
Verifying Program Invariants
with Refinement Types

Rowan Davies and Frank Pfenning

Carnegie Mellon University

Logic Colloquium

Max-Planck-Institut für Informatik

and Universität des Saarlandes

October 2001

Acknowledgments: Robert Harper

1

Overview

• Introduction

• Refinement Types

• A Value Restriction

• Progress and Type Preservation

• Bi-Directional Type Checking

• Parametric Polymorphism

• Conclusion

2

Why Aren’t Most Programs Verified?

• Difficulty of expressing a precise specification.

• Difficulty of proving correctness.

• Difficulty of co-evolving program, specification, and proof.

• Problems exacerbated by poorly designed languages.

3

Why Are Most Programs Type-Checked?

• Ease of expressing types.

• Ease of checking types.

• Ease of co-evolving programs and types.

• Most useful in properly designed languages.

4

A Continuum?

• Types as a minimal requirement for meaningful programs.

• Specifications as a maximal requirement for correct

programs.

• Suprisingly few intermediate points have been investigated.

• Many errors are caught by simple type-checking.

• But many errors also escape simple type-checking.

5

A Research Program

• Designing systems for statically verifying program

properties.

• Evaluation along the following dimensions:

– Elegance, generality, brevity (ease of expression)

– Practicality of verification (ease of checking)

– Explicitness (ease of understanding and evolution)

• Some of these involve trade-offs.

6

Goals

• Catch more errors at compile-time.

• Increase confidence in correctness.

• Document crucial program invariants.

• Check consistency at module boundaries.

• Programmer guidance and involvement.

• Not: optimize compiled code.

• Not: extend type system to admit more programs.

• Instead: refine type systems to admit fewer programs.

7

Traditional Static Program Analysis

• Many useful lessons and ideas

(e.g. abstract interpretation)

• Emphasis on compiler optimization (here: error discovery).

• Emphasis on inference of properties (here: checking).

• Additional documentation?

• Additional errors discovered?

• Problems at module boundaries.

8

Traditional Type Systems

• Many useful lessons and ideas

(e.g. module interfaces)

• Emphasis on generality

(e.g. polymorphism, record subtyping, intersection types).

• Emphasis on inference of types.

• Additional documentation?

• Additional errors discovered?

9

The Basic Idea

• ML as host language.

• Data structures via datatypes.

• Invariants on data structures specified by

regular tree grammars.

• Extend to full language via subtyping and intersections.

• Bi-directional type checking.

10

Example: Bit Strings and Natural Numbers

• Datatype of bit strings (freely generated):

Bit Strings bits ::= ε | bits 1 | bits 0

• ε represents empty string, 0 and 1 are postfix operators.

• For example: p0q= ε, p6q= ε1 1 0.

• Natural numbers have no leading 0s.

• Refinements of type bits inductively defined:

Natural Numbers nat ::= ε | pos

Positive Numbers pos ::= pos 0 | nat 1

11

The Need for Subtyping and Intersections

• Subtyping: pos ≤ nat ≤ bits (in general: lattice).

• Intersections: Consider shiftl = λx. x0.

` λx. x0 : bits→ bits

` λx. x0 : nat→ bits

` λx. x0 : pos→ pos

• Intersections allow these to be expressed simultaneously.

` λx. x0 : (bits→ bits)

∧ (nat→ bits)

∧ (pos→ pos)

6 ` λx. x0 : nat→ nat (!)

12

Other Examples

• Even and odd length lists

(but not lists of length n).

• Empty and non-empty lists, single constructor types.

• Normal terms, head-normal terms, cps terms

(but not closed terms).

• Color invariant on red/black trees

(but not balance invariant).

• Valid stacks in operator precedence parsing.

• Intuition: recognizable by finite-state tree automaton.

• Generalization: restricted forms of dependent types.

[Xi & Pf.’98,’99, Xi’99]

13

What are Intersection Types?

