Relating Message Passing and Shared Memory,
Proof-Theoretically

Frank Pfenning
Klaas Pruiksma

Computer Science Department
Carnegie Mellon University

DisCoTec'23
June 21, 2023
Invited Talk

1/60

Goals

m High level abstractions for parallel/concurrent programming
m Elegant intrinsically safe programming
m Session fidelity / type preservation
m Deadlock freedom / progress
m Reasoning about
W correctness
m efficiency (work, span, messages/space)
m timing
m Subgoal: relating message passing to shared memory
m “Secret weapon”: proof theory

2/60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

3/60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

4/60

nchronous Message Passing Example

1 server :: (c : int -o (int -o int)) =
2 recv c (x =>

3 recv ¢ (y =>

4 send c (x-y)))

1 client (c : int -o (int -o int)) :: (a : int) =
2 send ¢ 35 ;

3 send c 17 ;

4 recv ¢ (z =>

5 send a z)

1 proc (server c) , proc (client (c) a) 4 c int -o (int -o int)
2 proc (recv c (x => ...)) , proc (send c 35 ; ...) 4 c int -o int
3 proc (recv ¢ (y => ...)) , proc (send c 17 ;) Zoc ¢ int
4 proc (send c (35-17)) , proc (recv ¢ (z => ...)) % (c closed)
5) proc (send a 18) % (a closed)

5/60

Synchronous Message Passing

m Session types [Honda'93] [Honda et al.’'98]

m Curry-Howard correspondence with sequent calculus for linear
logic [Caires & Pf'10] [Wadler'12] [Caires et al.'16]
m Propositions as session types
m Sequent calculus proofs a processes
m Cut reduction as synchronous communication

m Can simulate typed asynchronous communication
[Griffith & Pf'16]

6/60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

7/60

Asynchronous Message Passing

Fundamentally: sender does not block
Dynamics [Boudol'92]
m Key idea: a message is a process

Statics [Honda'91] [Kobayashi'98] [Kobayashi et al.'99]
[Gay & Vasconcelos'10]

m Key idea: continuation channels

Can simulate typed synchronous message passing
m Can we establish a Curry-Howard correspondence?

m Propositions as session types (no change)
m Proofs as processes?
m Cut reduction as asynchronous communication?

8/60

Problem: Ordering of Messages

m Messages may be received out of order

1 client (¢ : int -o (int -o int)) :: (a : int) =
2 send c 35 ;

3 send c 17 ;

4 recv ¢ (z =>) z = 18 or -18?

5 send a z)

m Jeopardizes type safety

1 client (c:int -o (bool -o int)) :: (a:int) =
2 send c 35 ; % must be first
3 send c true ; /% must be second

4

m Solution: continuation channels!

9/60

Continuation Channels

m First approximation

1 client (¢ : int -o (int -o int)) :: (a : int) =
2 send ¢ (35,cl) ; / c1 : int -o int

3 send cl1 (17,c2) ; J c2 : int

4 recv c2 (z => Z z : int

5 send a z)

m With allocation of continuation channels

1 client (c:int -o (int -o int*1)) :: (a:int*1) =
2 cl <- send ¢ (35,cl) ; % c1 : dnt -o intx*1
3 c2 <- send c1 (17,c2) ; 4 c2 : int*1
4 recv c2 ((z,c3) => Az : ant, c3 : 1

5 send a (z,c3))

10/60

Continuation Channels

m Client (repeat)

1 client (c:int -o (int -o int*1)) :: (a:int*1) =
2 cl <- send ¢ (35,cl) ; % c1 : int -o intx*1
3 c2 <- send c1 (17,c2) ; 4 c2 : int*1
4 recv c2 ((z,c3) => Az : ant, c3 : 1

5 send a (z,c3))

m Matching server

1 server :: (c : int -o (int -o int * 1)) =

2 recv ¢ ((x, cl1) => J c1 : int -o int * 1
3 recv cl1 ((y, c2) => [c2 : int * 1
4 c3 <- send c3 () ; 7 8 s 4

5 send c2 (x-y, c3)))

