
Possession as Linear Knowledge

Frank Pfenning

[with Deepak Garg, Henry DeYoung,
and Michael Ashley-Rollman]

Department of Computer Science
Carnegie Mellon University

3rd International Workshop on
Logics, Agents, and Mobility (LAM)

July 15, 2010

1 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies
Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies

Reliable enforcement of such high-level policies
Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies

Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies
Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies
Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Understanding Distributed Systems

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies
Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Examples

Documents in the intelligence community of the US
Course management
Monetary instruments
File system

2 / 68

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

3 / 68

Background: Authorization Logic

Logic for distributed authorization

Authorization policy is stated as a logical theory T
Principal K can perform operation O if authorization
proposition may(K ,O) is true in T
The proof embodies the reason why action should be
permitted

Core: “K says A” for principal K and proposition A

Family of K -indexed modal operators
Precise definition not important for this talk

4 / 68

Background: Proof-Carrying Authorization

Enforcement architecture for access control

“K says A” can be realized in two ways

Proposition “A” digitally signed by K
Explicit proof using logical inference

Policy theory consists of signed “K says A”

Reference monitor grants access if formal proof object
“M : K says may(L,O)” is correct (for resource owner K)

Core: Proof checking and certificate verification

Examples

Gray (office access with smartphones)
Nexus (document viewer application suite)
PCFS (proof-carrying file system)

5 / 68

Example: A Versioned File System

Principals K , L: fs, . . .
Operations O: create, on(F ,A)
Actions A: read, write(s), delete
Propositions: 〈fs〉user(K)

〈fs〉owns(K ,F)
〈fs〉may(L,O), 〈K 〉may(L,O)

Sample policy, file system

create : 〈fs〉(user(K)⊃may(K , create))
delegate : 〈fs〉(owns(K ,F) ∧ 〈K 〉may(L, on(F ,A))

⊃may(L, on(F ,A)))

6 / 68

Key to Syntax
〈K〉A = “K says A”

Example: Distributed Policy

Sample policy, Alice

〈alice〉(〈fs〉owns(alice,F)
⊃may(alice, on(F ,A)))

〈alice〉(friend(K , alice))
⊃may(K , on(embarassing.jpg, read))

〈alice〉(friend(K , alice) ∧ 〈K 〉friend(L,K)
⊃may(L, on(fun.jpg, read)))

7 / 68

Key to Syntax
〈K〉A = “K says A”

Background: Single-Use Authorization

Access to or with consumable resources

“K says pay(K , L, $50)”
“netflix says may(L, playmovie(3))”

Core: linear authorization logic

Enforcement

Linear digitally signed certificates
Linear proof checking
Reference counting in resource monitor

Atomicity: multi-party contract signing

8 / 68

Semantics

Capture consequences of authorization policy

Information flow: what knowledge may principals gain?
Accounting: what possessions may principals obtain or
relinquish?

Which states of knowledge and possession can be
reached?

Verify desirable semantic consequences

“To learn the contents of a file, one must have read or
write access”
“Banking machines fees for a single transaction will be
no more than $2”
“Every valid electronic vote will be counted”

Caveat: we stay within the level of abstraction of the
semantic description

9 / 68

Example: File System State

Command: 〈K 〉do(K ,O) linear
Version: [K]current(F ,V) possession – linear
Contents: [[K]]contains(F ,V , S) knowledge – persistent

Sample rule: Creating a file

〈K 〉do(K , create)
⊗ 〈fs〉may(K , create)
({∃f .∃v .

