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Abstract. We present a focused inverse method for proof search in a variety of
intuitionistic modal logics such as K, D, T, S4 and S5. Unification of world-
paths for such logics is non-unitary and therefore handled by adding constraints
to sequents. We sketch proofs of soundness and completeness with respect to in-
tuitionistic modal natural deduction and describe our implementation. Potential
applications lie in multi-modal intuitionistic logics that have recently been pro-
posed to reason about authorization and information flow security.

1 Introduction
Intuitionistic modal logics (IMLs) are extensions of intuitionistic logic that incorpo-
rate modalities for reasoning about judgments other than categorical truth. There are
numerous applications of IMLs. They can, for instance, be used to reason about dis-
tributed computing environments where the modalities express which resources, such
as data and processors, are accessible from which other resources [25]. IMLs are used
to reason about authentication and security policies [10, 8]. For example, they can for-
malize questions such as: “Given a policy and Alice’s current permissions, does she
have permission to open Bob’s file?”.

Intuitionistic logics are preferable to classical logics when proofs have computa-
tional content or are otherwise are of primary importance. In the distributed computing
example, an intuitionistic proof that a distributed program can be executed on a given
network corresponds to a plan of which processors evaluate which data. In authentica-
tion logic, if a security policy maintains a log of the proof terms used during access and
an unintended permissions violation occurs, the logged proofs can be used to audit the
policy.

In this work we are interested in the theorem proving problem for intuitionistic
modal logics. Adding a modality to a logic can make theorem proving considerably
more difficult than in the underlying logic. An additional challenge for IMLs is one of
software engineering. Since many modal logics are only slight variants of one another,
we wanted to design the theorem prover in such a way that we could handle some
different modal logics with only small changes to the system. This methodology has
been used successfully for classical modal logics, e.g. [5]. This paper is a small step
in the direction of building efficient and general theorem provers for IMLs. The main
contributions of this paper are

◦ The design and implementation of a sound and complete focused inverse method
theorem prover for the intuitionistic modal logics K, D, K4, D4, T, S4 and S5.



The system is designed in a uniform manner by exploiting a form of Kripke seman-
tics where the visibility relation can be determined by unification. The only oper-
ational difference between any two logics is the unification algorithm used during
search.

◦ A novel use of constraints to delay computation (§4). Our calculus necessitates the
use of a non-unitary unification. Applying multiple unifiers eagerly during proof
search would quickly exhaust the available store. To mitigate this problem we add
constraints to the sequent calculus in order to delay the application of substitutions
resulting from unification.

2 Intuitionistic Modal Logic
We will consider the following syntax of propositions:

Propositions A ::= p | > | ⊥ | A ∧A | A ∨A | A ⊃ A | �A | ♦A

Intuitionistic modal logics differs from their classical analogs in that the underlying
predicate logic is intuitionistic rather than classical. While the semantics of classical
modal logic is typically understood in terms of its Kripke models (see e.g. [12]), there
is considerable debate as to the proper interpretation of intuitionistic modal logic [24].
IMLs can be given a Kripke semantics where there are two different accessibility rela-
tions, one for the underlying intuitionistic logic and one for the modalities. However, it
seems more intuitive to us to take the natural deduction calculus NR�♦ as the definition
of IML.

2.1 Natural deduction

Figure 1 shows Simpson’s natural deduction calculus for IML [24]. In a manner similar
to labeled deduction, each proposition is relativized to an explicit world. We assume
an infinite supply of world variables w. A labeled proposition has the form A@w and
represents the proposition that A holds (intuitionistically) at world w. For example, the
∧-elimination rules declares that if A ∧ B holds at world w than A and B also hold at
w. The rules with hypotheses in brackets are examples of hypothetical judgments, as in
intuitionistic natural deduction.

2.2 The visibility relation

NR�♦ is parametrized over the the visibility relation R. For example, the �-elimination
rule declares that if �A holds at world w and wRw′, then A holds at world w′. The
properties ofR differ from logic to logic. For instance, in T,R is reflexive while in S4

it is both reflexive and transitive. In this paper we will consider the intuitionistic modal
logics K, D, K4, D4, T, S4 and S5. The visibility relations satisfy the properties given
in Figure 5.

