Reasoning about Deductions in Linear Logic

Frank Pfenning
joint work with Iliano Cervesato and Carsten Schiirmann

CADE-15, Linday, Germany
July 6, 1998
Work in Progress!

. Linear Logic

Reasoning About Deductions
Linear Type Theory

A Meta-Logic

Preliminary Experiments

Conclusion

Introduction

We can look at the current field of problem solving by computers as
a serles of ideas about how to present a problem. If a problem can be
cast into one of these representations in a natural way, then it is
possible to manipulate it and stand some chance of solving it.

Allen Newell, Limitations of the Current Stock of Ideas for Problem
Solving, 1965

Universality of Predicate Calculus?

e (lassical first-order logic

e Intuitionistic logic

e Temporal, modal logics

e Dynamic logic, Hoare logic

e Arithmetic

e Theory of inductive definitions
e Higher-order logic

e Constructive type theory

e Linear logic

e Linear type theory

Linear Logic as a Logic of State

Suitable description language for

e (Imperative) programming languages
[Chirimar’95]|Cervesato & Pf'96]

e (Abstract) machines [Chirimar’95][Plesko]

e Concurrent systems

|Girard’89][Lafont’90]|Gay 94| Kobayashi’96]
e Protocols |Cervesato & Schiirmann]|

o Games
[Lafont & Streicher’91][Blass’92][Abramsky& Jagadeesan’94]

e Planning [Bibel 86

Legal transition sequences <= deductions
Computations <= deductions

Reasoning about Deductions

Often, we need to reason about computations or transition sequences

e (Imperative) programming languages:
Type safety

e (Abstract) machines:
Memory safety (PCC)

e Concurrent systems:
Deadlock, Bisimulation

e Protocols:
Security properties

o (Games:
Strategies

e Planning:
Plan transformation

Talk Outline

1. Linear Logic

2. Reasoning in Linear Logic

3. Linear Type Theory

4. Reasoning about Deductions
5. Preliminary Results

6. Conclusion

Linear Hypotheses as Resources

Basic Judgment

Hypothesis Rules

AF A (A, HA

e Unrestricted hypotheses [<= “logical” assumptions
e Linear hypotheses A <= resources (“state”)

e Conservative extension of (intuitionistic) logic

Linear Implication and Simultaneous Conjunction

A—oB With resource A we can achieve B

M (A, A)F B j
I"AFA—oB

[AFA—B A - A
r;(Al,Az)l_B

—o E

A® B We can achieve A and B simultaneously

A FHA [A B
(A, A)FA® B

®

AFA®DB M (A A,B)FC
[(AA)VEC

®E

Alternative Conjunction and Implication

A& B We can achieve A and B alternatively
AR A [AFB ¢l
[AFA&B
A— B With A as unrestricted resource, we can achieve B
(MA);,A+B

FAFASEB

A+HA—B [-F A
[-AFB

—E

Unit and Truth

1 We have no resources
[-F1 1l
-AF1 A FC
[(A, A’) = C
T Consumes all resources
-AFT Tl

no TE rule

1E

10

Example: Blocks World

C
Primitive propositions:
on(x,y) block x is on block y
th(z) block x is on the table
holds(x) robot hand holds block x
empty robot hand is empty

clear(x) top of block z is clear

11

Problem Representation

[0; Ag = Ag

[o represents legal moves
A represents current state
Ag represents goal state

A deduction corresponds to a solution

12

Example Problem

T

Ay = tb(a),on(b,a),clear(b),
th(c), clear(c),
empty.

[0 = Va.Vy.empty ® clear(z) ® on(z, y) —o holds(z) ® clear(y),
Vx.empty ® clear(z) ® th(x) —o holds(z),
Vx.Vy.holds(z) ® clear(y) —o empty ® on(x, y) & clear(x),
Vzx.holds(z) —o empty & clear(x) ® th(x).

Ay = on(a,b)® T.

13

Some Problem Statements

e Resources A = Py, ..., P, <= stateformula A =P, ®---® P,

e Some questions:

— Can we achieve B from A?
Does there exist a deduction D of [y;-+ A— B?