!〈fs〉owns(K , f)
⊗ [fs]current(f , v)
⊗ [[fs]]contains(f , v , ””)
⊗ [[K]]contains(f , v , ””)}

10 / 68

Key to Syntax
〈K〉A = “K says A”
[K]A = “K has A”
[[K]]A = “K knows A”
{A} = “A, with effect”

Example: Reading a File

〈K 〉do(K , on(F , read))
⊗ 〈fs〉may(K , on(F , read))
⊗ [fs]current(F ,V)
⊗ [[fs]]contents(F ,V , S)
({[fs]current(F ,V)

⊗ [[K]]contents(F ,V , S)}

11 / 68

Key to Syntax
〈K〉A = “K says A”
[K]A = “K has A”
[[K]]A = “K knows A”
{A} = “A, with effect”

Example: Writing to a File

〈K 〉do(K , on(F ,write(S)))
⊗ 〈fs〉may(K , on(F ,write(S)))
⊗ [fs]current(F ,V)
({∃v ′. [fs]current(F , v ′)

⊗ [[fs]]contains(F , v ′, S)
⊗ [[K]]contains(F , v ′, S)}]

12 / 68

Key to Syntax
〈K〉A = “K says A”
[K]A = “K has A”
[[K]]A = “K knows A”
{A} = “A, with effect”

Example: Deleting a File

〈K 〉do(K , on(F , delete))
⊗ 〈fs〉may(K , on(F , delete))
⊗ [fs]current(F ,V)
({1}

13 / 68

Key to Syntax
〈K〉A = “K says A”
[K]A = “K has A”
[[K]]A = “K knows A”
{A} = “A, with effect”

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

14 / 68

Logical Foundations

Goal: define a suitable linear logic of (authorization),
possession, knowledge, and effects — linear epistemic
logic

Use such a logic

Logically: specifying the consequences of authorization
policies
Metalogically: reasoning about all possible action
sequences
Operationally: implementing (or checking
implementation against) linear epistemic specification

15 / 68

Proof-Theoretic Semantics

How do we define the right logic?

The crucial role of proofs

Explicit evidence for authorization
Explicit evidence for right-to-know
Explicit evidence for transactions
Explicit traces of system evolution

In combination with cryptographic techniques

Digital signatures
Encryption and decryption

16 / 68

Judgments and Propositions

linear sequent︷ ︸︸ ︷
A1 res, . . . ,An res︸ ︷︷ ︸

∆
consumable resources

linear assumptions
antecedents

=⇒ C true︸ ︷︷ ︸
γ

goal
conclusion
succedent

17 / 68

Judgmental Principles

Identity: With resource A we can achieve goal A

A res =⇒ A true
idA

Cut: If we can achieve A we can use it as a resource

∆ =⇒ A true ∆′,A res =⇒ γ

∆,∆′ =⇒ γ
cutA

These must be admissible rules (metatheorems)

Harmony between resources and goals

18 / 68

Simultaneous Conjunction A⊗ B

Right rule: how to prove goal can be achieved

∆A =⇒ A ∆B =⇒ B

∆A,∆B =⇒ A⊗ B
⊗R

Left rule: how to use resource

∆,A,B =⇒ γ

∆,A⊗ B =⇒ γ
⊗L

(Elide res and true since clear from position)

19 / 68

Local Harmony

Show how to expand

A =⇒ A
idA −→E ?

using identity on subformulas of A

Part of proof of global identity proof by induction on A
Need primitive rule P =⇒ P for atomic P

Show how to reduce

D
∆ =⇒ A

E
∆′,A =⇒ γ

∆,∆′ =⇒ γ
cutA

−→R?