2.3 Sequent calculus

While Simpson’s natural deduction system forms the most intuitive basis for a proof-
theoretic semantics of IML, we prefer a sequent calculus called LR�♦ for proof search.
In LR�♦ the assumptions wRw′ are reified in a world-graph G. The world graph is
a compact description of the visibility relation. It has world variables for nodes and is
rooted at the fixed initial worldw0. A (directed) edge between worldsw andw′ indicates
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> @ w
>-I

A1 @ w A2 @ w

A1 ∧ A2 @ w
∧-I

A1 ∧ A2 @ w

Ai @ w
∧-Ei

⊥ @ w′

A @ w
⊥-E

Ai @ w

A1 ∨ A2 @ w
∨-Ii

A1 ∨ A2 @ w

[A1 @ w]
....

A @ w′

[A2 @ w]
....

A @ w′

A @ w′
∨-E

[A1 @ w]
....

A2 @ w

A1 ⊃ A2 @ w
⊃ -I

A1 ⊃ A2 @ w A1 @ w

A2 @ w
⊃ -E

[wRw′]
....

A @ w′

�A @ w
�-I

�A @ w wRw′

A @ w′
�-E A @ w′ wRw′

♦A @ w
♦-I

♦A′ @ w1

[A′ @ w2][w1Rw2]....
A @ w

A @ w
♦-E

Fig. 1: NR�♦, natural deduction for IML

that w′ is visible from w. An example of a world-graph is shown in Figure 4 (a). The
edges of a world-graph do not (generally) completely describe the visibility relation.
In the logics K4 for instance, since the relation is transitive an edge from w1 to w2

and another from w2 to w3 indirectly implies that w3 is visible from w1, regardless
of whether there exists an edge between w1 and w3. We write the judgment regarding
visibility in a world-graph as G |= wRw′.

Sequents have the form G | Γ ` γ where Γ is a set of labeled propositions, γ is a
labeled proposition, and G is a world-graph. A world-graph can be extended by a new
node using the notation G ∪ 〈w,w′〉, whereby we assume w is a node of G and w′ is
a world variable not in G. The resulting graph has w′ as a node with a directed edge
from w to w′. Figure 2 shows the inference rules1 of Simpson’s sequent calculus LR�♦.
Figure 3 shows an example proof in LR�♦. Using cut admissibility, Simpson proves that
LR�♦ is sound and complete with respect to NR�♦.

Theorem 1 (Simpson [24]). G0 | · ` A@w0 in LR�♦ if and only if there exists a deriva-
tion of A in NR�♦.

3 The World-Path Calculus
LR�♦ provides a basis for top-down2 proof search. Given a method for determining the
visibility relation with respect to a given world graph G, one can in principal search

1 Note that in the left rules of the backward calculi in this paper we assume the principal formula
is copied to the premises. In some rules copying is necessary for completeness but overly
verbose for presentation.

2 Top-down and backward both refer to backward-chaining tableaux style search. Bottom-up and
forward refer to forward-chaining resolution style proof search.
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G | Γ,A @ w ` A @ w
Init

