
Reasoning about Deductions in Linear LogicFrank Pfenningjoint work with Iliano Cervesato and Carsten Sch�urmannCADE-15, Linday, GermanyJuly 6, 1998Work in Progress!

1. Linear Logic2. Reasoning About Deductions3. Linear Type Theory4. A Meta-Logic5. Preliminary Experiments6. Conclusion 1

Introduction
We can look at the current �eld of problem solving by computers asa series of ideas about how to present a problem. If a problem can becast into one of these representations in a natural way, then it ispossible to manipulate it and stand some chance of solving it.

Allen Newell, Limitations of the Current Stock of Ideas for ProblemSolving, 1965

2

Universality of Predicate Calculus?

� Classical �rst-order logic� Intuitionistic logic� Temporal, modal logics� Dynamic logic, Hoare logic� Arithmetic� Theory of inductive de�nitions� Higher-order logic� Constructive type theory� Linear logic� Linear type theory 3

Linear Logic as a Logic of StateSuitable description language for

� (Imperative) programming languages[Chirimar'95][Cervesato & Pf'96]� (Abstract) machines [Chirimar'95][Plesko]� Concurrent systems[Girard'89][Lafont'90][Gay'94][Kobayashi'96]� Protocols [Cervesato & Sch�urmann]� Games[Lafont & Streicher'91][Blass'92][Abramsky&Jagadeesan'94]� Planning [Bibel'86]

Legal transition sequences () deductionsComputations () deductions 4

Reasoning about DeductionsOften, we need to reason about computations or transition sequences

� (Imperative) programming languages:Type safety� (Abstract) machines:Memory safety (PCC)� Concurrent systems:Deadlock, Bisimulation� Protocols:Security properties� Games:Strategies� Planning:Plan transformation 5

Talk Outline
1. Linear Logic2. Reasoning in Linear Logic3. Linear Type Theory4. Reasoning about Deductions5. Preliminary Results6. Conclusion

6

Linear Hypotheses as ResourcesBasic Judgment
(B1; : : : ; Bn)| {z }� ; (A1; : : : ; Am)| {z }� ` A

Hypothesis Rules �;A ` A (�; A); � ` A

� Unrestricted hypotheses � () \logical" assumptions� Linear hypotheses � () resources (\state")� Conservative extension of (intuitionistic) logic

7

Linear Implication and Simultaneous ConjunctionA(B With resource A we can achieve B�; (�; A) ` B (I�; � ` A(B�;�1 ` A(B �;�2 ` A(E�; (�1;�2) ` BA
 B We can achieve A and B simultaneously�;�1 ` A �;�2 ` B
I�; (�1;�2) ` A
B�;� ` A
B �; (�0; A;B) ` C
E�; (�;�0) ` C 8

Alternative Conjunction and ImplicationA&B We can achieve A and B alternatively�;� ` A �;� ` B & I�;� ` A&B�;� ` A&B &E1�;� ` A �;� ` A&B &E2�;� ` BA! B With A as unrestricted resource, we can achieve B(�; A); � ` B !I�; � ` A!B�;� ` A!B �; � ` A!E�;� ` B 9

Unit and Truth1 We have no resources 1I�; � ` 1�;� ` 1 �;�0 ` C 1E�; (�;�0) ` C

> Consumes all resources >I�; � ` >
no >E rule

10

Example: Blocks World
ab c

Primitive propositions:
on(x; y) block x is on block ytb(x) block x is on the tableholds(x) robot hand holds block xempty robot hand is emptyclear(x) top of block x is clear 11

Problem Representation
�0; �0 ` A0

� �0 represents legal moves� �0 represents current state� A0 represents goal state� A deduction corresponds to a solution

12

Example Problem
ab c

�0 = tb(a); on(b; a); clear(b);tb(c); clear(c);empty:�0 = 8x:8y:empty
 clear(x)
 on(x; y)(holds(x)
 clear(y);8x:empty
 clear(x)
 tb(x)(holds(x);8x:8y:holds(x)
 clear(y)(empty
 on(x; y)
 clear(x);8x:holds(x)(empty
 clear(x)
 tb(x):A0 = on(a; b)
>: 13

