B

• How do we know these rules are consistent?

• Martin-Löf’s meaning explanation.

• Summarize as local soundness and completeness.

7



Local Soundness

• Local soundness: the elimination rules are not too strong.

• An introduction rule followed by any elimination rule does
not lead to new knowledge.

• Witnessed by local reduction

D

Γ, x:A `M : B
→I

Γ ` (λx:A.M) : A→ B

E

Γ ` N : A
→E

Γ ` (λx:A.M)N : B

=⇒R
D′

Γ ` [N/x]M : B

• D′ exists by the substitution property of hypothetical
judgments.

8



Local Completeness

• Local completeness: the elimination rules are not too weak.

• We can apply the elimination rules in such a way that a
derivation of the original judgment can be reconstituted
from the results.

• Witnessed by local expansion

D

Γ `M : A→ B
=⇒E

D′

Γ, x:A `M : A→ B
var

Γ, x:A ` x:A
→E

Γ, x:A `M x : B
→I

Γ ` (λx:A.M x) : A→ B

• D′ exists by weakening.

9



Reduction and Evaluation

• Reduction: (λx:A.M)N =⇒R [N/x]M at any subterm.

• Local soundness means reduction preserves types.

• Evaluation = reduction + strategy (here: call-by-value)

Values V ::= λx:A.M | . . .

λx:A.M ↪→ λx:A.M

M ↪→ λx:A.M ′ N ↪→ V ′ [V ′/x]M ′ ↪→ V

M N ↪→ V

10



Towards Functional Programming

• Decide on observable types.

• Functions are not observable
— allows us to compile and optimize.

• Functions are extensional
— we can determine their behavior on arguments, but not
their definition.

• Evaluate M only if · `M : A.

• If x1:A1, . . . , xn:An `M : A then we may evaluate
[V1/x1, . . . , Vn/xn]M.

11



Logical Foundations for Staged Computation

• Staging Specifications (as Propositions as Types)

• Staged Implementations (as Proofs as Programs)

• Staged Computations (as Reductions as Evaluations)

• Augmented by recursion, exceptions, effects, . . .

12



Desirable Properties

• Local soundness and completeness.

• Evaluation preserves types.

• Conservative extension (orthogonality).

• Captures staging.

13



Some Design Principles

• Explicit: put the power of staging in the hands of the

programmer, not the compiler.

• Static: staging errors should be type errors.

• Implementable: can achieve expected efficiency

improvements.

14



Focus: Run-Time Code Generation

• Generate code for portions of the program at run-time to

take advantage of information only available then.

• Examples: sparse matrix multiplication, regular expression

matchers, . . .

• Implementation via code generators or templates.

15



Requirements

• To “compile” at run-time we need a source expression.

• Enable optimizations, but do not force them.

• Distinguish terms from source expressions.

• The structure of (functional) terms is not observable:

extensional.

• The structure of source expressions may be observable:

intensional.

16



Categorical Judgments

• M :: A — M is a source expression of type A.

• Do not duplicate constructors or types.

• Instead define: M is a source expression if it does not

depend on any (extensional) terms.

`M :: A if · `M : A

• A is valid (categorically true)

if A has a proof which does not depend on hypotheses.

17



Generalized Hypothetical Judgments

• Generalize to permit hypotheses u::B.

u1::B1, . . . , um::Bm︸ ︷︷ ︸
∆

;x1:A1, . . . xn:An︸ ︷︷ ︸
Γ

`M : A

• Meaning given by substitution

If (∆, u::B); Γ ` N : C

and ∆; · `M : B (i.e., ∆ `M :: B)

then ∆; Γ ` [[M/u]]N : C

• New hypothesis rule

var∗
(∆, u::B); Γ ` u : B

18



Reflection

• 2A — proposition expressing that A is valid.

• M : 2A — M is a term which stands for

(evaluates to) a source expression of type A.

• Introduction rule.

∆; · `M : A

2I
∆; Γ ` boxM : 2A

• Premise expresses

A is valid, or

M is a source expression of type A.

19



Elimination Rule

• Attempt:

∆; Γ `M : 2A

2E??
∆; Γ ` unboxM : A

• Locally sound (by weakening):

D

∆; · `M : A

2I
∆; Γ ` boxM : 2A

2E
∆; Γ ` unbox (boxM) : A

=⇒R
D′

∆; Γ `M : A

• Definable later: eval : (2A)→ A.

20



Failure of Local Completeness

• Elimination rule is too weak.

• Not locally complete: M:2A =⇒E ?? box (unboxM).

D

∆; Γ `M : 2A
=⇒E

D

∆; Γ `M : 2A

2E
∆; Γ ` unboxM : A

2I??
∆; Γ ` box (unboxM) : 2A

• Also cannot prove: ` 2(A→ B)→ 2A→ 2B.