G | Γ ` > @ w
>R

G | Γ,⊥ @ w ` A @ w′
⊥L

G | Γ ` A1 @ w G | Γ ` A2 @ w

G | Γ ` A1 ∧ A2 @ w
∧R

G | Γ,Ai @ w ` A @ w′

G | Γ,A1 ∧ A2 @ w ` A @ w′
∧Li

G | Γ,A1 @ w ` A @ w′ G | Γ,A2 @ w ` A @ w′

G | Γ,A1 ∨ A2 @ w ` A @ w′
∨L

G | Γ ` Ai @ w

G | Γ ` A1 ∨ A2 @ w
∨Ri

G | Γ,A1 @ w ` A2 @ w

G | Γ ` A1 ⊃ A2 @ w
⊃ R

G | Γ,A2 @ w ` A @ w′ G | Γ ` A1 @ w

G | Γ,A1 ⊃ A2 @ w ` A @ w′
⊃ L

G ∪
˙
w,w′

¸
| Γ ` A @ w′

G | Γ ` �A @ w �Rw′
G |= wRw1 G | Γ,A @ w1 ` A′ @ w2

G | Γ,�A @ w ` A′ @ w2
�L

G |= wRw′ G | Γ ` A @ w′

G | Γ ` ♦A @ w
♦R

G ∪ 〈w1, w〉 | Γ,A @ w ` A′ @ w2

G | Γ,♦A @ w1 ` A′ @ w2
♦Lw

Fig. 2: The Sequent Calculus LR�♦

G2 | P @ w2 ` P @ w2 G2 |= w0Rw2

G2 |�P @ w0 ` P @ w2

G1 |�P @ w0 ` �P @ w1

G0 |�P @ w0 ` ��P @ w0

G0 | ` �P ⊃ ��P @ w0 G0

w0

G1

w0

w1

G2

w0

w1

w2

Observe that the judgment G2 |= w0Rw2 only holds ifR is transitive. Thus, the formula is a theorem of S4

but not of K.

Fig. 3: LR�♦ proof
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backward for all proofs of a given goal. There are a number of reasons, however, to
prefer bottom-up search. In addition to the usual difficulties of backward search (e.g.
meta-variables are global), constraint solving for the visibility relation in such a prover
is complex. Once a proof skeleton is found (i.e., a proof whose leaves are axioms, but
constraints remain to be checked), all the constraints need to be checked simultaneously.
A failed check leads to backtracking.

An inverse method proof search can be more efficient for non-classical logics [15,
16], and avoids the problem of global constraint solving by checking constraints locally
at each sequent. However, there are difficulties with LR�♦ (e.g. combining world-graphs
in the forward direction is awkward) that make it imperfect for forward proof search. We
instead consider an alternate presentation of IML using a variant of Ohlbach’s world-
paths [19, 20] rather than a world-graph.

3.1 World-paths

A different view of the visibility relation may be obtained by considering as primary
the edges of the world-graph rather than the nodes (worlds) themselves. Consider Fig-
ure 4. Diagram (a) represents a world-graph. Diagram (b) names the edges between
worlds rather than the worlds themselves. We call (b) the world-path representation. A
world-path π consists of the empty world-path π0, a single edge, or the (left-associative)
concatenation of two world-paths π1 ·π2. There is an obvious bijection between the two
representations of the world-graph. We can therefore define a translation JwK of the
world-graph nodes as the path starting from π0 and following a directed path in G to w.
For example, Jw4K = π0 · e01 · e14. We say a world-path π2 extends a world-path π if
there exists a π1 such that π2 ≡ π ·π1. Figure 5 gives the relevant judgements for world-
paths. Given an IML whose visibility relation has some subset of the properties of §2.2,
we select inference rules for ≡ such that the following theorem holds3. The theorem
demonstrates the strong correspondence between visibility in world-graphs and exten-
sions of world-paths.

Theorem 2. Given a visibility relation R, the corresponding rules for ≡, a world-
graph G, and worlds w,w′ ∈ G, G |= wRw′ if and only if Jw′K extends JwK.

Theorem 2 actually consists of seven different theorems, one for each visibility relation
and set of path axioms corresponding to K, D, K4, D4, T, S4 and S5. For a given R
and set of rules for ≡ such that Theorem 2 holds, we writeR ∼ ≡.
Now that we have reduced the world-graph visibility problem to equivalence between
paths, we are in a position to define the world-path sequent calculus (Figure 6). Se-
quents have the form ∆ ;Γ =⇒ γ where ∆ is simply a context of edge parameters,
Γ is a set of labeled propositions and γ is a labeled proposition. The soundness and
completeness with respect to LR�♦ (fixing a visibility relation and path algebra) is given
in the following theorem:

Theorem 3. If R ∼ ≡ then there is a derivation G | Γ ` γ in LR�♦ if and only if
and there is a derivation · ; JΓ K =⇒ JγK in P≡�♦. (Here the notation JA@wK means
A@ JwK, with the obvious extension to Γ .)

3 For now we ignore the seriality property. We return to it in §4.3.
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(a)

w0

w1

w2

w3

w4

(b)

π0

e01

e12

e23

e14

(c)

Visibility property Path property

Reflexivity Unit
Symmetry Inverses
Transitivity Associativity

w0Rw3 iff π0 · ((e01 · e12) · e23) ≡ ((π0 · e01) · e12) · e23
w1Rw1 iff (π0 · e01) · ε ≡ π0 · e01
w4Rw1 iff ((π0 · e01) · e14) · e14−1 ≡ π0 · e01

(d)

Fig. 4: Relationship between graphs and world-paths

Proof. Straightforward induction on the given derivation, using Theorem 2 to discharge
the premises regarding the visibility relation.

