Verifying Program Invariants
with Refinement Types

Rowan Davies and Frank Pfenning
Carnegie Mellon University

Logic Colloquium

Max-Planck-Institut fur Informatik
and Universitat des Saarlandes
October 2001

Acknowledgments: Robert Harper

Overview

e Introduction

e Refinement Types

e A Value Restriction

e Progress and Type Preservation
e Bi-Directional Type Checking

e Parametric Polymorphism

e Conclusion

Why Aren’'t Most Programs Verified?

e Difficulty of expressing a precise specification.
e Difficulty of proving correctness.
e Difficulty of co-evolving program, specification, and proof.

e Problems exacerbated by poorly designed languages.

Why Are Most Programs Type-Checked?

e Ease of expressing types.
e Ease of checking types.
e Ease of co-evolving programs and types.

e Most useful in properly designed languages.

A Continuum?

e Types as a minimal requirement for meaningful programs.

e Specifications as a maximal requirement for correct
programs.

e Suprisingly few intermediate points have been investigated.
e Many errors are caught by simple type-checking.

e But many errors also escape simple type-checking.

A Research Program

e Designing systems for statically verifying program
properties.

e Evaluation along the following dimensions:

— Elegance, generality, brevity (ease of expression)
— Practicality of verification (ease of checking)

— Explicitness (ease of understanding and evolution)

e Some of these involve trade-offs.

Goals

e Catch more errors at compile-time.

e Increase confidence in correctness.

e Document crucial program invariants.

e Check consistency at module boundaries.

e Programmer guidance and involvement.

e Not: optimize compiled code.

e Not: extend type system to admit more programs.

e Instead: refine type systems to admit fewer programs.

Traditional Static Program Analysis

e Many useful lessons and ideas
(e.g. abstract interpretation)

e Emphasis on compiler optimization (here: error discovery).
e Emphasis on inference of properties (here: checking).

e Additional documentation?

e Additional errors discovered?

e Problems at module boundaries.

Traditional Type Systems

e Many useful lessons and ideas
(e.g. module interfaces)

e Emphasis on generality
(e.g. polymorphism, record subtyping, intersection types).

e Emphasis on inference of types.
e Additional documentation?

e Additional errors discovered?

T he Basic Idea

ML as host language.
Data structures via datatypes.

Invariants on data structures specified by
regular tree grammars.

Extend to full language via subtyping and intersections.

Bi-directional type checking.

10

Example: Bit Strings and Natural Numbers

e Datatype of bit strings (freely generated):
Bit Strings bits ::= €| bits1 | bitsO
e ¢ represents empty string, O and 1 are postfix operators.
o For example: "T0'=¢, "6'=¢€¢110.
e Natural numbers have no leading 0s.
e Refinements of type bits inductively defined:

Natural Numbers nat

€ | pos

Positive Numbers POS

posO | natl

11

The Need for Subtyping and Intersections

e Subtyping: pos < nat < bits (in general: lattice).

e Intersections: Consider shiftl = Az. x 0.

FAXx.x0 : bits — bits
FAXx.x0 : nat — bits

FAz.xO0 : pos— posS

e Intersections allow these to be expressed simultaneously.

FAx.z0 : (bits — bits)
A (nat — bits)
A (POS — pOS)

FAr.z0 : nat — nat (H

12

Other Examples

Even and odd length lists
(but not lists of length n).

Empty and non-empty lists, single constructor types.

Normal terms, head-normal terms, cps terms
(but not closed terms).

Color invariant on red/black trees
(but not balance invariant).

Valid stacks in operator precedence parsing.

Intuition: recognizable by finite-state tree automaton.

Generalization: restricted forms of dependent types.
[Xi & Pf.’98,'99, Xi'99]

13

What are Intersection Types?

e Introduction rule

=M : A Fr'-M: B
Fr-=M:ANB
e Elimination rules
Fr-=M:ANB M :ANB
Fr=M: A r'-M: B

14

Subtyping and Greatest Lower Bounds

e Subsumption

r-M: A AL<B
'-M:B

e Intersection as a greatest lower bound

AANB<A AANB<B
A< B A<LC
A<BAC

e Elimination rules now derivable

-M:AANB ANB<A

r-M:A

15

Intersections are Unsound with Effects

e Counterexample

let x =ref(el) : natrefAposref

in
T = €] % use x : nat ref
| % use x : pos ref

end : pos
evaluates to € which does not have type pos.

e Analogous counterexample with parametric polymorphism:

let z=ref(\y.y) :Va. (a— a)ref
in
x = (\y.€); % use x : (nat — nat) ref
('z) (e1) % use x : (pos — pos) ref
end : pos

16

Subtyping

Types A ::= bits| nat| pos
| Ay — Ao | Aref | unit
| A1 N Ao

A<B B<C

A<A ALC <: Reflexive and transitive

B1 < Ay Ap> < B
A1 — A> < By — B> —. Contra- and co-variant

A<B B<A
Aref < Bref ref: Non-variant

17

Subtyping and Intersections

pos < nat nat < bits Data types

ANB<A ANB<B A:. Lower bound

A<B A<C
A< BAC A:. Greatest lower bound

(A—-B)ANA—-C)<A—-(BANC) 7?7 (Distributivity)

e Distributivity disturbs orthogonality of constructors.

e Distributivity is unsound with effects (see later).