using cut on subformulas of A

Part of global cut proof by nested induction on A, D, E
20 / 68

Local Harmony for A⊗ B

Identity expansion

A⊗ B =⇒ A⊗ B
idA⊗B −→E

A =⇒ A
idA

B =⇒ B
idB

A,B =⇒ A⊗ B
⊗R

A⊗ B =⇒ A⊗ B
⊗L

21 / 68

Local Harmony for A⊗ B

Cut reduction

DA

∆A =⇒ A
DB

∆B =⇒ B

∆A,∆B =⇒ A⊗ B
⊗R

E
∆,A,B =⇒ γ

∆,A⊗ B =⇒ γ
⊗L

∆,∆A,∆B =⇒ γ
cutA⊗B

−→R

DB

∆B =⇒ B

DA

∆A =⇒ A
E

∆,A,B =⇒ γ

∆,∆A,B =⇒ γ
cutA

∆,∆A,∆B =⇒ γ
cutB

22 / 68

Linear Implication A (B

Right rule: how to prove A (B

∆,A =⇒ B

∆ =⇒ A (B
(R

Left rule: how to use A (B

∆A =⇒ A ∆B ,B =⇒ γ

∆A,∆B ,A (B =⇒ γ
(L

23 / 68

Identity Expansion for A (B

A (B =⇒ A (B
idA(B −→E

A =⇒ A
idA

B =⇒ B
idB

A (B ,A =⇒ B
(L

A (B =⇒ A (B
(R

24 / 68

Cut Reduction for A (B

D
∆,A =⇒ B

∆ =⇒ A (B
(R

EA
∆A =⇒ A

EB
∆B ,B =⇒ γ

∆A,∆B ,A (B =⇒ γ
(L

∆,∆A,∆B =⇒ γ
cutA(B

−→R

EA
∆A =⇒ A

D
∆,A =⇒ B

∆,∆A =⇒ B
cutA

EB
∆B ,B =⇒ γ

∆,∆A,∆B =⇒ γ
cutB

25 / 68

Unit Resource 1

• =⇒ 1
1R

∆ =⇒ γ

∆, 1 =⇒ γ
1L

1 =⇒ 1
id1 −→E

• =⇒ 1
1R

1 =⇒ 1
1L

• =⇒ 1
1R

E
∆ =⇒ γ

∆, 1 =⇒ γ
1L

∆ =⇒ γ
cut1 −→R

E
∆ =⇒ γ

“•” denotes no resources

26 / 68

Example: Resources

Example: $, $, $, ($⊗ $ (coffee) =⇒ coffee⊗ $

$ =⇒ $
id

$ =⇒ $
id

$, $ =⇒ $⊗ $
⊗R

coffee =⇒ coffee
id

$ =⇒ $
id

$, coffee =⇒ coffee⊗ $
⊗R

$, $, $, ($⊗ $ (coffee) =⇒ coffee⊗ $
(L

In a proof, all resources have to be used exactly once

$, $, $, ($⊗ $ (coffee) 6=⇒ coffee

$, ($⊗ $ (coffee) =⇒ $ (coffee

$⊗ $ (coffee should be an axiom that we can use as
often as we want

27 / 68

Example: Possession

Previous example is imprecise: who has the dollars and
who has the coffee? More precise (tdo = Tazza D’Oro)

[fp]$⊗ [fp]$⊗ [tdo]beans ([fp]coffee⊗ [tdo]$⊗ [tdo]$

Need possession modality [K]A (“K has A”)

28 / 68

Possession as a Judgment

New judgment: K has A (used as assumption)

Judgmental rule: K can relinquish possession

∆,A res =⇒ γ

∆,K has A =⇒ γ
hasL

K cannot gain possession (arbitrarily)

Judgmental definition: (always silently expanded on right)[
∆|K =⇒ A true

∆|K =⇒ K has A
hasR

]

∆|K only has antecedents of the form “K has A”