• Introduction rule

Γ `M : A Γ `M : B
Γ `M : A ∧B

• Elimination rules

Γ `M : A ∧B
Γ `M : A

Γ `M : A ∧B
Γ `M : B

14

Subtyping and Greatest Lower Bounds

• Subsumption

Γ `M : A A ≤ B
Γ `M : B

• Intersection as a greatest lower bound

A ∧B ≤ A A ∧B ≤ B

A ≤ B A ≤ C
A ≤ B ∧ C

• Elimination rules now derivable

Γ `M : A ∧B A ∧B ≤ A
Γ `M : A

15

Intersections are Unsound with Effects

• Counterexample

let x = ref (ε1) : nat ref ∧ pos ref
in

x := ε; % use x : nat ref
!x % use x : pos ref

end : pos

evaluates to ε which does not have type pos.

• Analogous counterexample with parametric polymorphism:

let x = ref (λy. y) : ∀α. (α→ α) ref
in

x := (λy. ε); % use x : (nat→ nat) ref
(!x) (ε1) % use x : (pos→ pos) ref

end : pos

16

Subtyping

Types A ::= bits | nat | pos

| A1→A2 | A ref | unit

| A1 ∧A2

A ≤ A
A ≤ B B ≤ C

A ≤ C ≤: Reflexive and transitive

B1 ≤ A1 A2 ≤ B2

A1→A2 ≤ B1→B2 →: Contra- and co-variant

A ≤ B B ≤ A
A ref ≤ B ref ref: Non-variant

17

Subtyping and Intersections

pos ≤ nat nat ≤ bits Data types

A ∧B ≤ A A ∧B ≤ B ∧: Lower bound

A ≤ B A ≤ C
A ≤ B ∧ C ∧: Greatest lower bound

[
(A→B) ∧ (A→ C) ≤ A→ (B ∧ C)

]
?? (Distributivity)

• Distributivity disturbs orthogonality of constructors.

• Distributivity is unsound with effects (see later).

18

Typing Judgment

• Language is standard call-by-value language with functions,

mutable references, unit, bit strings, let and recursion.

• Use pure type assignment for typeless operational

semantics.

• Later: bi-directional type-checking.

• Pragmatically: refinement restriction.

• Typing rules are standard for functions, recursion,

references.

• De-emphasize refinement restriction here.

19

Typing Bit Strings

• Bit strings (two rules for case omitted):

Γ ` ε : nat

Γ `M : pos
Γ `M 0 : pos

Γ `M : bits
Γ `M 0 : bits

Γ `M : nat
Γ `M 1 : pos

Γ `M : bits
Γ `M 1 : bits

Γ `M : pos Γ, x:pos ` N0 : A Γ, y:nat ` N1 : A

Γ ` caseM of ε⇒ Ne | x0⇒ N0 | y 1⇒ N1 : A

• Note: case (M:pos) does not need to check Ne.

20

Datatype Refinement: The General Case

• First specify (ML) datatype.

• Then specify refinements of datatypes.

• Analysis of refinements generates:

– Completing of lattice structure to include intersections

(using algorithms from tree automata).

– Determine most general types of constructors.

– Determine inversion principles for constructors.

• Does not allow negative refinements.

• Polymorphic refinements must be parametric.

21

Typing Judgment Continued

• Value restriction and subsumption.

Γ ` V : A Γ ` V : B
Γ ` V : A ∧B

Γ `M : A A ≤ B
Γ `M : B

where

Values V ::= x | λx.M | ε | V 0 | V 1

• Originally introduced for parametric polymorphism

[Tofte’90] [Wright’95].

• Value restriction here not tied to let!

Γ `M : A Γ, x:A ` N : B

Γ ` letx = M in N end : B

22

Counterexample Revisited

let x = ref (ε1) : nat ref ∧ pos ref
in

x := ε; % use x : nat ref
!x % use x : pos ref

end : pos

• No longer well typed:

6 ` ref (ε1) : nat ref ∧ pos ref

since ref (ε1) is not a value.

