April 13, 2015

Polarized Substructura
Session Types

Frank Pfenning & Dennis Griffit

N

[Bernardo Toninho, Luis Caires]

FOSSACS 2015, London

Outline

Example: implementing queues
Linear session types
— A Curry-Howard correspondence

Linear, affine, and shared channels
— Substructural adjoint logic

Synchronous & asynchronous communication
— Polarization

Synthesis in polarized adjoint logic
Conclusion

Example: Implementing Queues

* Queues, imperatively

1]

front back
* Queues, functionally

g=(in , out)
A
Lo

April 13, 2015 FOSSACS 2015, London

Example: Implementing Queues

* Queues, concurrently

a b C

elem elem elem empty

* How do we interact with a queue?
—O

April 13, 2015 FOSSACS 2015, London

Queue Interface

* Interaction protocol

enqueue client choice dequeue

y empty provider choice nonempty
@ none (> some()

recurse
terminate O X < >

recurse

April 13, 2015 FOSSACS 2015, London 5

Linear Session Types

* |Interface specification

A —O0 queue A,
D : 1, : A ® gqueue A}};

queue A = &{

&{lab;:A;}; External choice (receive) between lab,, continue as A,

A —0 B Receive channel of type A, continue as B
D{lab,:A,}; Internal choice (send) between lab,, continue as A,
1 Terminate

A ©® B Send channel of type A, continue as B

April 13, 2015 FOSSACS 2015, London

Sample Run

enqueue ¢, then dequeue

a b

elem elem empty

April 13, 2015 FOSSACS 2015, London

Sample Run

c, eng

elem elem empty

April 13, 2015 FOSSACS 2015, London

Sample Run

a b
q 4, d;
deq C, enq
—— ——
elem elem empty

April 13, 2015 FOSSACS 2015, London

April 13,2015

Sample Run

elem empty

FOSSACS 2015, London

10

April 13,2015

Sample Run

FOSSACS 2015, London

empty

11

April 13,2015

Sample Run

d4 q,

elem elem

FOSSACS 2015, London

empty

12

April 13,2015

Sample Run

q d,

a elem elem

FOSSACS 2015, London

empty

13

Outline

 Example: implementing queues

* Linear session types
— A Curry-Howard correspondence

* Linear, affine, and shared channels
— Substructural adjoint logic

* Synchronous & asynchronous communication
— Polarization

* Synthesis in polarized adjoint logic
* Conclusion

April 13, 2015 FOSSACS 2015, London 14

Linear Session Types

* Typing, from the provider’s perspective

c : &{lab;:A;}; ~case c {lab; = P;};
c : A—-0OB X < recv c ; P,
c : ®{lab;:A;}; c.laby ; P

c : 1 close c

c : A ®B send cd ; P

* Client’s perspective is dual

* Process declarations p : {A < A, .., A}

p provides A, uses A, ..., A,
c < p < d;, .., d, = body

n

where c:Aand d:A,, ..., d :A_

Implementation in SILL

queue A = &{ : A —O queue A,
: 9 : 1, : A ® gqueue A}};

elem : {queue A < A, queue A};
q < elem < x, r =

case g
| = y < recv q ;
r. ; send r vy ;
qg < elem < x, r
| = qg. ; send g x ;
q < r
empty : {queue A};
g < empty =
case g

| eng = x < recv q ;

e < empty ;

qg < elem < x, e
| deq = q. ; close g

April 13, 2015 FOSSACS 2015, London

16

Some Observations

Communication is bidirectional

Enqueue has O(1) span, O(n) work
Dequeue has O(1) span, O(1) work
Everything is linear

— Queue data structure must preserve elements

Interface is abstract

Interface is Abstract

* Another implementation

April 13, 2015 FOSSACS 2015, London

18

The Curry-Howard Correspondence

e Curry [1934]

— Propositions as simple types
— Intuitionistic Hilbert proofs as combinators
— Combinator reduction as computation

* Howard [1969]
— Propositions as simple types
— Intuitionistic natural deductions as programs

— Proof reduction as computation

For Linear Logic

* Linear propositions as session types
e Sequent proofs as concurrent programs
* Cut reduction as communication

Intuitionistic Linear Logic

* Basic linear sequent calculus judgment
A, A FA

— With resources A,, ..., A, we can prove A

— Each linear hypothesis must be used exactly once

* Classical linear logic also possible
[Wadler 2012, Caires, Pf, Toninho 2012]