29 / 68

Identity and Cut

No new identity principle

A =⇒ A
id

K has A =⇒ A
hasL

K has A =⇒ K has A
hasR

Derived cut principle

∆|K =⇒ A

∆|K =⇒ K has A
hasR

∆′,K has A =⇒ γ

∆|K ,∆′ =⇒ γ
cuthas

30 / 68

Possession as a Proposition

Internalize K has A judgment as a proposition [K]A

∆|K =⇒ A

∆|K =⇒ [K]A
[]R

∆,K has A =⇒ γ

∆, [K]A =⇒ γ
[]L

31 / 68

Identity Expansion for Possession

[K]A =⇒ [K]A
id[K]A

−→E

A =⇒ A
id

K has A =⇒ A
hasL

K has A =⇒ [K]A
[]R

[K]A =⇒ [K]A
[]L

32 / 68

Cut Reduction for Possession

D
∆|K =⇒ A

∆|K =⇒ [K]A
[]R

E
∆′,K has A =⇒ γ

∆′, [K]A =⇒ γ
[]L

∆|K ,∆′ =⇒ γ
cut[K]A

−→R

D
∆|K =⇒ A

E
∆′,K has A =⇒ γ

∆|K ,∆′ =⇒ γ
cutKhasA

33 / 68

Axiomatics

Axioms like Intuitionistic S4, but linear

` [K](A (B) (([K]A ([K]B) (K�)
` [K]A ([K][K]A (4�)
` [K]A (A (T�)

Rule of necessitation

` A

` [K]A
(nec)

34 / 68

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

35 / 68

The Effect Monad

Applying rules such as

[fp]$⊗ [fp]$⊗ [tdo]beans ([fp]coffee⊗ [tdo]$⊗ [tdo]$

represent a change of state

Proofs of authorizations such as 〈fs〉may(K , on(F , read))
do not involve a change of state

Isolate changes in an effect monad

Logically, this is a lax modality {A}
Rewrite above as

[fp]$⊗ [fp]$⊗ [tdo]beans ({[fp]coffee⊗ [tdo]$⊗ [tdo]$}

36 / 68

Lax Judgment

New judgment A lax (A is true with effect)

Judgmental rule: truth entails lax truth

∆ =⇒ A true

∆ =⇒ A lax
laxR

Lax truth does not entail truth

Judgmental definition: (always silently expanded on the
left) [

∆,A res =⇒ C lax

∆,A lax =⇒ C lax
laxL

]
Applies only with lax succedent, not truth

37 / 68

Judgmental Principles

No new identity principle

A res =⇒ A true
idA

A res =⇒ A lax
laxR

A lax =⇒ A lax
laxL

Derived cut principle

∆ =⇒ A lax

∆′,A res =⇒ C lax

∆′,A lax =⇒ C lax
laxR

∆,∆′ =⇒ C lax
cutlax

Allow γ ::= C true | C lax in all other rules with generic
succedent

38 / 68

Lax Modality = Effect Monad

Internalize lax judgment as proposition {A}

∆ =⇒ A lax

∆ =⇒ {A} true
{ }R

∆,A res =⇒ C lax

∆, {A} res =⇒ C lax
{ }L

Identity expansion

{A} =⇒ {A}
id{A}

−→E

A =⇒ A
idA

A =⇒ A lax
laxL

{A} =⇒ A lax
{ }L

{A} =⇒ {A}
{ }R

39 / 68

Cut Reduction for Lax Modality

D
∆ =⇒ A lax

∆ =⇒ {A}
{ }R

E
∆′ =⇒ A =⇒ C lax

∆′, {A} =⇒ C lax
{ }L

∆,∆′ =⇒ C lax
cut{A}

−→R

D
∆ =⇒ A lax

E
∆′,A =⇒ C lax

∆,∆′ =⇒ C lax
cutA lax

40 / 68

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

41 / 68

Polarization

Focusing: we can obtain a complete big-step proof
system using two observations

Apply invertible rules eagerly
When all top-level propositions have non-invertible rules,
focus on one of them and apply a run of non-invertible
rules to its components

Robust technique (all reasonable known logics?)

Polarization: we explicitly categorize propositions into
negative (invertible right) and positive (invertible left).