23

Distributivity Revisited

• Distributivity is unsound with effects.[
(A→B) ∧ (A→C) ≤ A→ (B ∧ C)

]
• Counterexample:

` λu. ref (ε1) : (unit→ nat ref) ∧ (unit→ pos ref)

by distributivity and subsumption:

` λu. ref (ε1) : unit→ (nat ref ∧ pos ref)

` (λu. ref (ε1)) 〈 〉 : nat ref ∧ pos ref

• In a program:

let x = (λu. ref (ε1)) 〈 〉 : nat ref ∧ pos ref

in . . . end % as on slide 5

24

Results

• Theorem: Subtyping is structural.

• Lemma: (Typing Inversion) With a store typing ∆:

1. If ∆; · ` V : A and A ≤ B→ C

then V = λx.M and ∆;x:B `M : C.

2. . . . (one for each type or type constructor) . . .

Fails in the presence of distributivity!

• Theorem: Call-by-value reduction semantics satisfies

progress and type preservation.

• Proof: Follows [Wright & Felleisen ’94] [Harper’94], using

above inductive inversion properties.

Fails in the presence of unrestricted intersection!

25

Consequences

• Language has no principal types:

` ref (ε1) : bits ref

` ref (ε1) : nat ref

` ref (ε1) : pos ref

but bits ref, nat ref and pos ref are unrelated and

6 ` ref (ε1) : bits ref ∧ nat ref ∧ pos ref

26

Bi-Directional Type-Checking

• Simplified subtyping allows simplified bi-directional

type-checking.

• Functional fragment

Inferable I ::= x | I C | C:A

Checkable C ::= I | λx. C

• Normal forms require no type annotations.

• Two mutually recursive judgments:

Γ ` I ↑ A I synthesizes A (non-deterministically)

Γ ` C ↓ A C checks against A

27

Bi-Directional Typing Rules

• Inferable

x:A in Γ
Γ ` x ↑ A

Γ ` I ↑ A→B Γ ` C ↓ A
Γ ` I C ↑ B

Γ ` C ↓ A
Γ ` (C:A) ↑ A

Γ ` I ↑ A ∧B
Γ ` I ↑ A

Γ ` I ↑ A ∧B
Γ ` I ↑ B

• Checkable (Cv a checkable value)

Γ ` I ↑ A A ≤ B
Γ ` I ↓ B

Γ ` Cv ↓ A Γ ` Cv ↓ B
Γ ` Cv ↓ A ∧B

Γ, x:A `M ↓ B
Γ ` λx.M ↓ A→B

28

Pragmatics

• No distributivity: sometimes more explicit types.

• Bi-directionality: sometimes lift local functions.

• Boolean constraints for efficient implementation

(speculative)

parametric polymorphism intersection polymorphism

type variable boolean variable

unification boolean constraint simplification

29

Another Example

• Converting a bit string to standard form.

stdize : bits→ nat
= fix stdize. λb. case b

of ε⇒ ε
| x0⇒ case stdize x

of ε⇒ ε
| y 0⇒ y 0 0
| y 1⇒ y 1 0

| x1⇒ (stdize x) 1

• Possible sequential pattern matching in second case.

30

Preliminary Assessment

+ Elegance

+? Generality (some rewriting, e.g. tests x = nil)

+ Brevity (proportional to complexity of invariant)

+? Practicality of verification (interaction with polymorphism?)

! Full inference is decidable via abstract interpretation

[Freeman’94], but captures too many accidental properties.

+ Explicitness (clean at module boundary)

31

Adding Parametric Polymorphism

Types A ::= . . . | α | ∀α.A

• Subtyping

∀α.A ≤ [B/α]A A1 ∧A2 ≤ A1 A1 ∧A2 ≤ A2

A ≤ B
α 6∈ FV(A)

A ≤ ∀α.B
A ≤ B1 A ≤ B2

A ≤ B1 ∧B2

• Distributivity is unsound.[
α 6∈ FV(A)∀α. (A→B) ≤ A→∀α.B

]

32

Structural Subtyping (Sound & Complete)

A � A

pos � nat pos � bits nat � bits

B1 � A1 A2 � B2

A1→A2 � B1→B2

A � B B � A

A ref � B ref

A1 � Bo

A1 ∧A2 � Bo
A2 � Bo

A1 ∧A2 � Bo
A � B1 A � B1

A � B1 ∧B2

[A′/α]A � Bo

∀α.A � Bo
A � B

(α 6∈ FVA)
A � ∀α.B

Bo 6= ∀x.B1 and Bo 6= B1 ∧B2

33

Properties of Subtyping

• With distributivity have [Mitchell’88].