11/60

Asynchronous Communication: Statics

m Judgment

X1 1AL Xt ApE P (22 C)
g n A ,
use provide
Channels x; and z define interface to P
Process P is client of x; : A;, provides z : C
Session types A; and C prescribe communication protocols
Communication is bidirectional

m Allocating a fresh channel / spawning a new process

providEr of x cIienEof X
NEP(x)(x:A) Ax:AFQ(x)::(d: D)
AR (x+ P(x); Q(x))::(d: D)

alloc/spawn

12/60

Asynchronous Communication: Dynamics

m A configuration is described by a multiset of semantic objects

Objects 10) proc P | ...
Configurations C == ¢ |-|C1,Co

m Dynamics is described by multiset rewriting rules, for example:

proc (x < P(x); Q(x)) — proc P(a),proc Q(a) (a fresh)

m Match left-hand side against part of configuration
m Replace by right-hand side

13/60

Asynchronous Communication: Logic

m Recall alloc/spawn

providfr of x client of x
FEP(x):(x:A) Ax:AFQ(x)::(d: D)
NAFE (x+ P(x); Q(x)) = (d: D)

alloc/spawn

m Erase computational decorations: cut

FA AAFD
AFD

cut

m Same as for synchronous communication

14 /60

Asynchronous Communication: Meaning of Connectives

m Types prescribe protocols
m Polarities determine direction of communication

m Negatives A— B, A & B: provider receives, client sends
m Positives A® B, 1, A® B: provider sends, client receives

m Basic principles:
m Messages are processes
m Messages have continuation channels

15 /60

Receiving a Channel / Type A— B

m Provider view: receive channel x along ¢

Mx:AEP:(y:B) NA-B
R ———— R
I'recv c ({(x,y) = P(x,y)) = (c: A— B) rNFA—B

m x stands for channel of type A
m y stands for a continuation channel of type B

m Client view: send channel a along ¢

—ol0 —o[0
a:Ac:A—oBlsendc(ab):(b:B) A/A— B+ B

m send c (a, b): sending a with continuation channel b along ¢
m —ol rule of sequent calculus becomes an axiom —o[°

16 /60

Communication / Cut Reduction

m Multiset rewriting rule

proc (recv ¢ ({x,y) = P(x,y))),
proc (send ¢ (a, b))

H

proc P(a, b)

m Mirrors cut reduction

P(x,y)
x:AFy:B
———— —oR —l°
l'Fc:A—oB a:Ac:A—oBFb:B P(a, b)
cut ’
a:AFb:B — [l,a:A+b:B

17 /60

Sending a Channel / Type A® B

m Like A — B, swapping sending/receiver roles
m Provider view: send channel a with cont. channel b along ¢

0

®QRY —————— ®RO
a:Ab:BFsendc(ab):(c:A® B) A,BI—A®B®

m Client view: receive channel x with cont. channel y along ¢
MNx:Ay:BFP:(d:D) rAB+D
®L ®L
MNc:A® BFrecv c ((x,y) = P(x,y)) :: (d: D) NnNA®BFD

m The same communication rule applies!

18 /60

Termination / Type 1

m Only message without a continuation
m Provider view (1R? = 1R)

1RO — 1RO
-Fsendc ():(c:1) H1
m Client view
N=pP:(d:D) reD
1L
lMNc:lkrecvce (()= P):(d:D) NiED

m Dynamics

proc (send c ()), proc (recv ¢ (() = P) — proc P

19/60

External and Internal Choice

External (client) choice &¢cr{¢: As}
Internal (provider) choice @y {¢: As}

Each alternative labeled uniquely from a finite set L

&{diff : int -o int -o int * 1,

sqrt : int -o +{none : 1,
some : int * 1}}

(c : arith) =

recv ¢ (diff(cl) =>

Example:

1 arith =
2

3

4

5 server

6

7 |
8

9

10
11

sqrt(cl) => recv cl ((x, c2) =>

if x < 0

then send c2 (none())

else c3 <- send c2 (some(c3)) ;
send c3 (isqrt(x), ())))

20/60

External Choice / A& B

m Provider view: receive and branch on label ¢
FE Po(x)(x:Ap) (YLel)
&R
I+ recv c (f(X) = Pg(X))geL i (C : &ZEL{E : Ag})

r'-A Ir-B
rNFA&B
m Client view: send label k
(kel)
c: &uer{l: A} Fsend c k(a) :: (a: Ax)