21



Elimination Rule Revisited

• Elimination rule

∆; Γ `M : 2A (∆, u::A); Γ ` N : C

2E
∆; Γ ` let boxu = M inN : C

• Locally sound

D

∆; · `M : A
2I

∆; Γ ` boxM : 2A

E

(∆, u::A); Γ ` N : C

2E
∆; Γ ` let boxu = boxM inN : C

=⇒R
E′

∆; Γ ` [[M/u]]N : C

22



Local Completeness

• Local expansion

D

∆; Γ `M : 2A

=⇒E

D

∆; Γ `M : 2A

var∗
(∆, u::A); · ` u : A

2I
(∆, u::A); Γ ` boxu : 2A

2E
∆; Γ ` (let boxu = M in boxu) : 2A

• On terms:

M : 2A =⇒E let boxu = M in boxu

23



Summary of Reductions

• Reductions as basis for operational semantics.

• (λx:A.M)N =⇒R [N/x]M

• let boxu = boxM inN =⇒R [[M/u]]N

• Expansions as extensionality principles.

• M : A→ B =⇒E (λx:A.M x)

• M : 2A =⇒E (let boxu = M in boxu).

24



Some Examples

• Application

· ` λx:2(A→ B). λy:2A.

let boxu = x in let boxw = y in box (uw)

: 2(A→ B)→ 2A→ 2B

• Evaluation

· ` λx:2A. let boxu = x inu

: 2A→ A

• Quotation

· ` λx:2A. let boxu = x in box (boxu)

: 2A→ 22A

25



Logical Assessment

• 2 satisfies laws of intuitionistic S4.

• Cleaner and simpler formulation through judgmental
reconstruction.

• Can be extended to capture 3.

• (An aside: model Moggi’s computational meta-language

2A Value of type A

32A Computation of type A

32A =©A of lax logic

)

26



Operational Semantics

• Values λx:A.M and boxM.

• Rules

boxM ↪→ boxM

M ↪→ boxM ′ [[M ′/u]]N ↪→ V

(let boxu = M inN) ↪→ V

• boxM may or may not be observable since M is guaranteed

to be a source expression even if functions are compiled.

• Fully compatible with recursion, effects.

27



Desirable Properties Revisited

• Local soundness and completeness. yes

• Evaluation preserves types. yes

• Conservative extension (orthogonality). yes

• Captures staging.

captures intensional expressions reflectively

• Enables, but does not force optimizations.

28



Observable Intensional Types

• Source expressions must be manipulated explicitly during
computation.

• Source expressions are evaluated in contexts

let boxu = M in . . . u . . .

where u is not inside a box constructor.

• Source expression could be interpreted, or compiled and
then executed.

• A case construct for source expressions(!) which does not
violate α-conversion can be added safely.
[Despeyroux, Schürmann, Pf. TLCA’97] [Schürmann & Pf.
CADE’98] [Pitts & Gabbay ’00]

29



Some Applications

• Type-safe macros

• Meta-programming

• Symbolic computation

• (An aside: Mathematica does not distinguish

box (22222

− 1) and 22222

− 1, but should!)

30



Non-Observable Intensional Types

• Obtain a pure system of run-time code generation.

• We may compile boxM to a code generator.

• This generator is a function of its free expression variables

uj (value variables xi cannot occur free in M!)

• Implemented in the PML compiler (in progress).

31



The PML Language

• [Wickline, Lee, Pfenning PLDI’98] (in progress)

• Core ML (recursion, data types, mutable references)

extended by types 2A (written [A]).

• Lift for observable types (similar to equality types).

• Staging errors are type errors (but . . .).

• Memoization must be programmed explicitly.

32



Structure of the Compiler

• Standard parsing, type-checking.

• “Split” (2-environment) closure conversion.

• Standard ML-RISC code generator for unstaged code.

• Lightweight run-time code generation (Fabius [Lee &

Leone’96]).

33



Closed Code Generators

• Compiling boxM where M is closed.

• Compile M obtaining binary B (using ML-RISC).

• Write code C to generate B.

• Generate binary for boxM from C (using ML-RISC).

• Backpatching for forward jumps and branches at code

generation time (run-time system).

34



Open Code Generators

• Compiling let boxu = N in . . .boxM . . .

• At run-time, u will be bound to a code generator.

• The generator for M will call the generator u.

• Planned: pass register information (right now: standard

calling convention).

• Planned: type-based optimization at interface (Fabius).

35



Nested Code Generators

• Special treatment for nested code generators to avoid code

explosion.

• Conceptually:

boxM 7→ λx:unit.M

let boxu = M inN 7→ let val x = M in [x ()/u]N

• Observationally equivalent, but prohibits any optimizations.

36



Invoking Generated Code

• Compiling let boxu = N in . . . u . . ., u not “boxed”.

• Call code generator for u.

• Jump to generated code.