— Can we achieve B from A without ever placing block b on the table?
Does there exist a deduction D of ['g;- = A —o B such that
safe(D)?

— Can we transform the solution to a shorter one?
For a deduction D of [g;- = A—o B does there exists a related D’
of [o:- = A—o B such that D' < D?

14

Example: Imperative Programming Languages

(Chirimar’95] [Cervesato & Pf'96] [Plesko]
[o; A F exec(C)

[0 <= operational semantics
A <= memory state
C <= command
Deduction D <= computation
Property of D <= safety condition

e Memory safety of a program C' corresponds to a property of all
derivations of exec(C').

e Type safety of the programming language corresponds to a property of all
programs C', typing derivations P and computation derivations D.

15

Example: Protocols

lo

A

C

Deduction D
Property of D

[A

[, AF A

protocol rules

state of principles and communication
goal (e.g., authentication)

legal computation

security condition

16

Example: Concurrent Systems

[o; A1
[transition rules
A state of processes and channels

Deduction D trace

[

Property of D trace property

e Trace properties correspond to properties of deductions.

17

Reasoning about Deductions

e Automated deduction answers questions:
Does there exist a (linear) deduction D of judgment J?

e Often, we would like to answer questions such as:
For every deduction D of J, does there exist a deduction D' of J*?

e Traditional approach:
Does there exist a proof of

VJ. VD. ded(D, J) > 3D".ded(D’, J*)

in a meta-logic?

e This talk:
Design a suitable meta-logic.

18

Traditional Logics as Meta-Logics

e Theorem proving methods developed for the logic must be coded on the

representation in the meta-logic.

e Coding of judgments and deductions is often awkward when the

meta-logic is not expressive enough.

e A decidable property (D is a derivation of J) is typically mapped to a
proposition (ded(D, J)) subject to theorem proving.

e No support for hypothetical, linear hypothetical, or schematic judgments,
whose frequently recurring properties must be formulated and proved in
the meta-logic.

19

Goals for a Meta-Theory of Deductions

Reason directly about deductions.
Approach general enough for linear logic.
Inherit theorem proving methods.

Suitable for automation.

Natural expression of informal meta-theoretic proofs.

20

Overview of Approach

e Use (linear) type theory to reify deductions.
(Linear) logical framework

e Separate meta-logic from logical framework.
Awvoid complications of reflection

e Keep meta-logic simple.
FEzxploit expressiveness of logical framework

21

Reifying Deductions

Problem: many deductions correspond to one computation or transition
sequence.
e Approach I: Consider equivalence classes of derivations (proof nets).

— Works well for classical, multiplicative linear logic.
— Some difficulties for exponential and additives.

— Is there an implementable theory of proof nets?

e Approach II: Use linear A-terms to represent deductions (LLF').

— Works well for fragment of intuitionistic linear logic.

— Tractable equational theory (3n-conversion).

22

A Linear Logical Framework (LLF)

Basic Judgment

AR M:A

e Type A <= judgment J
e Object M of type A <= deduction D of J

e Signature X <= deductive system

A = P‘HQ):A]_.AQ‘A]_—)AQ
‘A1_0A2‘A1&A2‘T

23

Properties of LLF

Canonical forms exist and are unique.

Equality and validity are decidable [Cervesato & Pf796].

Expressive enough to directly embed intuitionistic and classical linear

logic and examples from this talk.
Canonical objects are in bijective correspondence with deductions.

Some “sequentialization” is necessary due to the absence of ®

(avoids commuting conversions).

24

Blocks World in LLF

block : type.
a : block.
b : block.
c : block.

on : block -> block -> type.
tb : block -> type.

clear : block -> type.

empty : type.

holds : block -> type.

move : type.

pick : empty
-oon XY
-0 clear X
-0 (clear Y -o holds X -o move)
-0 move.