&L

— a0 — &9
A&BFA ! A&BFB "~ 2

21/60

External Choice / Dynamics

m Multiset rewriting rule

proc (recv ¢ (£(x) = Po(x))eeL),
proc (send ¢ k(a))

—

proc Pk(a) (kel)

m Internal choice uses the same computation rule

22/60

Internal Choice / A® B

Like external choice, reversing provider/client roles

Computation rule remains the same
m Typing rules

(kel)
@R
a:Axbsend c k(a) :: Do {l: A}

Mx: Ak Py(x)::(d:D) (Vlel)
Mc: @per{l: Ar} - recv ¢ (U(x) = Po(x))eeL : (d : D)

®L

Logically

Y J—Y

AFA®B B-A®B

AFD T,BFD
A®BFD

oL

23/60

Recursion

m Add equirecursive types

m Add recursively defined processes
m Depart from strict Curry-Howard correspondence
m Consider circular/infinitary proofs

24 /60

Example: Storage Server

1 store A = &{insert : A -o store A,

z delete : +{none : 1,

3 some : A * store A}}

4

5 4 treating L as a local wariable

6 server (L : list A) :: (s : store A) =

7 recv s (insert(sl) =>

8 recv s1 ((x,s2) => call server (x::L) s2)
9

| delete(sl) =>
case L (nil => send s1 none()
| x::xs8 => s2 <- send sl some(s2) ;
s3 <- send s2 (x,s3) ;
call server (xs) s3))

I = S~ S
A~ W N B O

25/60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

26 /60

The (Linear) Semi-Axiomatic Sequent Calculus (SAX)

FT-A AAFD
IAFD

id

AFA

rAFB

- OR 0
N-A—oB L

- _ —o
A A—BIF B

A B+-D
— ® 0 - ®L
A BFA®B NA® BED
(o r=on
H1 N1k D
r'-A Ir=B
SREATE &L0 &L9
rMN-A&B A&BEA A& BFB
NNA-D I,B-D
? RS ol
NMA®@BEFD

—— @R ——
AFA®B B-A®B

27 /60

m SAX replaces all noninvertible rules of the sequent calculus by
axioms

m Add weakening and contraction for (nonlinear) SAX
r'-D A A-D

_— k —— contract
AR D "o en rLAFD

m Mixed linear/nonlinear (= adjoint) SAX [Pruiksma'23]

m SAX satisfies a form of cut elimination [DeYoung et al.'20]

28/60

Syntax Summary

Values vV o= () (L,1)
| (ab) (—,®)
| k(a) (&, @)
Continuations K := ()=P (L,1)
| (xy)=Plxy) (—®)
| (lx) = Pe(x))eer (& D)

Processes P = x+ P(x); Q(x) allocate/spawn
| sendcV send V along ¢
| recvc K receive along ¢, pass to K
| fwdab forward (see paper)
| callp(ay,..., an) ¢ call process (see paper)

29/60

Refactoring Computation Rules

m Recall basic principles of typed asynchronous communication
m Messages are processes
m Message ordering via continuation channels

m New semantic objects msg ¢ V and cont ¢ K

proc (x + P(x); Q(x)) + proc P(a),proc Q(a) (a fresh)

proc (send ¢ V) — msgcV

proc (recv ¢ K) — contc K

msg ¢ V,cont ¢ K — proc (V> K)
(O > (O=P = P
(a,b) > ({x,y) = P(x,y)) = P(a,b)
k(a) > (Ux)= Pi(x))eer = Px(a)

30/60

Polarity of Propositions / Types

m Proof theory (sequent calculus): invertible rules

m Negatives: right rules are invertible (A& B, A— B, 1)
m Positives: left rules are invertible (A® B, A® B, 1)
m Invertible rules carry no information
m Corresponding processes receive
m In SAX, these rules remain unchanged
m Proof theory: noninvertible rules
m Negatives: left rules are noninvertible
Positives: right rules are noninvertible
In SAX, these become axioms
Corresponding processes send
In SAX, these rules become axioms (= represent messages)

m Computational summary

m Negatives: provider sends, client receives
m Positives: provider receives, client sends

