
Teaching Imperative Programming With Contracts at the
Freshmen Level

[Experience Report]

Frank Pfenning Thomas J. Cortina William Lovas
Department of Computer Science

Carnegie Mellon University
fp@cs.cmu.edu tcortina@cs.cmu.edu wlovas@cs.cmu.edu

ABSTRACT
We describe the experience with a freshmen-level course that
teaches imperative programming and methods for ensuring
the correctness of programs. Students learn the process and
concepts needed to go from high-level descriptions of algo-
rithms to correct imperative implementations, with specific
applications to basic data structures and algorithms. A
novel aspect of the course is that much of it is conducted
in C0, a small safe subset of the C programming language,
augmented with a layer of annotations to express contracts
that are amenable to verification. The present version of
the course assumes a basic understanding of programming
(variables, expressions, loops, functions) and prepares stu-
dents for subsequent computer systems courses taught in C
as well as more advanced courses on algorithms and data
structures.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
F.3.1 [Theory of Computation]: Specifying and Verify-
ing and Reasoning about Programs—assertions, invariants,
pre- and post-conditions; D.2.4 [Software Engineering]:
Software/Program Verification—assertion checkers, correct-
ness proofs, programming by contract

General Terms
Algorithms, languages, theory, verification

1. INTRODUCTION
Recently, the School of Computer Science at Carnegie

Mellon University has engaged in a major introductory cur-
riculum revision1, affecting all freshmen-level and some sopho-
more-level courses. This curriculum revision exposed the

1http://link.cs.cmu.edu/files/ugrad-report.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

need for a course to prepare students for later courses such as
Computer Systems, Networks, and Operating Systems, which
require imperative programming skills and knowledge of the
C programming language [7]. In course design we assumed
some programming background, either from high school or
from an introductory course taught at our university, but not
any specific language or paradigm. Having taught our course
now three times to a total of 220 students, both computer
science majors and non-majors, we have indeed observed a
diversity of backgrounds, including most students knowing
only Java or only Python, and only a few students who were
already familiar with C.

In our prior experience in teaching a sophomore-level sys-
tems course over several years, we found that many students
were poorly prepared to deal with imperative programming
and the vagaries of C, especially for assignments involving
nontrivial data structures. We conjectured two root causes.
One is a lack of understanding of how to reason logically
about programs, which in turn can be traced to a lack of
precision regarding the desired properties of code. Another
is the well-known complexities of C, such as manual memory
management, undefined behavior on out-of-bounds array ac-
cesses, arithmetic overflow, and some casts, which confound
even experienced programmers [9].

We set out to develop a course curriculum to eliminate
these deficiencies. The cornerstone of our approach was the
design of a small safe subset of C called C0 (pronounced “C-
naught”) that would be appropriate for teaching basic algo-
rithms and data structures. C0 is garbage-collected, checks
for out-of-bounds array accesses and null-pointer derefer-
ences, permits no casts, and has an unambiguous seman-
tics for arithmetic expressions based on modular arithmetic.
We augmented this base with a layer of annotations to ex-
press contracts [8]. These take the form of pre- and post-
conditions for functions, as well as loop and data structure
invariants. Currently, contracts are checked dynamically
(during program execution), when the C0 compiler is in-
voked with an appropriate flag; in the future, we hope to add
some tools for verifying contracts statically (during compi-
lation).

We refined our ideas into specific integrated learning ob-
jectives along three dimensions: computational thinking [11],
programming skills, and algorithms and data structures. We
then developed a series of lectures to achieve these goals.
Our experience with the resulting course, which has by now
been delivered three times to a total of 220 students, has
been quite positive. In this paper we provide a sketch of

the most significant aspects of this course and report on our
experience in delivering it, both to majors and nonmajors.
We also draw some preliminary conclusions and speculate
on future work.