18

Typing Judgment

e Language is standard call-by-value language with functions,
mutable references, unit, bit strings, let and recursion.

e Use pure type assignment for typeless operational
semantics.

e L ater: bi-directional type-checking.
e Pragmatically: refinement restriction.

e [yping rules are standard for functions, recursion,
references.

e De-emphasize refinement restriction here.

19

Typing Bit Strings

e Bit strings (two rules for case omitted):

[€ : nat
[M : pos [T = M : bits
MO : pos [~ MO : bits
= M : nat [+ M : bits
=M1 :pos [~ M1 : bits

(M :pos [,x:poskNg:A T,ynatHN;: A

FFcaseM ofe= Ne|20= Ng|yl= N;:A

e Note: case (M:pos) does not need to check Ne.

20

Datatype Refinement: The General Case

e First specify (ML) datatype.
e [hen specify refinements of datatypes.

e Analysis of refinements generates:

— Completing of lattice structure to include intersections
(using algorithms from tree automata).

— Determine most general types of constructors.
— Determine inversion principles for constructors.
e Does not allow negative refinements.

e Polymorphic refinements must be parametric.

21

Typing Judgment Continued

e \Value restriction and subsumption.

FrFV:A Fr-V:B r=M: A A<B
r-V:AAB r-M:B
where
Values V. ::= x| Xz. M |e|VO|V1

e Originally introduced for parametric polymorphism
[Tofte’'90] [Wright'95].

e Value restriction here not tied to let!
[-M: A [, x> AN . B
[Fletxe =M in Nend : B

22

Counterexample Revisited

let x =ref(el) :natrefAposref
in
T = €] % use x : nat ref
| 2 % use x : pos ref
end : pos

e NoO longer well typed:

¥ ref(el) : nat ref A pos ref

since ref(el) is not a value.

23

Distributivity Revisited

e Distributivity is unsound with effects.

(A—-B)AN(A—=C)<A—(BANCO)

e Counterexample:

= Au.ref(el) . (unit — nat ref) A (unit — pos ref)
by distributivity and subsumption:

= Au.ref(el) . unit — (nat ref A pos ref)

= (Au.ref(el)) () : natref A posref

e In a program:

let = (Au.ref(el)) () :natrefAposref

in ... end % as on slide 5

24

Results

e T heorem: Subtyping is structural.

e Lemma: (Typing Inversion) With a store typing A:

1. IfA;-FV:Aand A<B-—>(C
then V= Xx. M and A;x:B+ M : C.

2. ... (one for each type or type constructor) ...

Fails in the presence of distributivity!

e [T heorem: Call-by-value reduction semantics satisfies
progress and type preservation.

e Proof: Follows [Wright & Felleisen '94] [Harper'94], using
above inductive inversion properties.
Fails in the presence of unrestricted intersection!

25

Consequences

e Language has no principal types:

Fref(el) : bitsref
Fref(el) : natref
Fref(el) : posref

but bits ref, nat ref and pos ref are unrelated and

Fref(el) : bitsref Anatref A posref

26

Bi-Directional Type-Checking

e Simplified subtyping allows simplified bi-directional
type-checking.

e Functional fragment

Inferable I = z|IC|C:A
Checkable C I|x.C

e Normal forms require no type annotations.

e [wo mutually recursive judgments:

(11T A I synthesizes A (non-deterministically)
rFC | A C checks against A

27

Bi-Directional Typing Rules

e Inferable
Ain T [FI1TA— B rFC |l A
[Fxt A (r-ICT B
rFC | A [FITAANB (I 1TANB
Fr=(C:A)T A (-I1T A I e B >

e Checkable (C, a checkable value)

r-ItA A<B Fr-Cyl A r-Cy,| B
r-I|B r-Cyl AAB

raxA-M/|B
). M| A— B

28

Pragmatics

e NO distributivity: sometimes more explicit types.
e Bi-directionality: sometimes lift local functions.

e Boolean constraints for efficient implementation
(speculative)

parametric polymorphism intersection polymorphism
type variable boolean variable
unification boolean constraint simplification

29

Another Example

e Converting a bit string to standard form.

stdize : Dbits — nat
— fix stdize. A\b.case b
of e = ¢
| 0 = case stdize x
of e = ¢
| yO0=y00
| y1=9y10

| x1 = (stdize x) 1

e Possible sequential pattern matching in second case.