Corollary 4 If R ∼ ≡ then there is a derivation w0 | · ` A@w0 in LR�♦ if and only if
and there is a derivation · ; · =⇒ A@ π0 in P≡�♦.

4 The Inverse Method
The inverse method [14] is a generic bottom-up method for proof search. It is partic-
ularly useful for non-classical logics, where resolution is not available4. Following the
inverse method “recipe” [6] for an inverse method theorem prover, the next step is to
define a bottom-up version of the top-down calculus for forward proof search. This task
is complicated by the presence of the hypotheses of the � and ♦ rules regarding path
equivalence and well-formedness. We solve this problem locally by solving these path
equations when we can, and postponing them when we can not. We manage the post-
ponement by adding a zone of constraints to the forward sequents. A forward sequent
has the form Ψ | Γ −→ γ where Ψ is a constraint, Γ is a set of labeled propositions,
and γ is a set of a labeled propositions with at most one element. (This formulation of
the consequent is necessary for incorporating falsehood and negation.) The constraint
Ψ is constructed from the following grammar:

Constraints Ψ ::= π path | π1 ≡ π2 | > | Ψ ∧ Ψ | ∀e. e edge ⊃ Ψ | ⊥

An entailment relation Ψ1 |= Ψ2 on constraints is inherited from the equivalence axioms
and path well-formedness rules. The forward ground world-path calculus is defined in
Figure 7.

4 This work can be seen as a reformulation of Ohlbach’s work on resolution for classical modal
logic [20] that applies to intuitionistic modal logics.
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Path formation

Edges e
Paths π ::= e | π0 | π1 · π2 | ε | e−1

Contexts ∆ ::= · |∆, e

Path well-formedness

∆ |= π0 path
e ∈ ∆

∆ |= e path
∆ |= π1 path ∆ |= π2 path

∆ |= π1 · π2 path

∆ |= ε path
∗ e ∈ ∆

∆ |= e−1 path
† ∆ |= π1 path . . . ∆ |= πn path

∆ |= {π1, . . . , πn} paths

Path equivalence

∆ |= π ≡ π ∆ |= π · ε ≡ π
∗

∆ |= ε · π ≡ π
∗

∆ |= e · e−1 ≡ ε
†

∆ |= e−1 · e ≡ ε
†

∆ |= (e−1)
−1 ≡ e

†

∆ |= π1 ≡ π′1 ∆ |= π2 ≡ π′2
∆ |= π1 · π2 ≡ π′1 · π′2 ∆ |= (π1 · π2) · π3 ≡ π1 · (π2 · π3)

‡

(*) when ≡ admits unit (R is reflexive)
(†) when ≡ admits inverses (R is symmetric)
(‡) when ≡ is associative (R is transitive)

Relation properties of modal logics

K no special properties
K4 transitive
T reflexive
S4 reflexive and transitive
S5 reflexive, symmetric and transitive

Fig. 5: Judgments regarding world-paths
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∆ ;Γ, p @ π =⇒ p @ π
Init