T
T
T
T
To

on X y -—— X 1s on y
tb x -— x 1s on table
clear x -- top of x 1is clear

empty -- robot hand is empty
holds x ——- robot hand holds x

25

Example: A Solution (Deduction)

win : type.
winm : (tb a -o on b a -o clear b % b on a on table
-0 tb ¢ -0 clear c % c on table
-0 empty % hand empty
-0 (KT> -0 on a b -o move) % win if a on b
-0 move)
-0 win.

% exl: pick up b, put b on table, pick up a, put a on b
exl : win
= winm ~ ([oa"tb a] [oba“on b a] [cb~clear b]
[oc™tb c] [cc”clear c] [e~empty]
[success"move o- on a b o- <T>]
pick ~ e " oba " c¢b
([ca”clear a] [hx"holds b]
puttb ~ hx
~ ([ob~tb b] [cb"clear b] [e"empty]
picktb ~ e " oa " ca
~ ([ha"holds al
put ~ ha = cb
" ([oab”on a b] [ca"clear al] [e~empty]
success = () " oab))))).

26

Examples: Safety Condition

% A derivation is safe, if block b is never put on the table.

safe : block -> type.
Jname safe S.

sfa : safe a.
% b is not safe.
sfc : safe c.

okm : move -> type.
Jname okm K.

okpick : ({cy:clear Y} {hx:holds X} okm (M ~ cy " hx))
-> okm (pick "E ~ 0~ C ~ M.

okpicktb : ({hx:holds X} okm (M ~ hx))
-> okm (picktb " E ~ 0~ C =~ M).
okput : ({oxy:on X Y} {cx:clear X} {e:empty} okm (M ~ oxy ~ cx ~ e))
—> okm (put ~H =~ C ~ M).

okputtb : ({ox:tb X} {cx:clear X} {e:empty} okm (M ~ ox ~ cx ~ e))

-> safe X
-> okm (puttb = H =~ M).

27

Searching for Deductions in LLF

e Theorem proving in linear logic

[Tammet’94] [Lincoln & Shankar’94] [Harland & Pym’97]

e Constraint logic programming in LLF
[Cervesato’96] [Cervesato, Hodas & P96

e LLF theorem proving (PTTP-style)
[Schiirmann & Pf79§]

e Model checking?

28

The Architecture

Meta-Logic

Logical Framework

Problem Domain

LLF

29

Minimal Requirements for Meta-Logic

e Eixistential quantifiers over LLF objects dz:A.F"

e Truth T.

Theorem Proving: dx:A.T searches for a deduction M of A.

e Universal quantifiers over LLF objects Vz:A.F'.

e Conjunction Fy A F, (for simultaneous induction).

Others (M < M', M = M') may be possible, but not necessary in many

examples.

30

Meta-Logic Judgment in M,

() VK F

(I';) is a pure LLF context
WV contains meta-logical assumptions (lemmas, ind. hyp.)
F'is a meta-logical formulas

Some Introduction Rules
Tl

(v T
ME M:A (F;)V [M/2]F

3l
(), VK JuAF

(T, z:A);-), VK F
(I),V Ve AF

Vi

31

Splitting

e Splitting handles inversion and proof by cases.
e Central also for induction proofs.

e Inspired by definitional reflection

[Schroeder-Heister’93] [McDowell & Miller97]

[(z)=A (I';+); V I split x:A overF’

(-)V F

split

32

Splitting and Unification

e Consider each constant ¢ : B if it can be the head of an object of type A.

e Check this condition by linear unification.
[Cervesato & Pfenning’97]

e In practice allow splitting only in finitary cases.

e Cannot restrict to unitary case (patterns) because of linearity constraints.

33

Induction

e Must handle structural induction.

e Fixed induction schemas are difficult (impossible?) because of schematic,
hypothetical, and linear hypothetical judgments.

e Decompose into splitting and well-founded recursion.

e Requires a proof term calculus for meta-logic.

34

Meta-Logical Judgment Revisited

Revised Judgment
(-, VK PeF

Recursion Rule
() (V,xe F)R PeF

rec
() VK (ukx e F.P) e F

where ux € F.P terminates in X.