30

Preliminary Assessment

|
+7
|
+7

Elegance

Generality (some rewriting, e.g. tests z = nil)

Brevity (proportional to complexity of invariant)
Practicality of verification (interaction with polymorphism?)

Full inference is decidable via abstract interpretation
[Freeman’'94], but captures too many accidental properties.

Explicitness (clean at module boundary)

31

Adding Parametric Polymorphism

Types A = ...|a|Va. A
e Subtyping
Va. A < [B/a]A A1 NA> < Ay A1 NAr < Ao
A<B A< By A< B»
= FV(A = =
A<vapdfrVA) A< By A B>

e Distributivity is unsound.

FV(A
‘v’oz.(A—>B)§A—>‘v’oz.Ba€ V(4)

32

Structural Subtyping (Sound & Complete)

A< A

pos < nat pos < bits nat < bits

B1 < A4 A>< B, A<B BJA
A1 — A> <] By — B> A ref < B ref

Ay < B° As < B° A < By A< By

A NA> <A B° A{NA> <1 B° A< B1 A B>

[A'/a]A < B° A< B
Va. A < B° A <Va.B

(o € FVA)

B° #=Vx. By and B° %= B1 A Bo

33

Properties of Subtyping

With distributivity have [Mitchell’88].

Subtyping then undecidable [Tiuryn & Urzyczyn'96]
[Wells'95].

Without distributivity have structural subtyping.
Undecidable [Chrzaszcz'98].

Orthogonal to other type constructors.

34

Value Restriction

e Introduction rule

r=v:A
TV :Va. A

a & FV(IN)

e Elimination via subtyping (unchanged)

r-M: A A<B
'-M:B

35

Unsoundness of Distributivity

e Counterexample:

= Au. ref (A\y. y) . Vo.unit —» (o — o) ref
by distributivity and subsumption:

= Au. ref (A\y. y) . unit = Va. (o — o) ref
F (Au.ref(\y.y)) () : Va.(a— a) ref

e In a program:

let = (Qu.ref(A\y.y)) () :Va. (a— a) ref

in ... end % as on slide 5

36

Results

e Lemma: Typing inversion extends (without distributivity).

e T heorem: Progress and type preservation extend
(with value restriction).

e New(?) view of value restriction and polymorphism.

37

Example: External vs Internal Invariants
val inc (bits — bits) A (nat — pos)
= fiX inc. \n. case n
of e= €l
| 0= 2zx1
| x1 = (incxz)0
= inc nat — nat % by subtyping
= inc POS — POS % by subtyping
val inc /7 nat— nat
= fiX inc. \n. case n
of e= €l
| 0= z1

| x1 = (incxz)0

% incx : poOSs?

38

Example

with Mutable References

val count’

val count

(nat ref — (unit — nat)) A
(pos ref — (unit — pos))
= Ac. \x.
lety =1c

inc:=1incy, yend

(nat — (unit — nat)) A
(pos — (unit — pos))

= An. count’ (refn)

39

Other Examples

e More programs

val plus : (nat — nat— nat) A
(pos — nat — pos) A
(nat — pos — nat)

val double : (nat— nat) A (pos— pos)
val stdize . Dbits — nat
valw : Va.VB8.((a—B) Na) — 3
= Ar.xx (without refinement restriction)

e More refinements

Zero 1= €
even 1= €| posO
odd ::= natl

40

Host Language Dependence

e Interesting differences: call-by-value vs. call-by-name

Lists alist ::= nil | cons(a, alist)
Even aeven = nil|cons(a,ao0dd)
Odd aodd ::= cons(a,aeven)

e In call-by-value: aaeven Aaodd = L
e In call-by-name: F fixw.cons((),w) : uniteven A unitodd

e Combined with dependent types in logical framework LF
[Pf.'93] [Pf. & Kohlase'93]

41

Related Work

e Intersection types (many)
e Forsythe [Reynolds'88] [Reynolds'96]

e Intersections and explicit polymorphism [Pierce'91]
[Pierce’97]

e Refinement types [Freeman & Pf'91] [Freeman'94]
[Davies'97]

e Intersection types and program analysis (many)
e Soft types (many)
e Local type inference [Pierce & Turner'97]

e Shape analysis and software model checking.

42

Future Work

Sequential pattern matching.
Complete implementation under refinement restriction.

Local type inference with intersections and parametric
polymorphism?

Valuability instead of values? [Harper & Stone’00]

Pure and impure function spaces?

43

Summary

Refinement types to statically verify program invariants.

e Between simple types and full specifications.

e Subtyping and intersections required.

e Simplified type system for soundness with effects.
e Progress theorem holds.

e Effective bi-directional type checking.

e Applied techniques to parametric polymorphism.

44