37



Example: Regular Expression Matcher

datatype regexp

= Empty (* e empty string *)

| Plus of regexp * regexp (* r1 + r2 union *)

| Times of regexp * regexp (* r1 r2 concatenation *)

| Star of regexp (* r* iteration *)

| Const of string (* a letter *)

(* aux function *)

val acc : regexp -> (string list -> bool)

-> (string list -> bool)

acc r k s ↪→ true

iff s = s1@s2 where s1 ∈ L(r) and k s2 ↪→ true for some s1 and
s2.

fun accept r s = acc r List.null s

38



Unstaged Implementation

fun acc (Empty) k s = k s

| acc (Plus(r1,r2)) k s =

acc r1 k s orelse acc r2 k s

| acc (Times(r1,r2)) k s =

acc r1 (fn ss => acc r2 k ss) s

| acc (Star(r)) k s =

k s orelse

acc r (fn ss => if s = ss then false

else acc (Star(r)) k ss) s

| acc (Const(str)) k (x::s) =

(x = str) andalso k s

| acc (Const(str)) k (nil) = false

39



Staged Version, Part I

(* val acc : regexp ->
[(string list -> bool) -> (string list -> bool)] *)

fun acc (Empty) = box (fn k => fn s => k s)
...
| acc (Times(r1,r2)) =
let box a1 = acc r1

box a2 = acc r2
in

box (fn k => fn s => a1 (fn ss => a2 k ss) s)
end

| acc (Star(r1)) =
let box a1 = acc r1

box rec aStar =
box (fn k => fn s =>

k s orelse
a1 (fn ss => if s = ss then false

else aStar k ss) s)
in

box (fn k => fn s => aStar k s)
end

40



Staged Version, Part II

| acc (Const(c)) =

let box c’ = lift c (* c : string *)

in

box (fn k => (fn (x::s) => (x = c’) andalso k s

| nil => false))

end

(* val accept3 : regexp -> (string list -> bool) *)

fun accept3 r =

let box a = acc r

in

a List.null

end

41



Example

Times (Const "a", Empty)

=>

let box a1 =

box (fn k => (fn (x::s) => (x = "a") andalso k s

| nil => false))

box a2 = box (fn k => fn s => k s)

in

box (fn k => fn s => a1 (fn ss => a2 k ss) s)

end

=>

box (fn k => fn s =>

(fn k => (fn (x::s) => (x = "a") andalso k s

| nil => false))

(fn ss => (fn k => fn s => k s) k ss) s)

42



A Sample Optimization

Substitute variable for variable, functional value for linear
variable.

box (fn k => fn s =>

(fn k => (fn (x::s) => (x = "a") andalso k s

| nil => false))

(fn ss => (fn k => fn s => k s) k ss) s)

==>

box (fn k => fn s =>

(fn (x::s’) => (x = "a") andalso

(fn ss => (fn k => fn s => k s) k ss) s’

| nil => false)) s)

==>

box (fn k => fn s =>

(fn (x::s’) => (x = "a") andalso k s’

| nil => false)) s)

43



Run-Time Code Generation Summary

• Logical reconstruction yields clean and simple type system

for run-time code generation.

• Application of Curry-Howard isomorphism to intuitionistic

S4.

• Distinguish expressions from terms (valid from true

propositions).

• Enables optimizations without prescribing them.

• (Partially) implemented in the PML compiler.

44



Some Issues

• Lift for functions? Top-level? Modules?

• Memoization? Garbage collections for generated code?

• Some inference?

• Empirical study (cf. Fabius).

45



Implicit Syntax

• Derived (logically) from Kripke semantics of S4.

• Similar to quasi-quote in Lisp-like languages.

• Operational semantics defined by translation.

fun acc (Empty) = ‘(fn k => fn s => k s)
| acc (Times(r1,r2)) =

‘(fn k => fn s => ^(acc r1) (fn ss => ^(acc r2) k ss) s)
| acc (Star(r1)) =

‘(fn k => fn s =>
k s orelse
^(acc r1) (fn ss => if s = ss then false

else ^(acc (Star(r1))) k ss) s)
...

• Note bug!

46



Relation to Two-Level Languages

• Conservative extension of Nielson & Nielson [book version].

• Evident from implicit syntax.

• Allows arbitrary stages [Glück & Jørgensen PLILP’95].

• Two-level languages are one-level languages with modal

types.

47



Relation to Partial Evaluation

• Partial evaluation prescribes optimization.

• Computation proceeds in discrete transformation steps.

• No analogue of eval : 2A→ A.

• Logical foundations through intuitionistic linear time
temporal logic. [Davies LICS’96]

• Combination subject to current research
[Moggi, Taha, Benaissa, Sheard ESOP’99] [Davies & Pf.]

• Soundness problems in the presence of effects.

48



Conclusion

• Cleaner, simpler systems through judgmental analysis and

logical foundation.

• Two-level languages are one-level languages with modal

types.

• Put the power of the staged computation into the hands of

the programmer, not the compiler!

• Staging errors should be type errors.

49