Proofs as Processes

* With processes:
c1:A1, ..., A E P (¢ A)
— Labeled hypotheses / channels c.:A. used by P
— Labeled conclusion / channel c:A provided by P
— Process P communicates along channels ¢, and c
e Strong identification of process with channel
along which it offers
— Channel c as “process id”

Judgmental Rules of Sequent Calculus

Judgmental rules generic over propositions
Define the meaning of sequents themselves

AFA AN JAFC t .
— |
AANEC AF A
Silently re-order linear hypotheses
They are inverses

— Cut: if you can prove A, you may use A
— |dentity: if you may use A, you can prove A

da

Cut as Process Composition

AP, (a:A) ALaAFQy i (c: C)
AN F(a+ P, Q) (c: C)

cut

* (a < P,;Q,)spawns P, continues as Q,

— P, and Q, communicate along fresh private
channel b

* |n mt-calculus:
(a+ P,; Q,) = (va)(P, | Q,)

ldentity as Process Forwarding

a:AbF(c<a):(c: A &

* Operationally
— Substitute channel a for cin client of (c : A)
— Process (¢ € a) terminates

* No direct equivalent in mt-calculus

* Implementation
— c tells its client to use a instead
— ¢ terminates

External Choice

* In sequent calculus, connectives have right
and left rules

— Right rules define how to prove a proposition

— Left rules define how to use a proposition
* External choice A& B

AFA AL B AN AEC A, BFC

AL
rAracs M AAdgBro ™

A\
A A& BFC

Ly

External Choice

* External choice, with processes

AFP:(c:A) AFQ:(c:B)
At casec{inl=Plinr=0Q}:(c: A& B)

&R

A ccAFR: (e:C) A,c:BFER:(e:C)

. &Ll] &LQ
A,ccA& Bl cinl; R (e: C) A,ccA& Bl cinr; R (e: C)

* For cut reduction (= communication), client
will send either label inl or

External Choice

* For programming, we use generalized form

{AF P (c: A}
A case c {lab; = B;}; - (c: &{lab; : A;};)

&R

A cAyE R (e: O)
A, c:&{lab; - A;}i b celdaby s R (e: C)

& Ly,

* Client sends one of the provided labels
 Provider branches based on the received label

Closing a Channel

* Closing a channel = terminating provider proc.

* Logically AL C

g ALlLC

L

* Process assignment
AFQ:(d:C)
1R

-+ (close ¢) :: (¢: 1) Ajc: 1 (waitce; Q) :: (d:C) L

* close sends a token ‘end’, wait receives it

Outline

 Example: implementing queues

* Linear session types
— A Curry-Howard correspondence

* Linear, affine, and shared channels
— Substructural adjoint logic

* Synchronous & asynchronous communication
— Polarization

* Synthesis in polarized adjoint logic
* Conclusion

April 13, 2015 FOSSACS 2015, London 30

The Price of Linearity

* How do we deallocate a queue?

queue A = &{ : A —O0 queue A,
: DY : 1, : A ® queue A}};
dealloc : {1 < queue A};

* Not implementable: elements are linear!
* Need element consumer, A—0 1

dealloc : {1 < queue A, A —0 1};

* Not implementable: consumer must be reusable!

April 13, 2015 FOSSACS 2015, London 31

Channel Modes

C, unrestricted, can be reused arbitrarily
— Logically: permits weakening and contraction

c. affine, need not be used

— Logically: permits weakening
¢, linear, must be used

Notation: U>F > L
— Mode is greater if more structural properties hold

Shifting Between Modes

* 1% A, converts from k to higher mode m
* |, A, converts from r to lower mode m

* Propositions are stratified

Mode m == U|F]|L

Prop. A,, = A, & B,, | A,, — B,
A @ By | Ay @ By | 1
A, (r>m)

U
dealloc : {1 < queue A, T;{ (A —0 1)};

April 13, 2015 FOSSACS 2015, London 33

Of Coursel

* The exponential modality !A is decomposed

AL = 1P TPAL
N——
U
[Benton’94]|[Reed’09]

 Decomposition reduces “administrative” code

Deallocation, Shared Consumer

U
dealloc : {1 < queue A, I; (A —0 1)};

u < dealloc < g, dy =

q. i Nonlinear reuse of d
case ¢

| = wait g ; close u
| = X < recv g ;
f < shift dy ;
send f x ; wait f ;
u < dealloc < g, dyg