31/60

Summary of Asynchronous Message Passing

m Language as an intermediate point between a source level
notation and a low level implementation
m Elegant proof-theoretic foundation in the semi-axiomatic
sequent calculus SAX
m Propositions as types
m Proofs as programs
m Cut reduction as asynchronous communication
m Consequently, for configurations:

m Theorem: type preservation (= session fidelity)
m Theorem: progress (= deadlock freedom)

32/60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

33/60

m What is a future in a functional language? [Halstead’85]

let future x = e in €'(x)

Allocate a new future d

Evaluate e with destination d

In parallel, evaluate €'(d)

If e’(d) touches d, it blocks until d is written

m A parallel construct in a (by default) sequential language

m A future is a write-once form of shared memory
m Four steps
m Step 0: introduce types
Step 1: make memory explicit
Step 2: make futures explicit
Step 3: change default from sequential to parallel

34/60

Futures / Statics

m Variables now stand for addresses

m Every expression (= thread) executes with a destination
[Wadler'84]

m Typing judgment
x1:A1, .. Xn ApE P (z:C)

N
read write

m A thread P terminates as it writes to its destination z
m A thread P reads from cells at addresses x;

m Translate let future x = e in €/(x) as
x + P(x); Q(x)

where P(x) has destination x and Q(x) reads from x

35/60

Futures / Dynamics

m Semantic objects

thread P — thread P is executing

cell ¢ S — memory cell ¢ holds storable S

|
m susp ¢ S — suspension S
m Storable S =K | V

m Processes P now with read/write instead of send/receive

m Dynamics

thread (x « P(x) ; Q(x))
thread (write ¢ S)
thread (read c S)
cell ¢ V,susp c K
cell ¢ K,susp ¢ V

111117

thread P(a),thread Q(a)
cellc S

suspc S

thread (V > K)

thread (V > K)

36/60

Memory Example

m Memory model example: binary 6 at address ¢

cell ¢g b0(cy),
cell ¢ b1(e2),
cell ¢ b1l(c3),
cell c3 e(ca),
cell ea ()

37/60

Example: Binary Successor

read x (bO(x’) => write y bi(x’)
| p1(x’) => y’ <- call succ (x’) y’ ;
write y b0(y’)
| e() => y’ <- write y’ e() ;
write y bi(y’))

1 /4 binary numbers with least significant bit first
2 /4 labels b0, bl, e are now tags

3 bin = +{b0 : bin, bl : bin, e : 1}

4

5 zero :: (y : bin) = write y e()

6

7 succ (x : bin) :: (y : bin) =

8

9

e <
A W N = O

/ a pipeline with two succ threads

15 plus2 (x : bin) :: (z : bin) =
16 y <- call succ (x) y ;
17 call succ (y) =z

38/60

Correspondence with Asynchronous Message Passing

Channels become memory addresses
Allocate/spawn remains unchanged

For positives: write ~ send, read ~ recv

Example:

zero :: (y : bin) = send y e()

1
2
3 succ (x : bin) :: (y : bin) =

4 recv x (b0O(x’) => send y bil(x’)

5 | bi(x’) => y’ <- call succ (x’) y’ ;
6 send y b0O(y’)

7 | e() => y’> <- send y’ e() ;

8 send y bi(y’))

9

10 4/ a pipeline with two succ processes
11 plus2 (x : bin) :: (z : bin) =

12 y <- call succ (x) y ;

13 call succ (y) =z

39/60

Example: Lists

p <- write p (x, xs) ;
write L cons(p)

1 list A = &{nil : 1, cons : A * list A}

2

3 nil :: (L : list A) = write L nil()

4

5 cons (x : A, xs : list A) :: (L : list A) =
6

7

40 /60

Examples: Storage Server

1 store A = &{insert : A -o store A,

2 delete : +{none : 1,

3 some : A * store A}}
4

5 server (L : list A) :: (s : store A) =

6 write s (imsert(s1) =>

7 write s1 ((x,s2) =>

8 L’ <- call cons (x, L) L’ ;

9 call server L’ s2)

10 | delete(sl) =>

11 read L (nil() => send sl none()
12 | cons(p) => read p (x,xs) =>
13 s2 <- write sl some(s2) ;
14 s3 <- write s2 (x,s3) ;
15 call server (xs) s3))