Some Problem Statements

� Resources � = P1; : : : ; Pn () state formula A = P1
 � � �
 Pn� Some questions:{ Can we achieve B from A?Does there exist a deduction D of �0; � ` A(B?{ Can we achieve B from A without ever placing block b on the table?Does there exist a deduction D of �0; � ` A(B such thatsafe(D)?{ Can we transform the solution to a shorter one?For a deduction D of �0; � ` A(B does there exists a related D0of �0; � ` A(B such that D0 < D?

14

Example: Imperative Programming Languages[Chirimar'95] [Cervesato & Pf'96] [Plesko]�0; � ` exec(C)�0 () operational semantics� () memory stateC () commandDeduction D () computationProperty of D () safety condition

� Memory safety of a program C corresponds to a property of allderivations of exec(C).� Type safety of the programming language corresponds to a property of allprograms C, typing derivations P and computation derivations D. 15

Example: Protocols
�0; � ` A

�0 () protocol rules� () state of principles and communicationC () goal (e.g., authentication)Deduction D () legal computationProperty of D () security condition

16

Example: Concurrent Systems
�0; � ` 1

�0 () transition rules� () state of processes and channelsDeduction D () traceProperty of D () trace property

� Trace properties correspond to properties of deductions.
17

Reasoning about Deductions

� Automated deduction answers questions:Does there exist a (linear) deduction D of judgment J?� Often, we would like to answer questions such as:For every deduction D of J , does there exist a deduction D0 of J�?� Traditional approach:Does there exist a proof of8J: 8D: ded(D; J) � 9D0:ded(D0; J�)in a meta-logic?� This talk:Design a suitable meta-logic.

18

Traditional Logics as Meta-Logics

� Theorem proving methods developed for the logic must be coded on therepresentation in the meta-logic.� Coding of judgments and deductions is often awkward when themeta-logic is not expressive enough.� A decidable property (D is a derivation of J) is typically mapped to aproposition (ded(D; J)) subject to theorem proving.� No support for hypothetical, linear hypothetical, or schematic judgments,whose frequently recurring properties must be formulated and proved inthe meta-logic.

19

Goals for a Meta-Theory of Deductions

� Reason directly about deductions.� Approach general enough for linear logic.� Inherit theorem proving methods.� Suitable for automation.� Natural expression of informal meta-theoretic proofs.
20

Overview of Approach

� Use (linear) type theory to reify deductions.(Linear) logical framework� Separate meta-logic from logical framework.Avoid complications of reection� Keep meta-logic simple.Exploit expressiveness of logical framework

21

Reifying DeductionsProblem: many deductions correspond to one computation or transitionsequence.
� Approach I: Consider equivalence classes of derivations (proof nets).{ Works well for classical, multiplicative linear logic.{ Some di�culties for exponential and additives.{ Is there an implementable theory of proof nets?

� Approach II: Use linear �-terms to represent deductions (LLF).{ Works well for fragment of intuitionistic linear logic.{ Tractable equational theory (��-conversion). 22

A Linear Logical Framework (LLF)Basic Judgment
�;� `� M : A

� Type A () judgment J� Object M of type A () deduction D of J� Signature � () deductive system
A ::= P j �x:A1:A2 j A1! A2j A1(A2 j A1&A2 j >

23

Properties of LLF
� Canonical forms exist and are unique.� Equality and validity are decidable [Cervesato & Pf'96].� Expressive enough to directly embed intuitionistic and classical linearlogic and examples from this talk.� Canonical objects are in bijective correspondence with deductions.� Some \sequentialization" is necessary due to the absence of
(avoids commuting conversions).