April 13, 2015 FOSSACS 2015, London

35

Deallocation, Affine Elements

* Deallocate queue with affine elements

F
dealloc : {1 < queue (lLAF)}i

u < dealloc <« g =
q. ;
case ¢
| = wait g ; close u
| = X < recv g ;
Yp < shift x ;

/u — dealloc <« ¢

Affine y; not used

April 13, 2015 FOSSACS 2015, London

36

Multimodal Sequents

Y is multimodal context (unordered)
U o= |V, ¢, An
* WriteW2>mifk=mforallc :A inW¥

e Critical invariant
v (), presupposes V¥ >m

— Otherwise, cut elimination fails

— Example: linear antecedent with affine succedent

Multimodal Sequent Calculus

* Cut and identity are generalized

U >m m>r
UEA, v A, FC,
cut id

U, C, A, - A,

e Unrestricted and affine antecedents
— Satisfy structural rules (implicitly or explicitly)

e Cut elimination, identity expansion hold

Shifting Rules

e PR:W2>m>kimpliesW 2k
e LLir>m2kimpliesr >k

\I/"Ak kZT \P,AkI—C'T
'R AL
U A7 A, U, A C
vy>m UFA, v A, FC,

IR L
U |"A, U |"A,, - C,

Multimodal Session Types

Works well for programming

— Operate directly on linear and affine channels

Every left/right rule corresponds to exactly one action
Linear channels more expressive than affine ones

— Ensures data elements will not be dropped

— But sometimes, garbage collection is helpful
Shared (unrestricted) channels

— Important for persistent services
— Currently only shifting connectives
— Why and how to integrate unrestricted connectives?

Outline

* Example: implementing queues

* Linear session types
— A Curry-Howard correspondence

* Linear, affine, and shared channels
— Substructural adjoint logic

* Synchronous & asynchronous communication
— Polarization

* Synthesis in polarized adjoint logic
e Conclusion

April 13, 2015 FOSSACS 2015, London 41

Message Buffers

queue A = &{ : A —O0 queue A,
: 9 : 1, : A ® gqueue A}};

* Assume asynchronous communication
e What is the bound on the buffer size?
e With this type, unbounded!

— Arbitrary sequence enq, x,, eng, X, ...

* Might want to enforce some synchronization

April 13, 2015 FOSSACS 2015, London 42

Send vs Receive, Logically

Left and right rules match, by construction
— Right sends and left receives, or vice versa
— Cut reduction is communication

If a right rule for a connective is invertible”

— Rule application has no information content

— Corresponds to receiving information

If a right rule for a connective is noninvertible”
— Rule application involves a choice

— Corresponds to sending information about choice

That’s all there is [Andreoli’92]

Polarization

* Polarization [Girard’91,Laurent’99]
— Makes direction of communication explicit
— Negative = invertible = receive
— Positive = noninvertible = send

Neg. A= == A& B |AT — B~ |TA"
Pos. At = AT Bt |AT® BT |1|]A”

 PTA* receive shift, then send

U A send shift, then receive

Expression Synchronization

* Minimal shifts = maximal asynchrony

queue- A" = &{

: A" —0 queue AY,

: 194

: 1,

: A* @ | queue A*}};

* Double shift = explicit synchronization

queue- A" = &{

: A* —o 1 | queue A,

: 194

: 1,

: AY ® | queue A*}};

April 13, 2015

FOSSACS 2015, London

45

Explicit Synchronization

queue- A" = &{ : A" —o 1 | queue A,
: 194 : 1, : AY ® | queue A*}};

A~ = M J B receives shift, sends shift, then receives
At = |, PB* sends shift, receives shift, then sends

Second shift acts as an acknowledgment
Arises from purely logical principles
More efficient than one ack for every send

Buffer bound now 3, one of
enq, X, shift | shift | deq, shift | none, end | some, x, shift

Proof Theory of Synchronization

e |Intuitionistic natural deduction does not fix
call-by-name or call-by-value

* Linear sequent calculus does not fix
synchronization
— No commuting conversions = synchronicity
— Commuting past positives = asynchronous output
— Commuting past negatives = nonblocking input?
[Guenot’14]

 Polarization clarifies in both cases

Implementation in SILL

queue A = &{ : A —o 1 | queue 3,

elem : {queue A < A, queue A};
qg < elem < x, r =
case g
| = y < recv q ;
r. ; send r v ; send r shift ;
shift < recv r ;
qg < elem < x, r
= shift < recv q ;
d. ; send g x ; send g shift ;
q < r

1@y : 1, : A ® |queue A}};

e Shifts may be “implicit coercions”

April 13, 2015 FOSSACS 2015, London

48

Rules for Polarity Shifts

* (*) rules are invertible, others noninvertable

+ U AT+ C
Uk A R rL
U - AT U AT C

— UV A" FC
Uk A IR LI
U A U A FC

* These are exactly the same as for mode shifts!