2. LEARNING OBJECTIVES
The learning objectives for this 15-week course are com-

plex and interrelated, and yet we found it useful to organize
them along three dimensions: computational thinking, pro-
gramming skills, and algorithms and data structures. Before
most lectures, we would explicitly state the goals or topics
for that particular lecture, organized along these dimension
and believed it has been helpful for students to put material
of the lecture into a broader context.

If the goals below appear ambitious for a second course
in computer science with a mild programming prerequisite,
they are! Anticipating one of our conclusions, we believe
that it is precisely the simplicity of C0 combined with the
explicit nature of contracts that have allowed us to achieve
these goals for most students within a semester, for majors
and nonmajors alike, and regardless of the nature of prior
programming experience.

2.1 Computational Thinking
In the area of computational thinking, successful students

should be able to

• understand abstractions and interfaces. They
are essential for the modular organization of programs,
and for the ability to reason about large parts of a
program independently.

• relate specifications to implementation. In order
to write correct programs, it is important to articulate
what “correctness” means, and in which ways program
may have or may fail to have this elusive property.

• express pre- and post-conditions for functions
and loop invariants. Pre- and post-conditions achieve
at the level of individual functions what abstractions
and interfaces achieve at the level of whole data struc-
tures: they allow us to decompose the correctness of
a complex program into the correctness of individual
functions. And loop invariants achieve the same at an
even finer grain, at the level of individual loops: they
allow us to establish the correctness of multiple itera-
tions by proving properties of one single iteration.

• use data structure invariants. They allow us to
implement and use correct and efficient operations on
the elements of the data structure.

• reason rigorously about code, both logically and
operationally. Reasoning is required to establish cor-
rectness and find bugs. Logical reasoning abstracts
from the detail of an implementation (across a loop,
function, or abstract interface), exploiting only the
essential properties. Operational reasoning traverses
small pieces of code to analyze their effect or value.

• analyze asymptotic complexity and practical ef-
ficiency. Beyond functional correctness, we also need
to understand the characteristics of the running times
of programs, in relation to properties of the input.
Only then can we chose appropriate data structure im-
plementations when solving problems.

2.2 Programming Skills
In the area of programming skills, successful students should

be able to

• understand the static and dynamic semantics
of their programs. In other words, students should
be able to determine if their program will compile and
how it will execute. This, of course, is fundamental to
reasoning.

• develop, test, rewrite, and refine their code.

• work with specifications and invariants. Once we
have decided that contracts should be explicit, they
become and integral part of the programming process.

• use and design small interfaces. Competent pro-
grammers cannot merely use libraries, but they must
be able to write libraries themselves, and that means
weighing the consequences of various choices regarding
how much to hide and how much to expose.

• use and implement mutable data structures. Be-
cause this course is on imperative programming, our
emphasis is on traditional mutable data structures.

• render high-level algorithms into correct im-
perative code. The bridge here is, of course, the
use of explicit contracts and interfaces to rigorously
capture the high-level ideas.

• write C programs in a Unix-based environment.
This skill is at present needed for many internships and
for follow-on systems courses.

2.3 Data Structures and Algorithms
In the area of data structures and algorithms, successful

students will be able to

• perform asymptotic analysis on sequential com-
putation, including simple amortized analysis and recog-
nition of common important complexity classes (O(1),
O(log(n)), O(n), O(n ∗ log(n)), O(n2), O(2n)).

• apply the divide-and-conquer strategy in ele-
mentary algorithm design, including binary search
and subquadratic sorting.

• understand properties of simple self-adjusting
data structures, such as heaps or self-balancing bi-
nary search trees.

• effectively employ a number of basic algorithms
and data structures, including stacks and queues,
hash tables, heaps, balanced binary search trees, tries,
binary decision diagrams, and simple graph algorithms.