24

Blocks World in LLFblock : type.a : block.b : block.c : block.on : block -> block -> type. % on x y -- x is on ytb : block -> type. % tb x -- x is on tableclear : block -> type. % clear x -- top of x is clearempty : type. % empty -- robot hand is emptyholds : block -> type. % holds x -- robot hand holds xmove : type.pick : empty-o on X Y-o clear X-o (clear Y -o holds X -o move)-o move.

25

Example: A Solution (Deduction)win : type.winm : (tb a -o on b a -o clear b % b on a on table-o tb c -o clear c % c on table-o empty % hand empty-o (<T> -o on a b -o move) % win if a on b-o move)-o win.% ex1: pick up b, put b on table, pick up a, put a on bex1 : win= winm ^ ([oa^tb a] [oba^on b a] [cb^clear b][oc^tb c] [cc^clear c] [e^empty][success^move o- on a b o- <T>]pick ^ e ^ oba ^ cb^ ([ca^clear a] [hx^holds b]puttb ^ hx^ ([ob^tb b] [cb^clear b] [e^empty]picktb ^ e ^ oa ^ ca^ ([ha^holds a]put ^ ha ^ cb^ ([oab^on a b] [ca^clear a] [e^empty]success ^ () ^ oab))))). 26

Examples: Safety Condition% A derivation is safe, if block b is never put on the table.safe : block -> type.%name safe S.sfa : safe a.% b is not safe.sfc : safe c.okm : move -> type.%name okm K.okpick : ({cy:clear Y} {hx:holds X} okm (M ^ cy ^ hx))-> okm (pick ^ E ^ O ^ C ^ M).okpicktb : ({hx:holds X} okm (M ^ hx))-> okm (picktb ^ E ^ O ^ C ^ M).okput : ({oxy:on X Y} {cx:clear X} {e:empty} okm (M ^ oxy ^ cx ^ e))-> okm (put ^ H ^ C ^ M).okputtb : ({ox:tb X} {cx:clear X} {e:empty} okm (M ^ ox ^ cx ^ e))-> safe X-> okm (puttb ^ H ^ M). 27

Searching for Deductions in LLF

� Theorem proving in linear logic[Tammet'94] [Lincoln & Shankar'94] [Harland & Pym'97]� Constraint logic programming in LLF[Cervesato'96] [Cervesato, Hodas & Pf'96]� LLF theorem proving (PTTP-style)[Sch�urmann & Pf'98]� Model checking?

28

The Architecture
Meta-Logic M!Logical Framework LLFProblem Domain

29

Minimal Requirements for Meta-Logic

� Existential quanti�ers over LLF objects 9x:A:F .� Truth >.
Theorem Proving: 9x:A:> searches for a deduction M of A.

� Universal quanti�ers over LLF objects 8x:A:F .� Conjunction F1 ^ F2 (for simultaneous induction).

Others (M < M 0, M = M 0) may be possible, but not necessary in manyexamples.

30

Meta-Logic Judgment in M!
(�; �); 	 `� F(�; �) is a pure LLF context	 contains meta-logical assumptions (lemmas, ind. hyp.)F is a meta-logical formulasSome Introduction Rules >I(�; �); 	 `� >�; � `LLF� M : A (�; �); 	 `� [M=x]F 9I(�; �); 	 `� 9x:A:F((�; x:A); �); 	 `� F 8I(�; �); 	 `� 8x:A:F

31

Splitting
� Splitting handles inversion and proof by cases.� Central also for induction proofs.� Inspired by de�nitional reection[Schroeder-Heister'93] [McDowell & Miller'97]

�(x) = A (�; �); 	 `� split x:A overF split(�; �); 	 `� F

32

Splitting and Uni�cation

� Consider each constant c : B if it can be the head of an object of type A.� Check this condition by linear uni�cation.[Cervesato & Pfenning'97]� In practice allow splitting only in �nitary cases.� Cannot restrict to unitary case (patterns) because of linearity constraints.
33

Induction
� Must handle structural induction.� Fixed induction schemas are di�cult (impossible?) because of schematic,hypothetical, and linear hypothetical judgments.� Decompose into splitting and well-founded recursion.� Requires a proof term calculus for meta-logic.