Outline

 Example: implementing queues

* Linear session types
— A Curry-Howard correspondence

* Linear, affine, and shared channels
— Substructural adjoint logic

* Synchronous & asynchronous communication
— Polarization

* Synthesis in polarized adjoint logic
e Conclusion

April 13, 2015 FOSSACS 2015, London 50

A Unified System

* Add polarity to multimodal system
e Alowm=kin Py and Iy so T =1, =4t

U AS k>r U AMEC,

'R 1L
AL U ATAL FC,

U>m Uk A U, A~ + C,
IR IL
S U, |"A- O,

Polarized Substructural Session Types

* Polarized adjoint logic satisfies
— Cut elimination
— |dentity expansion
* Polarized substructural session types
— Admit arbitrary recursive types
— Session fidelity (preservation) and progress
— Determinism (confluence), modulo termination
— Preliminary syntax (implicit shifts)
— Populating unrestricted stratum with connectives?

Outline

 Example: implementing queues

* Linear session types
— A Curry-Howard correspondence

* Linear, affine, and shared channels
— Substructural adjoint logic

* Synchronous & asynchronous communication
— Polarization

* Synthesis in polarized adjoint logic
e Conclusion

April 13, 2015 FOSSACS 2015, London 53

Limitations

Linear channels with only two endpoints
— Derives from linear cut and identity

Shared channels have no shared state
— Derives from copying semantics of A, (~ !A)

Restricted mobility for distributed case

Challenges

— Think parallel

— What can we do without stateful sharing?
— How can we integrate stateful sharing?

Foundations: Functions

Agda Haskell, ML
Intuitionistic Type Theory Dependently Typed Recursively Typed
ITT AT A7
Intuitionistic Logic Simply Typed
IL A~
Untyped
A

April 13, 2015 FOSSACS 2015, London 55

Foundations: Processes

? SILL

| |

Concurrent Type Theory Dependently Typed Sessions Recursively Typed
(ongoing) (ongoing) Sessions

Intuitionistic Linear Logic Session Typed
II_L T[—O,®,1,!,&,®

!

Untyped 5
- r

April 13, 2015 FOSSACS 2015, London

56

Foundations: Polarized Processes

? “SPILL”

| |

Concurrent Type Theory Dependently Typed Sessions Recursively Typed
(ongoing) (ongoing) Sessions

_ _ Session Typed
Polarized Substructural Logic €—> n_o,®,1,1,&,g,lxrp),4,

!

Untyped 5
- r

April 13, 2015 FOSSACS 2015, London 57

Summary

Linear session types &, —0, ®,®, 1, (V, 3, 1)

— Isomorphic to intuitionistic linear logic (MALL fragm.)
Affine and unrestricted session types 1, 4y

— Modesm,k::=U | F|L

— Adjoint logic [Benton’94] [Reed’09]
Directionality of communication 1T, |

— Polarized linear logic [Andreoli’92] [Laurent’99]

— Capture synchronization logically

Synthesis: polarized substructural session types
— Rules for mode and polarity shifts are identical!
Paper with more detail in proceedings

Ongoing Work

Dependent session types
Dynamic checking of session types, contracts

Integration with other paradigms
— Functional, via contextual monad (SILL/SPILL)
— Imperative (shared memory implementation)

— Object-oriented (objects-as-processes)

O’Caml prototype

— git clone https://github.com/ISANobody/sill.git
— opam install sill

Collaborators

Luis Caires, Bernardo Toninho (Universidade Nova de Lisboa)
Jorge Peréz (Groningen)

Dennis Griffith, Elsa Gunter (UIUC)

Anna Gommerstadt, Limin Jia (CMU) [Dyn. Monitors]
Stephanie Balzer (CMU) [New foundation for OO]

Rokhini Prabhu, Max Willsey, Josh Acay [Concurrent CO]
Henry DeYoung (CMU) [From global to local types]
Apologies for the lack of references to other related work

Thank you!