Here: exploit monad (other choices are possible)

Negative A− ::= P− | A+ (A− | {A+}
Positive A+ ::= A1 ⊗ A2 | 1 | [K]A− | A−

42 / 68

Example: Focusing

Write A for formula in focus
Must apply rule to focus formula

∆, fp has coffee, tdo has $ =⇒ C lax

∆, fp has coffee, [tdo]$ =⇒ C lax
[]L

∆, [fp]coffee, [tdo]$ =⇒ C lax
[]L

∆, [fp]coffee⊗ [tdo]$ =⇒ C lax
⊗L

∆, {[fp]coffee⊗ [tdo]$} =⇒ C lax
{ }L

$ =⇒ $
id

fp has $ =⇒ $
hasL

fp has $ =⇒ [fp]$
[]R

beans =⇒ beans
id

tdo has beans =⇒ beans
hasL

tdo has beans =⇒ [tdo]beans
[]R

fp has $, tdo has beans =⇒ [fp]$⊗ [tdo]beans
⊗R

see above

∆, fp has $, tdo has beans, [fp]$⊗ [tdo]beans ({[fp]coffee⊗ [tdo]$} =⇒ C lax
(L

43 / 68

From Axioms to Inference Rules

Focusing allows us to turn axioms such as

buy : [fp]$⊗ [tdo]beans ({[fp]coffee⊗ [tdo]$}

into a complete set of derived inference rules such as

∆, fp has coffee, tdo has $ =⇒ C lax

∆, fp has $, tdo has beans =⇒ C lax
buy

Aside: to get this specific rule, some assumption on K ’s
possessions and other axioms are necessary

No axioms with “head” $
Possessions are of the form K has P for atoms P

The lax modality allows for somewhat stricter proof
control than just focusing

44 / 68

Example Revisited: Deleting a File

〈K 〉do(K , create)
⊗ 〈fs〉may(K , create)
({∃f .∃v .

!〈fs〉owns(K , f)
⊗ [fs]current(f , v)
⊗ [[fs]]contains(f , v , ””)
⊗ [[K]]contains(f , v , ””)}

To explain: knowledge [[K]]A and persistent truth !A

Following our judgmental approach, we add new form of
assumptions

45 / 68

Key to Syntax
〈K〉A = “K says A”
[K]A = “K has A”
[[K]]A = “K knows A”
{A} = “A, with effect”

Persistent Assumptions

Sequents have form

Γ; ∆ =⇒ γ

where

Persistent ants. Γ ::= • | Γ,A pers | Γ,K knows A
Linear ants. ∆ ::= • | ∆,A res | ∆,K has A
Succedents γ ::= A true | A lax

Persistent assumptions grow monotonically in bottom-up
proof construction

All present rules are updated to propagate Γ to all
premises

46 / 68

Persistent Truth

Persistent truths can be used

A pers ∈ Γ Γ; ∆,A res =⇒ γ

Γ; ∆ =⇒ γ
persL

Truths whose proof requires no consumable resources are
persistent [

Γ; • =⇒ A true

Γ; • =⇒ A pers
persR

]