3. PROGRAMMING LANGUAGE
We believe that computational thinking, programming skills,

and algorithms and data structures must go hand-in-hand
when introducing students to computer science. Each com-
ponent in isolation is difficult or impossible to master with-
out at least some exposure to the other two. In particular,
programming itself is central, and the choice of programming
language has a dramatic impact on how effectively concepts
can be taught. Java has been a popular language [5] for

CS1/CS2 and has some clear advantages, for example, when
discussing interfaces. However, the complexity of the under-
lying object-oriented model, including dynamic dispatch and
inheritance, can obscure the simplicity of pure algorithmic
ideas, especially when the primary course goals relate to im-
perative programming and mutable data structures. The
course objectives include some skills in C, but pitfalls and
idiosyncrasies of C [9] make it unsuitable for a course with
only mild programming prerequisites. So we chose to work
in a small safe subset of C augmented with annotations to
express explicit contracts for the first 11 weeks, and then
switch to C in week 12–15, carrying forward a variant of the
contract language implemented as C macros. Revealing a
language in layers, using well-defined and enforced subsets,
has recently also been proposed by Felleisen [6] for pedagog-
ical reasons.

We now review the structure of C0 and justify various
design decisions. We provide the students with a compiler
and an interpreter for C0 as well as several small libraries,
mostly dealing with input/output and strings. The compiler
performs parsing, type checking, and verifies some proper-
ties of the static semantics (for example, that variables are
initialized before they are used), and then produces C code
as output, which is in turn compiled to an executable. The
interpreter performs the same checks but then executes the
program directly.

3.1 Type Structure
The type structure is as simple as we could reasonably

make it and still write natural programs to implement the
various algorithms and data structures.

• int. Integers are interpreted in modular arithmetic
with a 32-bit two’s complement representation. They
also support bit-wise operations so one can implement,
for example, image manipulation using integer arrays
in the ARGB color model. A salient difference to C
is that the results of all operations are defined. The
behavior of integer operations is therefore consistent
with the C specification.

• bool. Booleans have just two values, true and false,
and can be tested with conditionals as well as the
usual short-circuiting conjunction && and disjunction
||. While consistent with C, booleans are not con-
flated with ints, avoiding common mistakes and pro-
viding a clear foundation for contracts which are ex-
pressed as boolean conditions (see Section 3.3).

• t[], the type of arrays of values of type t. C0 dis-
tinguishes arrays from pointers. Arrays have a fixed
size determined at allocation time, and are compiled
so that array accesses can be dynamically checked to
be in array bounds. In C, the type t[] would be writ-
ten as t*, which does not provide the opportunity for
bounds checks. Fixed size arrays from C are not sup-
ported in C0.

• t*, the type of pointers to cells holding values of type
t. Pointers may be NULL. Unlike C, we cannot perform
any pointer arithmetic of values of type t*.

• struct s, the type of structs (also called records) with
name s. Structs must be explicitly declared.

• char. These are ASCII characters as in C, restricted
on the range from 0 to 127. They can not be implicitly
converted to or from ints.

• string. String are an immutable abstract type, but
the runtime system provides library functions to con-
vert between strings and character arrays (char[]).

Because we distinguish arrays and pointers, and conse-
quently array access and pointer dereference, and further
disallow pointer arithmetic, C0 permits a simple type-safe
and memory-safe implementation. In particular, it is amenable
to garbage collection, avoiding the problems of malloc and
free. We currently use the conservative Boehm-Weiser col-
lector [2]. This is of significant benefit to the students, who
can write complex data structures without having to worry
about obscure segmentation faults or bus errors.

3.2 Control Structure
The control structure is quite conventional. C0 sepa-

rates expressions from statements, where assignments are
considered statements, eliminating yet another class of ne-
farious bugs. Unlike C, expressions are guaranteed to be
evaluated from left to right, eliminating another source of
implementation-dependent unpredictable behavior. Variables
must be declared and initialized before use, which is checked
with a simple dataflow analysis. Arrays, when allocated, are
initialized with default values which are specified for each
type. We have conditionals (if and if/else) and loops
(while and for). Functions take a fixed number of argu-
ments of fixed types, and either return a value of fixed type
or no value (void).