41/60

Positive Correspondences

m Recall V ::=(a,b) | () | k(a)
m Recall positives A®@ B, AQ B, 1

m Syntax
Message Passing Futures
x + P(x); Q(x) x <+ P(x); Q(x)
send™ c V write ¢ V
recv ¢ K read c K
fwd™ c a move c a

m Dynamics

thread P(a), thread Q(a)
cellc V

susp ¢ K

thread (V > K)

thread (x «+ P(x) ; Q(x))
thread (write ¢ V)
thread (read ¢ K)

cell ¢ V,susp c K

1111

42/60

Negative Correspondences

m Recall
1 diff :: (c : int -o (int -o int * 1)) =
2 recv ¢ ((x,cl) =>

3 recv c1 ((y,c2) =>
4 send c2 (x-y, ())))

m According to typing diff should write to c!

m ldea: We write a continuation to c!

1 diff :: (c : int -o (int -o int * 1))
2 write ¢ ((x,cl) =>
3 write c1 ((y,c2) =>
4 write c2 (x-y,())))

43/60

Negative Correspondences

m Server (repeat)

1 diff :: (c : int -o (int -o int * 1)) =
2 write ¢ ((x,cl) =>
3 write c1 ((y,c2) =>
4 write c2 (x-y,()))

m Matching client reads continuations and passes them values

1 client (c:int -o (int -o int*1))::(a : intx*1) =
2 cl <- read c (35, c1) ;

3 c2 <- read c1 (17, c2) ;

4 read c2 ((z,c3) =>

5 write a (z,c3))

44 /60

Negative Correspondences

m Recall continuations for negatives
(x,¥) = P(x,y) (—°) xis argument

K =

m Syntax

m Dynamics

y is destination

(U(x) = Pe(x))ecr (&) Kk is label /method

X is destination

(y=P (1)

Message Passing

Futures

send” ¢ V
recv_ c K
fwd™ ca

thread (write ¢ K) +—
thread (read ¢ V)
celle Kysuspec V. —

read ¢ V
write ¢ K
move ¢ a

cellc K
susp ¢ V
thread (V > K)

45 /60

An Exact Correspondence

m On syntax and dynamic objects

Message Passing Futures

send™ ¢ V write ¢ V
recv ¢ K read c K
recv_ ¢ K write ¢ K
send” ¢ V read c V

proc P thread P
msgt ¢ V cellc V
cont™ ¢ K susp ¢ K
cont™ c K cell ¢ K
msg~ ¢ V susp ¢ V

m All messages are small (msg™ ¢ V,msg™ ¢ V)
m Storables are small values or continuations (cell ¢ V, cell ¢ K)

46 /60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

47 /60

Relation to Traditional Futures

m Futures are a single parallel construct in an otherwise
sequential language

Just a matter of scheduling!

Block Q(a) until P(a) has written to new future a

(
Sequential x & P(x) ; Q(x) for “call-by-need"”
Block P(a) until Q(a) touches new future a

"
m Sequential x & P(x) ; Q(x) for “call-by-value”
"
"

m Futures are not linear
m Proof theory: add (implicit or explicit) weakening and
contraction
m Dynamics: allow zero or multiple readers for every cell
m Linear futures can be asymptotically more efficient than
nonlinear futures [Blelloch & Reid-Miller'99]
m Mixed linear/nonlinear futures [Pruiksma'23]

48 /60

Nonlinear Futures

Easy to accommodate (in fact, discovered first)

Semantics objects !¢ are persistent
m Not removed from the configuration when matched
thread (write ¢ S) — lcellc S
thread (read ¢ S) +— suspc S
lcell ¢ V,susp ¢ K+ thread ¢ (V > K)
lcell ¢ K,suspc V' + thread ¢ (V > K)

m Can make a cell ephemeral or persistent, depending on its
mode [Pruiksma'23]

Requires garbage collection unless weakening (drop) and
contraction (duplicate) are explicit operations
[Girard & Lafont'87] [Gupta'22]

49 /60

Summary: Futures

Still just a proof term assignment for SAX
Theorem: Type preservation
Theorem: Progress

Typed traditional futures a simple fragment

Economical, intermediate-level language

m alloc, read, write, copy, call
m Sequential prototype implementation in progress

50 /60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

51/60

From Nonlinear Futures to Nonlinear Message Passing

m Synchronous (untimed) message passing inherently linear?
m What about asynchronous message passing?

m Exploit the correspondence with futures to derive nonlinear
asynchronous message passing!