47 / 68

Cut and Identity for Persistent Truth

No new identity principle

A pers; A res =⇒ A true
id

A pers; • =⇒ A true
persL

A pers; • =⇒ A pers
persR

New derived cut principle

Γ; • =⇒ A true

Γ; • =⇒ A pers
persR

Γ,A pers; ∆ =⇒ γ

Γ; ∆ =⇒ γ
cutpers

48 / 68

The Exponential Modality of Linear Logic

Γ; • =⇒ A true

Γ; • =⇒!A true
!R

Γ,A pers; ∆ =⇒ γ

Γ; ∆, !A res =⇒ γ
!L

Internalize persistent truth

Identity expansion and cut reduction work easily

49 / 68

A Judgment of Knowledge

K knows A ∼ knowledge as persistent possession

Persistent knowledge can be used by K

K knows A ∈ Γ Γ; ∆,A res =⇒ γ

Γ; ∆ =⇒ γ
knowsL

Truth whose proofs require only local knowledge can be
known [

Γ|K ; • =⇒ A

Γ; • =⇒ K knows A
knowsR

]
Γ|K restricts to antecedents of the form K knows

50 / 68

Cut and Identity for Knowledge

No new identity principle

K knows A; A res =⇒ A true
id

K knows A; • =⇒ A true
knowsL

K knows A; • =⇒ K knows A
knowsR

New derived cut principle

Γ|K ; • =⇒ A true

Γ; • =⇒ K knows A
knowsR

Γ,K knows A; ∆ =⇒ γ

Γ; ∆ =⇒ γ
cutknows

51 / 68

Knowledge as a Modality

Γ|K ; • =⇒ A true

Γ; • =⇒ [[K]]A true
[[]]R

Γ,K knows A; ∆ =⇒ γ

Γ; ∆, [[K]]A =⇒ γ
[[]]L

Identity expansion and cut reduction as usual

Knowledge is like indexed judgmental S4

52 / 68

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

53 / 68

Characterizing State

Need to characterize the system states so we can reason
about the policy

System states are pairs Γ; ∆

Γ is persistent
∆ is linear
We do not care about the right-hand side, but it must
have the form C lax to permit effects

Using this characterization, we turn each semantics rule
into (one ore more) rewrite rules for system states

Using the rewrite rules we can prove theorems about the
semantics

54 / 68

Example: Characterizing File System State

Each persistent judgment in Γ is one of

A policy rule or semantics action
fs knows contents(F ,V ,S) or
K knows contents(F ,V , S)
〈fs〉user(K) or 〈fs〉owns(K ,F)

Each linear judgment in ∆ is one of

fs has current(F ,V)
〈K 〉do(K ,A)

For each file F , there is at most one V such that
fs has current(F ,V)

55 / 68

Example: Reading a File

Specification

〈K 〉do(K , on(F , delete))
⊗ 〈fs〉may(K , on(F , delete))
⊗ [fs]current(F ,V)
({1}

Rewrite step

Γ; ∆, 〈K 〉do(K , on(F , delete)), fs has current(F ,V)
→ Γ; ∆

provided Γ ` 〈fs〉may(K , on(F , delete))

56 / 68

Example: Writing to a File

Specification

〈K 〉do(K , on(F ,write(S)))
⊗ 〈fs〉may(K , on(F ,write(S)))
⊗ [fs]current(F ,V)
({∃v ′. [fs]current(F , v ′)

⊗ [[fs]]contains(F , v ′,S)
⊗ [[K]]contains(F , v ′, S)}]

Rewrite interpretation

Γ; ∆, 〈K 〉do(K , on(F ,write(S))), fs has current(F ,V)

→ Γ, fs knows contains(F , v ′,S),K knows contains(F , v ′, S);
∆, fs has current(F , v ′)

for a new v ′ provided Γ ` 〈fs〉may(K , on(F ,write(S)))

57 / 68

Analysis Example: Policy Controls Knowledge

Theorem (Knowledge Safety)

If Γ; ∆ is a file system state such that

Γ; ∆→ Γ′,K knows contents(F ,V , S); ∆′

then either K knows contents(F ,T , S) ∈ Γ or the step was a
create, read, or write action A on F by K permitted by the
policy (as evidenced by a proof of 〈fs〉may(K ,A))

Proof.

By case analysis of the possible rewrite step schemata.

58 / 68

Stratification

The proofs still apply as long as the signed policy
statements do not involve any effects or possessions

In general, the system should be stratified so proofs of
authorization are effect-free

Uses of authorizations are the effect
Linear theorem proving of authorization theorem does
not consume the certificates!