3.3 Contracts
The contract language is loosely based on a tiny subset of

JML [3] and Spec# [1]. Preconditions for functions are ex-
pressed in clauses of the form //@requires e;, where e is a
boolean condition. A call to the function is considered to be
in error if e evaluates to false. Postconditions for functions
are expressed as //@ensures e;, where e may mention the
special variable \result. A function is considered to be in
error if it returns a value that does not satisfy the postcon-
dition when given arguments that satisfy the precondition.

Here is a simple example of an integer logarithm function,
with a minimal contract specifying only some properties on
the legal range of argument and result.

int log(int x)

//@requires x >= 1;

//@ensures \result >= 0;

{ int r = 0;

while (x > 1) {

x = x / 2;

r = r + 1;

}

return r;

}

The use of boolean expressions instead of logical propo-
sitions has some advantages and drawbacks. The big ad-
vantage is that students do not have to learn an additional
language for specifications, and that contracts remain ef-
fectively checkable. The disadvantage is that quantifiers are
not available, and specific uses of (bounded) quantifiers have

to be coded as ad hoc functions. We feel that the benefits
of staying with a simple, uniform, executable language out-
weigh the loss of expressive power.

As a second example, consider a simple linear search through
an unsorted array. We pass in the element x we are looking
for, and array A, and a bound n which must be less or equal
to the length of the array. We either return −1, or an index i
such that A[i] = x. What we do not express in the contract
is that we return −1 only if x is not in the array. In the
absence of quantifiers, we could express this only by writing
another, almost identical function which returns true if x is
in the array and false otherwise.

int linsearch(int x, int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@ensures -1 <= \result && \result < n;

//@ensures \result == -1 || A[\result] == x;

{

for (int i = 0; i < n; i++)

//@loop_invariant 0 <= i && i <= n;

if (A[i] == x) return i;

return -1;

}

In this example we also use a loop invariant. A loop in-
variant is checked just before the exit condition, so it must
include the extremal value (i ≤ n, not i < n).

3.4 Transition to C
Note that the code above compiles and behaves correctly

in C if we just replace int[] A with int* A. However, it
suffers from the possibility of out-of-bounds array access if
n should be incorrect, while the version above is safe and
would abort. It turns out that replacing [] by * is the only
change we have to make so that C0 programs are syntac-
tically correct in C and compile. In other words, students
have been secretly using and learning (almost) C all along!
In that way, we follow Felleisen’s advice [6] to present a lan-
guage in enforced layers. On the other hand, wanting to
reason soundly about programs means that C0 cannot al-
ways be semantically compatible with C. For example, an
overflowing addition must be handled according to modular
arithmetic laws in C0, but the result is undefined for C.

The transition to C around week 11 of the course is then
centered on four different topics.

1. Undefined behaviors of C. We enumerate the unde-
fined behaviors of C and teach safe programming prac-
tices. Many of these are consistent with good C0 prac-
tice. An important tool, especially on out-of-bounds
memory accesses and null pointer dereferences, is a set
of C macros we provide for the students that emulate
contracts through assertions.

2. Manual memory management. We introduce the
students to manual memory management with malloc

and free, heavily relying on the Valgrind tool [10] to
detect memory bugs and leaks. We also discuss stack
allocation and the address-of operator (&) which has
important safety consequences.

3. Genericity. We discuss implementation techniques
for generic data structures using void*, function point-
ers, and casts.

4. Additional language constructs. We highlight a
few important additional features of C not present in
C0, such as integer types of different ranges and switch

statements. However, our coverage is not complete,
relying on students to be able to read sample code,
tutorials, or the standard reference [7] to discover the
rest of the language for themselves.