• Subtyping then undecidable [Tiuryn & Urzyczyn’96]

[Wells’95].

• Without distributivity have structural subtyping.

• Undecidable [Chrza̧szcz’98].

• Orthogonal to other type constructors.

34

Value Restriction

• Introduction rule

Γ ` V : A α 6∈ FV(Γ)
Γ ` V : ∀α.A

• Elimination via subtyping (unchanged)

Γ `M : A A ≤ B
Γ `M : B

35

Unsoundness of Distributivity

• Counterexample:

` λu. ref (λy. y) : ∀α.unit→ (α→ α) ref

by distributivity and subsumption:

` λu. ref (λy. y) : unit→∀α. (α→ α) ref

` (λu. ref (λy. y)) 〈 〉 : ∀α. (α→ α) ref

• In a program:

let x = (λu. ref (λy. y)) 〈 〉 : ∀α. (α→ α) ref

in . . . end % as on slide 5

36

Results

• Lemma: Typing inversion extends (without distributivity).

• Theorem: Progress and type preservation extend

(with value restriction).

• New(?) view of value restriction and polymorphism.

37

Example: External vs Internal Invariants

val inc : (bits→ bits) ∧ (nat→ pos)
= fix inc. λn. case n

of ε⇒ ε1
| x0⇒ x1
| x1⇒ (inc x) 0

` inc : nat→ nat % by subtyping
` inc : pos→ pos % by subtyping

val inc 6 : nat→ nat
= fix inc. λn. case n

of ε⇒ ε1
| x0⇒ x1
| x1⇒ (inc x) 0 % inc x : pos?

38

Example with Mutable References

val count ′ : (nat ref→ (unit→ nat)) ∧

(pos ref→ (unit→ pos))

= λc. λx.

let y = ! c

in c := inc y; y end

val count : (nat→ (unit→ nat)) ∧

(pos→ (unit→ pos))

= λn. count ′ (ref n)

39

Other Examples

• More programs

val plus : (nat→ nat→ nat) ∧
(pos→ nat→ pos) ∧
(nat→ pos→ nat)

val double : (nat→ nat) ∧ (pos→ pos)

val stdize : bits→ nat

val ω : ∀α.∀β. ((α→ β) ∧ α)→ β
= λx. x x (without refinement restriction)

• More refinements

zero ::= ε

even ::= ε | pos 0

odd ::= nat 1

40

Host Language Dependence

• Interesting differences: call-by-value vs. call-by-name

Lists α list ::= nil | cons(α, α list)

Even α even ::= nil | cons(α, αodd)

Odd αodd ::= cons(α, α even)

• In call-by-value: α even ∧ αodd = ⊥

• In call-by-name: ` fixω.cons(〈 〉, ω) : unit even ∧ unit odd

• Combined with dependent types in logical framework LF

[Pf.’93] [Pf. & Kohlase’93]

41

Related Work

• Intersection types (many)

• Forsythe [Reynolds’88] [Reynolds’96]

• Intersections and explicit polymorphism [Pierce’91]

[Pierce’97]

• Refinement types [Freeman & Pf’91] [Freeman’94]

[Davies’97]

• Intersection types and program analysis (many)

• Soft types (many)

• Local type inference [Pierce & Turner’97]

• Shape analysis and software model checking.

42

Future Work

• Sequential pattern matching.

• Complete implementation under refinement restriction.

• Local type inference with intersections and parametric

polymorphism?

• Valuability instead of values? [Harper & Stone’00]

• Pure and impure function spaces?

43

Summary

Refinement types to statically verify program invariants.

• Between simple types and full specifications.

• Subtyping and intersections required.

• Simplified type system for soundness with effects.

• Progress theorem holds.

• Effective bi-directional type checking.

• Applied techniques to parametric polymorphism.

44