∆ ;Γ =⇒ > @ π
>R

∆ ;Γ,⊥ @ π =⇒ A @ π′
⊥L

∆ ;Γ =⇒ A1 @ π ∆ ;Γ =⇒ A2 @ π

∆ ;Γ =⇒ A1 ∧ A2 @ π
∧R

∆ ;Γ,Ai @ π =⇒ A @ π′

∆ ;Γ,A1 ∧ A2 @ π =⇒ A @ π′
∧Li

∆ ;Γ,A1 @ π =⇒ A @ π′ ∆ ;Γ,A2 @ π =⇒ A @ π′

∆ ;Γ,A1 ∨ A2 @ π =⇒ A @ π′
∨L

∆ ;Γ =⇒ Ai @ π

∆ ;Γ =⇒ A1 ∨ A2 @ π
∨Ri

∆ ;Γ,A1 @ π =⇒ A2 @ π

∆ ;Γ =⇒ A1 ⊃ A2 @ π
⊃ R

∆ ;Γ,A2 @ π =⇒ A @ π′ ∆ ;Γ =⇒ A1 @ π

∆ ;Γ,A1 ⊃ A2 @ π =⇒ A @ π′
⊃ L

∆, e ;Γ =⇒ A @ π · e
∆ ;Γ =⇒ �A @ π

�Re
∆, e ;Γ,A @ π · e =⇒ A′ @ π2

∆ ;Γ,♦A @ π =⇒ A′ @ π2
♦Le

π1 ≡ π · π′ ∆ |= π′ path ∆ ;Γ,A @ π1 =⇒ A′ @ π2

∆ ;Γ,�A @ π =⇒ A′ @ π2
�L

π1 ≡ π · π′ ∆ |= π′ path ∆ ;Γ =⇒ A @ π1

∆ ;Γ =⇒ ♦A @ π
♦R

In the Init rule, p is an atomic formula. In �-R and ♦-L e is an eigenvariable not occurring in the remainder of
the sequent.

Fig. 6: The World Path Calculus P≡�♦

4.1 Subsumption

Continuing with the inverse method recipe, we need to update the definition of sub-
sumption for constraint sequents. Recall that an intuitionistic sequent Γ1 −→ γ1 sub-
sumes Γ2 −→ γ2 if there exists a substitution θ such that Γ1θ ⊆ Γ2 and γ1θ ⊆ γ2. It
is known that the inverse method can not directly prove any valid sequent, but in gen-
eral can only prove a stronger one (i.e., one that can be weakened to the goal sequent.)
In the modal case the constraints limit the validity of the remainder of the sequent.
For example, the sequent e1 ≡ e2 | Γ −→ γ is trivial when e1 and e2 are distinct
edges Since stronger constraints limit the valid substitution instances of a sequent, the
subsuming sequent must have a weaker constraint than the subsumed sequent in the
following sense.

Definition 1 (Subsumption). Sequent Ψ1 | Γ1 −→ γ1 subsumes Ψ2 | Γ2 −→ γ2 if
there exists a substitution θ such that Γ1θ ⊆ Γ2, γ1θ ⊆ γ2 and Ψ2 |= Ψ1θ.

Soundness and completeness theorems then establish the connection between the for-
ward calculus P≡Inv

�♦ and P≡�♦.

Theorem 5. ∆ ;Γ =⇒ A@ π0 if and only if there exists Ψ, Γ ′, γ′ such that Ψ | Γ ′ −→
γ′ and Ψ | Γ ′ −→ γ′ subsumes > | Γ −→ A@ π0.

Proof. This proof is complicated by the constraints. Care must be taken because the
constraints have different forms in the two calculi (cf. �-R). To prove it we actually
first define a backward calculus P′≡�♦ that is closer in spirit to the forward calculus than
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P≡�♦. Then we prove that P≡�♦ is sound and complete with respect to P′≡�♦ and that
P′≡�♦ is sound and complete with respect to P≡Inv

�♦ .

Corollary 6 · ; · =⇒ A@ π0 if and only if > | · −→ A@ π0.