52/60

Example: Nor Gate

m “Nor” of two bits is linear

1 bit = +{b0 : 1, b1 : 1}
2

3 nor (x : bit) (y : bit) :: (z : bit) =

4 recv x (bO() => recv y (b0O() => send z b1l()

5 | p1() => send z bO())

6 | p1() => recv y (b0O() => send z b0()

7 | p1() => send z bO()))

53/60

Example: A Latch

R Q
S Q
1 bit = +{b0 : 1, bl : 1}
2 bits2 = (bit * bit) * bits2
3
4 latch (q:bit, gbar:bit, in:bits2) :: (out:bits2) =
5 recv in (((r,s),in’) =>
6 q’ <- call nor (r, gbar) q’ ;
7 gbar’ <- call nor (s, q) gbar’ ;
8 out’ <- call latch (q’, gbar’, in’) out’ ;
9 send out ((q’, gbar’), out’))

54/60

Nonlinear Asynchronous Message Passing

m A provider has multiple clients
m Messages of positive type from provider to client are modeled
as persistent objects !msgt ¢ V
m Continuations of negative type expecting messages from client
are modeled as persistent objects lcont™ ¢ V

m Dynamics

proc (x < P(x); Q(x)) ~— proc P(a),proc Q(a)
proc (send™ ¢ V) = Imsgt cV

proc (recv™ ¢ K) — contt ¢ K

Imsg®™ ¢ V,cont™ ¢ K+ proc (V> K)

proc (send™ ¢ V) — msg” cV

proc (recv™ ¢ K) — lcont™ ¢ K

lcont™ ¢ K,msg™ ¢V, +— proc (V> K)

m Implicitly exploits continuation channels for soundness

55 /60

Our Journey

synchronous
message passing

asynchronous
message passing

linear
futures

nonlinear
asynchronous
message passing

nonlinear
futures

sequent
calculus

semi-axiomatic
sequent calculus

56 /60

m Analyzed typed asynchronous message passing and
futures-based shared memory from a proof-theoretic
perspective

m Perfect correspondence between message passing and futures

m The difference lies in the interpretation of SAX
m Using adjoint construction, we can freely combine

m Linear correspondences extend to nonlinear and mixed ones
m Consequence of proof-theoretic approach

m There are at least two natural sequential schedulers that can
be exposed in the syntax (“by value” and “by need")

57/60

Excursion: Logic Styles and Computation

m All logics below intuitionistic (and may be linear)
m Hilbert-style

m Form: one rule (modus ponens), many axioms

m Computationally: combinatory reduction [Curry’'34]
Natural deduction [Gentzen'35]

m Form: introduction and elimination rules
m Computationally: A-calculus [Howard'69]

Sequent calculus (linear only?)

m Form: right and left rules

m Computationally: synchronous message passing
m Semi-axiomatic sequent calculus

m Form: right and left rules and axioms
m Computationally: asynchronous message passing
m Computationally: futures

58 /60

Exploiting the Proof-Theoretic Perspective

m Sized types for reasoning about termination
[Somayyajula & Pf'22]

m Dependent types for reasoning about partial correctness
[Caires et al.'12] [Somayyajula & Pf'23]

m Logical relations [Pérez et al.'12] [Pruiksma’23]
m Efficient data layout for SAX [DeYoung & Pf'22]

m Proof-theoretic compilation from functional notation (natural
deduction) to adjoint SAX [DeYoung, Ng, Roshal]

m Subtyping and polymorphism [DeYoung, Mordido, Pf, Das]

59 /60

Thanks!

Klaas Pruiksma (coauthor)

Stephanie Balzer, Henry DeYoung, Daniel Ng, Sophia Roshal, Siva
Somayyajula (closely related)

Luis Caires, Ankush Das, Dennis Griffith, Andreia Mordido, Jorge
Pérez, Bernardo Toninho (somewhat related)

Organizers and programm committees for the invitation!

60 /60