The course culminates in a final assignment where stu-
dents implement a virtual machine for C0 in C, nicknamed
C0VM. Since our C0 compiler can produce byte code as
output, the students’ byte code interpreters can execute al-
most all the C0 code they wrote throughout the semester,
excepting only those using the image library from the first
project. The students found this to be a challenging but very
satisfying project. Not only is it an appropriate use of C,
but it allows them to reflect on the details of the operational
meaning of programming constructs they have been writing
all along. Finally, it exercises the computational thinking
idea that we often have to view programs as data.

4. COURSE IMPLEMENTATION
The first course instance was offered to incoming computer

science freshmen in their first semester at our university,
if they have had some programming experience from high
school. It turned out all 101 students starting this course
(93 of which completed it) had prior programming experi-
ence with Java, which is syntactically and semantically close
to C0. Java objects are decomposed into the more primitive
structs and pointers, but these are not discussed immedi-
ately.

The second instance of the course was offered to both ma-
jors and nonmajors. This course started with 127 students
of which 114 remained at the end. The final breakdown
by college was 48 computer science majors, 29 engineering
majors, 22 science majors, 9 humanities majors, 5 interdis-
ciplinary majors, and 1 business major. Their programming
experience was almost exclusively from the CS1 course in
our new curriculum, delivered in Python. This provided a
much more difficult transition. Syntactic differences, as well
as the differences between static typing in C0 and dynamic
typing in Python required some additional lectures on the
C0 language itself at the beginning of the course, which we
then integrated into the curriculum, trading them for two
advanced lectures.

The third instance of the course was compressed into six
weeks in the summer, with daily lectures, and followed the
same curriculum as a second instance. It was a small class
of 14 students, 11 of which completed it.

4.1 Lecture Topics and Projects
Here is a very brief outline of the lecture topics, by week.

• Week 1: Course overview, contracts, introduction to
C0 (functions, statements, expressions, types)

• Week 2: Modular arithmetic, arithmetic and bitwise
operations, arrays, loop invariants.

• Week 3: Linear and binary search, divide and conquer,
asymptotic complexity.

• Week 4: Sorting algorithms, mergesort, quicksort.

• Week 5: Queues, stacks, linked lists, pointers, recur-
sive types, data structure invariants.

• Week 6: Memory layout, recursion, Midterm Exam I.

• Week 7: Unbounded arrays, amortized analysis, hash
tables.

• Week 8: Interfaces, priority queues, heaps, ordering
and shape invariants.

• Week 9: Restoring invariants, heapsort, binary search
trees.

• Week 10: AVL trees, rotations, program testing.

• Week 11: Polymorphism, introduction to C, Midterm
Exam II.

• Week 12: Memory management (malloc/free), valgrind,
generic data structures.

• Week 13: Virtual machines.

• Week 14: Tries, decision trees, binary decision dia-
grams, sharing, canonicity.

• Week 15: Graph algorithms (spanning trees, union-
find).

In addition to the two midterms and the final, we gave
a total of 8 quizzes online, and 8 homework assignments,
which accounted for 45% of the final grade. Each assignment
except the last one had both a written and a programming
component, practicing different aspects of the material. The
topics of the programming portions of the assignments were:

1. Project 1: Image manipulation (arrays, bit-level oper-
ations, loops)

2. Project 2: Text processing (searching and sorting)

3. Project 3: Word ladders and parsing (more searching)

4. Project 4: Gap buffers for editors (doubly linked lists,
arrays revisited)

5. Project 5: Lights out game (hash tables, backtracking)

6. Project 6: Huffman coding (binary trees and heaps)

7. Project 7: Ropes (strings with fast concatenation, in
C)

8. Project 8: A virtual machine for C0 byte code (in C)

4.2 Sample Lecture Material
Here is a sample abstract for the lecture on heaps, as used

to implement priority queues.

In this lecture we will implement operations on
heaps. The theme of this lecture is reasoning with
invariants that are partially violated, and mak-
ing sure they are restored before the completion
of an operation. We will only briefly review the
algorithms for inserting and deleting the minimal
node of the heap; you should read the notes [on
priority queues] and keep them close at hand.