π path | p @ π −→ p @ π
Init

π path | · −→ > @ π
>R

Ψ | Γ,Ai @ π −→ γ

Ψ | Γ,A1 ∧ A2 @ π −→ γ
∧Li

Ψ | Γ −→ Ai @ π

Ψ | Γ −→ A1 ∨ A2 @ π
∨Ri

Ψ1 | Γ1 −→ A1 @ π1 Ψ2 | Γ2 −→ A2 @ π2

π1 ≡ π2 ∧ Ψ1 ∧ Ψ2 | Γ1, Γ2 −→ A1 ∧ A2 @ π1
∧R

Ψ1 | Γ1, A1 @ π1 −→ γ1 Ψ2 | Γ2, A2 @ π2 −→ γ2

π1 ≡ π2 ∧ Ψ1 ∧ Ψ2 | Γ1, Γ2, A1 ∨ A2 @ π1 −→ γ1 ∪ γ2
∨L

Ψ | Γ,A1 @ π1 −→ A2 @ π2

π1 ≡ π2 ∧ Ψ | Γ −→ A1 ⊃ A2 @ π1
⊃ R1

Ψ | Γ,A1 @ π −→ ·
Ψ | Γ −→ A1 ⊃ A2 @ π

⊃ R2

Ψ | Γ −→ A2 @ π

Ψ | Γ −→ A1 ⊃ A2 @ π
⊃ R3

π path | ⊥ @ π −→ ·
⊥L

Ψ1 | Γ1, A2 @ π1 −→ γ Ψ2 | Γ2 −→ A1 @ π2

π1 ≡ π2 ∧ Ψ1 ∧ Ψ2 | Γ1, Γ2, A1 ⊃ A2 @ π1 −→ γ
⊃ L

Ψ | Γ,A @ π1, A @ π2 −→ γ

π1 ≡ π2 ∧ Ψ |A @ π1, Γ −→ γ
Contr

Ψ | Γ −→ A @ π′

∀e. e edge ⊃ (π′ ≡ π · e ∧ Ψ) | Γ −→ �A @ π
�Re

Ψ | Γ,A @ π2 −→ γ

π2 ≡ π · π1 ∧ π1 path ∧ Ψ | Γ,�A @ π −→ γ
�L

Ψ | Γ −→ A @ π2

π2 ≡ π · π1 ∧ π1 path ∧ Ψ | Γ −→ ♦A @ π
♦R

Ψ | Γ,A @ π′ −→ γ

∀e. e edge ⊃ (π′ ≡ π · e ∧ Ψ) | Γ,♦A @ π −→ γ
♦Le

In the rule Init, p is an atomic formula. In the rules �-R and ♦-L, e is a new eigenvariable, not occurring elsewhere
in the sequent. In the rule ∨-L, the consequents are combined with the ∪ operator. By this we mean that if either
of the consequents are empty, the result is the other consequent. If both are nonempty, then the consequents must
have the formA @ π3,A @ π4 and we add the constraint π3 ≡ π4 to the constraint zone.

Fig. 7: The Forward World Path Calculus

4.2 Unification

As in first-order logic, the next step is to lift the ground calculus described in the last
section to allow free path variables, thus making finite the number of initial sequents. A
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π1 path | P @ π1 −→ P @ π1 (1 : Init)

{π2, π3} paths |�P @ π2 −→ P @ π2 · π3 (2 : �-L)

∀e2. e2 edge ⊃
{π2, π3, π4} paths ∧ π2 · π3 ≡ π4 · e2

|�P @ π2 −→ �P @ π4 (3 : �-R)

∀e1 e2. e1 edge ⊃ e2 edge ⊃
{π2, π3, π5} paths ∧ π2 · π3 ≡ (π5 · e1) · e2

|�P @ π2 −→ ��P @ π5 (4 : �-R)

∀e1 e2. e1 edge ⊃ e2 edge ⊃
{π2, π3} paths ∧ π2 · π3 ≡ (π2 · e1) · e2

| · −→ �P ⊃ ��P @ π2 (5 : ⊃-R)

Sequent 5 subsumes the goal if we use the substitution {π2 7→ π0, π3 7→ e1 · e2} and≡ is associative.

Fig. 8: Example inverse method proof

sequent with free variables then stands for all of its substitution instances. This is typi-
cally done using unification and most general unifiers [6]. Unfortunately, the world-path
unification problem does not always admit most general unifiers (though the set of uni-
fiers is always finite in the cases we are considering). For example, when the visibility
relation is transitive, the equivalence e1 · e2 · e3 ≡ x1 · x2 has (at least) the following
unifiers, none of which is more general than another: {x1 7→ e1, x2 7→ e2 · e3}, {x1 7→
e1 · e2, x2 7→ e3}. While a number of authors have developed algorithms [20, 27]
for such equivalences, we consider here the T-string unification algorithms of Otten
and Kreitz [22]. For each modal logic in this paper they give a list of transformation
(rewrite) rules that applies to a set of T-string unification equations. They prove that the
rule application terminate with a minimal set of most general unifiers. Since our world-
paths satisfy the T-string property5, we can use their algorithms directly on systems of
world-path equations. The problem then is to transform a constraint Ψ into a system
of equivalences that can be solved by T-string unification. This is achieved by trans-
forming Ψ into a normal form where the equivalences are immediate. Call a constraint
inconsistent if Ψ |= ⊥. A constraint that is not inconsistent is consistent.