Located certificates and proofs

File system example abstract away from location of
proofs
Could specify client of server to produce the proof

59 / 68

Another Example: Electronic Voting

va = voting authority

〈va〉hasvote(K) (linear certificate)
⊗ !〈va〉candidate(L) (persistent certificate)
⊗ [K]〈K 〉votefor(L) (linear possession of cert.)
⊗ [va]voting (linear “token”)
⊗ [va]votecount(N) (linear “token”)
({[va]vote(L) (linear vote result)

⊗ [va]count(N + 1)
⊗ [va]voting}

60 / 68

Example: Counting Electronic Votes

[va]voting (linear “token”)
⊗ 〈va〉pollclosed (linear trigger)
⊗ [va]votecount(N) (linear “token”)
({[va]counting(N)} (new token)

[va]counting(0) (vote counting done)
({[va]done}

[va]counting(N)⊗ !N > 0 (token and condition)
⊗ [va]votefor(L) (vote for L, being tallied)
⊗ [va]numvotes(L,K) (vote counter)
({[va]counting(N)

⊗ [va]votes(L,K + 1)}

61 / 68

Outline

1 Background: Proof-Carrying Authorization

2 Logical Foundations

1 Resources (linear logic)
2 Possessions (linear epistemic logic)
3 Effects (linear lax logic)
4 From axioms to inference rules via focusing
5 Persistent truth and knowledge (epistemic logic)

3 Policy Consequences

1 State invariants
2 Proving metatheorems

4 Speculation: linear epistemic logic programming

62 / 68

Speculation: Linear Epistemic Logic Programming

Idea: Give a forward chaining (“bottom-up”) logic
programming interpretation as a distributed programming
language

By design, the implementation will satisfy the
specification

By design, the implementation will satisfy the theorems
proven about the specification

Based on the polarized, focusing interpretation

Some additional restrictions will be necessary
Mode checking, staging verification, . . .

Must execute protocols on multiple hosts

63 / 68

Example: A Binary Counter

State invariants for each principal (= bit) K

For each K , either K knows next(L) or K knows last
For each K , either K has zero or K has one
For one K , K has inc may be present

Program

[K]inc⊗ [K]zero ({[K]one}
[K]inc⊗ [K]one⊗ [[K]]next(L) ({[K]zero⊗ [L]inc}
[K]inc⊗ [K]one⊗ [[K]]last ({[K]zero}

Have hand-compiled version in Meld on “blinky-blocks”

64 / 68

Atomicity

In general, complex multi-party contract signing protocols
may be necessary to ensure atomicity of the rules

Example (with conditions from two parties)

[[L]]prev(K)⊗ [K]carry ⊗ [L]zero ({[L]one}
[[L]]prev(K)⊗ [K]carry ⊗ [L]one ({[L]zero⊗ [L]carry}

Inference system suggests “truth” as a trusted third party
that leaks no information

Looking for a suitable lower-level calculus to compile to
for expressing communication protocols

65 / 68

Summary

Goals

Logical specification of distributed authorization policies
Reliable enforcement of such high-level policies (PCA)

Implemented in practical proof-carrying file system

Mechanized reasoning about consequences of policies:

Evolution of system state
Principals’ knowledge (information)
Principals’ possessions (consumable resources)

Approach: linear epistemic logic

Pedantic definition from judgmental principles
Possession is linear knowledge
Specification at extremely high level of abstraction

66 / 68

Ongoing and Future Work

Define distributed forward chaining linear epistemic logic
programming language

Compile to distributed code executing multi-party
communication protocols

Prove correctness with respect to rewriting semantics

Atomicity of rules most difficult
Identify tractable language subset
Eliminate some uses of trusted third party (= truth)

Mechanize reasoning about policies

“See” my talk at LFMTP yesterday

67 / 68

For More . . .

H. DeYoung and F. Pfenning, Reasoning about the
Consequences of Authorization Policies in a Linear
Epistemic Logic, Workshop on Foundations of Computer
Security (FCS), 2009.

D. Garg et al., A Linear Logic of Affirmation and
Knowledge, European Symposium on Research in
Computer Security (ESORICS), 2006.

Further pointers from this workshop, I hope!

68 / 68