Temporarily violating and restoring invariants is
a common theme in algorithms. It is a technique
you need to master.

Here is the code for is_heap_except_up(H, n), which
checks that H is almost a valid heap, allowing a violation
only between node n and its parent. It is used only in con-
tracts.

/* is_heap_except_up(H, 1) == is_heap(H); */
bool is_heap_except_up(heap H, int n) {

if (H == NULL) return false;
//@assert \length(H->heap) == H->limit;
if (!(1 <= H->next && H->next <= H->limit)) return false;
/* check parent <= node for all nodes
* except root (i = 1) and n */
for (int i = 1; i < H->next; i++)

//@loop_invariant 1 <= i && i <= H->next;
if (!(i == 1 || i == n || H->heap[i/2] <= H->heap[i]))

return false;
return true;

This function is used as a loop invariant in the sift up op-
eration which is employed after the new element is inserted
at the end of the array.

void sift_up(heap H, int n)
//@requires 1 <= n && n < H->limit;
//@requires is_heap_except_up(H, n);
//@ensures is_heap(H);
{ int i = n;

while (i > 1)
//@loop_invariant is_heap_except_up(H, i);
{

if (H->heap[i/2] <= H->heap[i]) return;
swap(H->heap, i/2, i); /* swap i with parent */
i = i/2; /* consider parent next */

}
//@assert i == 1;
//@assert is_heap_except_up(H, 1);
return;

}

4.3 Student Performance
Generally, students’ performance exceeded our initial ex-

pectations. The attrition rate was low: 8/101 for first in-
stance with majors, and 13/127 for second instance with
mixed student population. The average of the overall course
grade for the first course instance (majors only) was 83.4%
with a standard deviation of 8.0%, with 2 students failing.
The average for the second instance (mixed population) was
79% with a standard deviation of 9.0%, with 1 student fail-
ing. When the course was taught with a mixed population,
and an ANOVA analysis revealed no statistically significant
difference in performance between students from different
colleges. By and large, we felt, the ambitious learning goals
we set were achieved, although at present we do not yet have
information from the downstream systems course regarding
students’ programming performance in C.

4.4 Student Comments
We collected early student feedback in all three instances—

just before the first midterm in the first two and halfway
through the summer instance—and then again at the end
of the semester through a university-wide course evaluation
system. Early feedback revealed that clear majority stu-
dents found the pace of the course to be fine, with some
claiming it to be a little fast, and a few way too fast. How-
ever, the middle section of the course was most comfortable
for the students, with an accelaration near the end, when it
transitions to C and students have to implement a concep-
tually difficult virtual machine in their last project. Among
the course aspects most helpful to student learning were, in
order, recitations, lecture notes, lectures, and assignments.

Here are some results from the online course evaluations
conducted by the university. Numerical scores (except hours
per week) are averages on a scale of 1 to 5, with 5 being best.

Category Sem. 1 Sem. 2 Summer
hours per week 11.22 10.02 12.71

clear learning goals 4.29 4.31 4.71
feedback to students 3.69 3.68 4.57
importance of subject 4.41 4.56 4.86

explains subject matter 4.24 4.39 4.86
overall course 4.10 4.08 4.71

As is clear from these data, and the students comments,
the most unsatisfying aspect of the course was the slow feed-
back to the students, which was due to a small course staff
overwhelmed with developing the course materials. Despite
this, the overall ratings for the course were very good. Stu-
dents generally responded favorably to learning C0 first be-
fore moving on to C, once the pedagogical reasons were out-
lined to them in class. Here are a couple of somewhat rep-
resentative comments:

Overwhelming at first - a gentler introduction would
be preferrable (especially the first homework as-
signment, but all of the first couple of weeks in
general). A good overview that taught a lot about
many different areas. The shift to C could have
been jarring, but it was handled well.

I thought the material of the course was very
good, and C0 is a very nice language to learn
before transitioning into C.