Definition 2 (Constraint normal form). A constraint Ψ is in normal form if it has the
form ∀e1 . . . en. (e1 edge ∧ . . . ∧ en edge) ⊃ (

∧
i πi ≡ π′i ∧ {π1, . . . , πn} paths)

Theorem 7. Every consistent constraint Ψ is equivalent to a constraint Ψ ′ in constraint
normal form.

Proof. Because of the restriction on quantifier structure given by the grammar for Φ,
by alpha-renaming we can prenex all quantifiers and rearrange the conjunctions into the
desired form.

5 Note that the unification problem as we described it does not seem to precisely fit the T-string
framework. In T-string unification the concatenation operator is always associative, and has
no inverses or units. The different properties of the visibility relation are obtained there by
the selection of transformation rules and restricting what can be instantiated for a variable. It
is nevertheless a straightforward matter to transform our presentation to satisfy the T-string
property.

10



Given the equational part of the constraint normal form, ∀e1 . . . en.
∧
i πi ≡ π′i the

universally quantified variables serve as constants in the unification equations, while
all free variables represent unification variables that can be instantiated. This trans-
formed problem is then passed to the T-string unification algorithm. Note that rather
than enumerating the unifiers, for completeness we need only check for unifiability of
the constraints.

A lifted calculus (omitted for brevity) can be defined and shown to have all the prop-
erties necessary for a complete inverse method: 1) a finite number of axioms 2) starting
with a finite set of sequents, and since we only generate subformulas of a given goal
sequent, there are only a finite number of new sequents derivable using the inference
rules. Thus the method outlined above is a sound and complete method for proof search
in the IMLs for which we have a unification procedure.

4.3 Serial worlds

The existence of logics with non-serial visibility relations is problematic in every pre-
sentation of theorem provers for modal logic. Since our approach differs from those we
could find in the literature, we will describe an example. In the backward calculus, se-
riality becomes significant in the rules �-L and ♦-R with the π path predicate. Figure 9
shows the skeleton of a proof of ♦>. Since when dealing with a non-serial visibility
relation, it is not guaranteed that we can find an edge by which to traverse from π to
π0. Thus the proof should fail. The inverse method attempt is given in the same figure.
The first step unifies the path variable π with the path concatenation π′ · π′′ (essen-
tially moving downward on the world-graph). Then the second sequent is unified with
the goal to test subsumption, and π′ becomes π0. Since there is nothing with which to
prove π′′ path the subsumption check, and thus the proof, fails. This mechanism allows
us to treat D, which is K plus serality, and D4 which is seriality and transitivity.

· ; · =⇒ > @ π0 · π |= π path

· ; · =⇒ ♦> @ π0

1) π path | · −→ > @ π
2) π′ · π′′ path | · −→ ♦> @ π′

3) π0 · π′′ path | · −→ ♦> @ π0

Fig. 9: Serial world example

5 Implementation
We implemented an experimental prototype of the constraint sequent calculus described
above6. The implementation extends our implementation of a theorem prover for intu-
itionistic propositional and first-order logic called Imogen [15, 16]. The overall imple-
mentation is about 17K lines of Haskell. The amount that needed to be added to handle
the modal operators and constraints was about 3K lines. The bulk of the work went

6 The implementation can be found on the first author’s website [1].
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into implementing the T-string unification and managing the constraint entailment re-
lation. In the remainder of this section we describe a few significant properties of our
implementation that differ from the formal presentation.

5.1 Focusing

An important optimization for sequent calculus proof search is focusing [4]. In focusing
we distinguish between connectives that are invertible on the right (negative) and left
(positive). New connectives called shifts convert between positive and negative formu-
las. � and ♦ are positive and negative respectively.

Positive formulas A+ ::= p+ | A+ ∗
∧ A+ |

∗
> | A+ ∨A+ | ⊥ | ↓A− | ∃x. A+ | ♦A+

Negative formulas A− ::= p− | A− ∧A− | > | A+ ⊃ A− | ↑A+ | ∀x.A− | �A−

Among other benefits, focusing allows for a dramatic reduction in the size of the search
space [15, 16]. An important detail of this particular formulation is that unlike in other
modal logics such as lax logic, linear logic and the judgmental formulation of modal
logic [23], the modal operators share the polarity of their immediate subformula. This
extends the focusing phases which makes for a smaller search space. The focused ver-
sion of P≡Inv

�♦ is implemented in Imogen. The completeness proof for the focused
calculus is analogous to the numerous other focusing proofs for non-classical logics,
e.g. [13].