Proof terms for other rules are straightforward.

35

Termination

e Applications of recursion are annotated with a termination order.

e Intuitionistic (non-linear) prototype allows lexicographic and
simultaneous extensions of a subterm ordering.

e Subterm ordering on higher-order functions is not trivial.

[Rohwedder & P{’96]

e Other termination orders possible.
[Kahrs'95] [van de Pol & Schwichtenberg’95] [Lysne & Piris’95]

e Can linearity play a role?

Meta-Logic Summary

Universal and existential quantification over closed LLE objects.

Direct search to find witnesses for existentials.
Inherit theorem proving techniques.

Induction decomposes into case analysis and well-founded recursion.

Simplicity possible due to expressive power of LLF'.

37

Soundness of Meta-Logic

o If (-;-);- K Jz:A.F then for some ;- 5 M : A we have
()i F [M/a]F.

o If (-;-);- K Vz:A.F then for all ;- M : A we have
()i 5 [M/z]F.

e Proof by showing totality of proof terms as functions.
Completed only for restricted non-linear case

e Is there useful notion of completeness?

38

Limitations

Main limitation: restriction to closed objects and fixed signature.
Required for soundness of splitting.

Approach I: reify contexts [and A in the meta-logical judgments.
[McDowell'97]

Approach II: allow “regular” context classes and generalize splitting
longoing work]

Example: memory state in programming languages, world state in

planning.

39

Preliminary Results

e Implementation of the linear logical framework, including type
reconstruction and linear constraint logic programming interpreter.
http://www.stanford.edu/"iliano/LLF

e Implementation of the logical framework (LF), including type
reconstruction, logic programming, meta-logic and simple meta-theorem

prover
[Schirmann & Pfenning, this CADE]
http://www.cs.cmu.edu/ "twelf/

e Theory and implementation restricted to V4 formulas.

40

Twelt Experiments

Experiment Front Fill | Split | Rec | Total
Cartesian Closed Categories 0.058 | 1.000 | 0.004 | 0.036 | 1.099
CPM Completeness 0.900 | 0916 | 0.010 | 0.117 | 1.134
Horn LP Soundness 0.112 | 4.336 | 0.004 | 0.049 | 4.501
Horn LP Completeness 0.137 | 0.015 | 0.005 | 0.039 | 0.195
Mini-ML Value soundness 0.055 | 0.016 | 0.041 | 0.061 | 0.172
Mini-ML Type preservation 0.066 | 0.062 | 0.521 | 0.150 | 0.799
Mini-ML Evaluation/Reduction | 0.064 | 25.397 | 0.007 | 0.078 | 25.546
Hilbert’s abstraction theorem 0.111 | 0.197 | 0.004 | 0.010 | 0.322
Associativity of + 0.026 | 0.009 | 0.012 | 0.016 | 0.063
Commutativity of + 0.037 | 0.092 | 0.609 | 4.139 | 4.877

Linux 2.30, SML/NJ 110, Twelf 1.2 on Pentium II (300 Mhz)

41

Related Work

e Many experiments in reasoning about derivations using “traditional”

logics as meta-logics.
[Shankar’87] [Matthews’94] [Basin & Constable’93] [McKinna &
Pollack’93] [Barras & Werner'97] . . .

o FONAY over hereditary Harrop formulas [McDowell & Miller’97]

— definitional reflection (splitting)

— does not reify deductions, no dependent types
— only natural number induction

— Interactive

— applies to linear case [McDowell'97]

e RLF linear logical framework [Ishtiaq & Pym’9§]

42

Summary

e Proposed reasoning about deductions as a paradigm in theorem proving.
e [llustrated the value of linearity within this paradigm.

e Sketched a linear logical framework (LLF) for problem representation.

e Proposed a meta-logic for reasoning about deductions in LLF.

e Presented some preliminary results.

e LLF: http://www.stanford.edu/"iliano/LLF

e Twelf: http://www.cs.cmu.edu/ " twelf/

43