34

Meta-Logical Judgment RevisitedRevised Judgment (�; �); 	 `� P 2 F

Recursion Rule (�; �); (;x 2 F) `� P 2 F rec(�; �); 	 `� (�x 2 F:P) 2 Fwhere �x 2 F:P terminates in x.Proof terms for other rules are straightforward.

35

Termination
� Applications of recursion are annotated with a termination order.� Intuitionistic (non-linear) prototype allows lexicographic andsimultaneous extensions of a subterm ordering.� Subterm ordering on higher-order functions is not trivial.[Rohwedder & Pf'96]� Other termination orders possible.[Kahrs'95] [van de Pol & Schwichtenberg'95] [Lysne & Piris'95]� Can linearity play a role?

36

Meta-Logic Summary

� Universal and existential quanti�cation over closed LLF objects.� Direct search to �nd witnesses for existentials.Inherit theorem proving techniques.� Induction decomposes into case analysis and well-founded recursion.� Simplicity possible due to expressive power of LLF.
37

Soundness of Meta-Logic

� If (�; �); � `� 9x:A:F then for some �; � `� M : A we have(�; �); � ` [M=x]F .� If (�; �); � `� 8x:A:F then for all �; � `� M : A we have(�; �); � `� [M=x]F .� Proof by showing totality of proof terms as functions.Completed only for restricted non-linear case� Is there useful notion of completeness?

38

Limitations
� Main limitation: restriction to closed objects and �xed signature.� Required for soundness of splitting.� Approach I: reify contexts � and � in the meta-logical judgments.[McDowell'97]� Approach II: allow \regular" context classes and generalize splitting[ongoing work]� Example: memory state in programming languages, world state inplanning.

39

Preliminary Results

� Implementation of the linear logical framework, including typereconstruction and linear constraint logic programming interpreter.http://www.stanford.edu/~iliano/LLF� Implementation of the logical framework (LF), including typereconstruction, logic programming, meta-logic and simple meta-theoremprover[Sch�urmann & Pfenning, this CADE]http://www.cs.cmu.edu/~twelf/� Theory and implementation restricted to 89 formulas.
40

Twelf ExperimentsExperiment Front Fill Split Rec TotalCartesian Closed Categories 0.058 1.000 0.004 0.036 1.099CPM Completeness 0.900 0.916 0.010 0.117 1.134Horn LP Soundness 0.112 4.336 0.004 0.049 4.501Horn LP Completeness 0.137 0.015 0.005 0.039 0.195Mini-ML Value soundness 0.055 0.016 0.041 0.061 0.172Mini-ML Type preservation 0.066 0.062 0.521 0.150 0.799Mini-ML Evaluation/Reduction 0.064 25.397 0.007 0.078 25.546Hilbert's abstraction theorem 0.111 0.197 0.004 0.010 0.322Associativity of + 0.026 0.009 0.012 0.016 0.063Commutativity of + 0.037 0.092 0.609 4.139 4.877

Linux 2.30, SML/NJ 110, Twelf 1.2 on Pentium II (300 Mhz)
41

Related Work
� Many experiments in reasoning about derivations using \traditional"logics as meta-logics.[Shankar'87] [Matthews'94] [Basin & Constable'93] [McKinna &Pollack'93] [Barras & Werner'97] : : :� FO��IN over hereditary Harrop formulas [McDowell & Miller'97]{ de�nitional reection (splitting){ does not reify deductions, no dependent types{ only natural number induction{ interactive{ applies to linear case [McDowell'97]� RLF linear logical framework [Ishtiaq & Pym'98] 42

Summary
� Proposed reasoning about deductions as a paradigm in theorem proving.� Illustrated the value of linearity within this paradigm.� Sketched a linear logical framework (LLF) for problem representation.� Proposed a meta-logic for reasoning about deductions in LLF.� Presented some preliminary results.� LLF: http://www.stanford.edu/~iliano/LLF� Twelf: http://www.cs.cmu.edu/~twelf/

43