[This class] hasn’t just taught me the material
excellently, it’s given me a better appreciation for
computer science and made me a much, much
better programmer.

5. CONCLUSIONS AND FUTURE WORK
We have sketched a new freshmen-level course on imper-

ative computation, which we have now taught three times
to a total of about 220 students. It rests on the integrated
teaching of computational thinking, programming skills, and
data structures and algorithms. Perhaps the most novel as-
pects of the course are the emphasis on explicit contracts
and reasoning about correctness throughout, and the use
of C0, a small safe subset of C supporting contracts. All
course materials are freely available on-line2 We expect a
public release of C0 some time this fall.

Our experience with the course has been very positive.
We believe that removing complexity from an industrial-
strength programming language and augmenting the results
with means to express contracts, are techniques that have
enabled students to reach our ambitious learning goals. They
are not just based firmly in the theory of programming lan-
guages, but pedagogically sound.

During the first course instance, a guest lecturer from
the Microsoft Windows development team talked about the
pervasive use of lightweight specifications in SAL [4] in the
implementation of Windows and other Microsoft products.
Our course now teaches our students similar languages and
programming techniques at the freshmen-level. In future
work we would like to consider if we can shift some of the
work of checking contracts from run-time to compile-time.
Recent advances in program verification are encouraging,
but are not yet at a stage where we know how to use them

2http://www.cs.cmu.edu/~fp/courses/15122

effectively in introductory computer science. The present
course provides an excellent setting to explore how this might
be accomplished.

Acknowledgments
Many have contributed to the course curriculum, the C0
programming language, and its tool suite. In particular, we
would like to acknowledge Rob Arnold, the principal devel-
oper of C0, and Laura Abbott, Jason Koenig, Karl Naden,
Rob Simmons, Nathan Snyder, Anand Subramanian, and
Jakob Uecker who all have contributed to various parts of
the language design and implementation.

The development of C0 and the 15-122 course curriculum
has been supported by the MSR-CMU Center for Computa-
tional Thinking under a project on Specification and Verifi-
cation in Introductory Computer Science and by a gift from
Google for the development of CMU’s introductory under-
graduate courses.

6. REFERENCES
[1] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,

W. Schulte, and H. Venter. Specification and
verification: the Spec# experience. Communcations of
the ACM, 6(54):81–91, 2011.

[2] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software Practice &
Experience, pages 807–820, Sept. 1988.

[3] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll.
Beyond assertions: Advanced specification and
verification with JML and ESC/Java2. In Formal
Methods for Components and Objects (FMCO’05),
pages 342–363. Springer LNCS 4011, 2005.

[4] M. Das. Formal specifications and industrial-strength
code — from myth to reality. In Proceedings of the
18th International Conference on Computer Aided
Verification (CAV 2006), page 1. Springer LNCS 4144,
2006. Invited talk.

[5] S. Davies, J. A. Polack-Wahl, and K. Anewalt. A
snapshot of the current practices in teaching the
introductory programming sequence. In Proceedings of
the 42 ACM Technical Symposium on Computer
Science Education (SIGCSE 2011), pages 625–630,
Dallas, Texas, Mar. 2011.

[6] M. Felleisen. TeachScheme! In Proceedings of the 42nd
ACM Technical Symposium on Computer Science
Education (SIGCSE 2011), pages 1–2, Dallas, Texas,
2011. Keynote talk.

[7] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice Hall, second edition,
1988.

[8] B. Meyer. Applying “design by contract”. IEEE
Computer, 25(10):40–51, Oct. 1992.

[9] R. C. Seacord. Secure Coding in C and C++.
Addison-Wesley Professional, 2006.

[10] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit precision. In
Proceedings of the USENIX’05 Annual Technical
Conference, Anaheim, California, Apr. 2005.

[11] J. Wing. Computational thinking. Communications of
the ACM, 49(2):33–35, 2006.