5.2 Quantification

Though we did not describe it in our presentation thus far, our implementation allows
first order quantification. We chose the fixed-domain semantics because it posed the
fewest conceptual difficulties. For example, Figure 10 gives a proof of the Barcan for-
mula.

e edge ; p(c) @ π0 · e =⇒ p(c) @ π0 · e e edge |= e path

e edge ; �p(c) @ π0 =⇒ p(c) @ π0 · e
e edge ; ∀x.�p(x) @ π0 =⇒ p(c) @ π0 · e

e edge ; ∀x.�p(x) @ π0 =⇒ ∀x. p(x) @ π0 · e
· ; ∀x.�p(x) @ π0 =⇒ �∀x. p(x) @ π0

· ; (∀x.�p(x)) ⊃ (�∀x. p(x)) @ π0 =⇒

Fig. 10: A P≡�♦ proof of the Barcan formula

5.3 Constraints

Constraints are fundamental to the efficiency of the theorem prover. The constraint
of every new sequent whose antecedents and consequent match the goal needs to be
checked for unifiability. In addition, when we add a sequent to the database, we check
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to see if the unification problem is unitary. If so, we apply the unifier throughout the
sequent and simplify the constraint. In this sense we delay splitting a sequent due to
non-unitary unification. While they are an clear benefit in allowing us to delay the com-
putation of non-unitary unifiers, they can be difficult to manage. At present, we solve
constraint entailments Ψ1 |= Ψ2 only in the special cases where Ψ1 = > or Ψ2 = ⊥.
This is sufficient for completeness, because to subsume the final goal we only need to
verify that constraints are valid (Ψ1 = >). To eliminate many inconsistent sequents we
only need the case where Ψ2 = ⊥. In future work we plan to develop practical algo-
rithms solving further constraint entailments in order to further reduce redundancy in
the search space.

6 Related Work
The work on automated deduction for modal logics can be roughly partitioned into the
following areas.

• Resolution methods. Classical resolution for modal logic is the work nearest to
ours. Ohlbach [19, 20] shows how to use resolution with a more sophisticated uni-
fication algorithm to prove theorems in classical modal logic in a top-down manner.
We use a slight variant of his path calculus. The primary difference is that our un-
derlying logic is intuitionistic. Voronkov presents an inverse method for a number
of non-classical logics [6] and describes an implementation of an inverse method
theorem prover for classical K [26]. It would be interesting to compare our focus-
ing prover to his prover that is unfocused but uses optimizations he describes in the
above papers.
• Tableaux methods. Wallen [27] describes a generalization of the classical con-

nection method for modal logics using paths and path-unification. Otten [21] uses
Wallen’s approach to design efficient theorem provers for intuitionistic logic and
some classical modal logics. Catach [5] uses a general tableaux strategy for a larger
family of modal logics. Howe [11] implements a tableaux style prover for intu-
itionistic S4 and Lax logic. Amati and Perri [3] show a tableaux method for a large
family of intuitionistic modal logics, though it does not seem to have been imple-
mented. Garg [9] describes both a goal directed tableaux search and a saturation
method similar to Datalog in his authorization logic BL0.
• Translations. A popular way to reason about modalities is via a translation to

a non-modal logic. Abadi and Manna [2] translate the modalities into first-order
classical logic with equality. Nonnengart [18] extends Ohlbach’s work by develop-
ing a semi-functional translation from temporal logic and some modal logics into
classical first-order logic. The equational theory then determines the modal logic.
Egly [7] translates the Lax modality directly into first-order intuitionistic logic.

7 Conclusion and Future Work
We have described a focused constraint inverse method for automated theorem proving
in a number of intuitionistic modal logics. From our target semantics of NR�♦, a natu-
ral deduction parametrized over a visibility relation, we presented the sequent calculus
LR�♦, the world path calculus P≡�♦ and its focused variant. Soundness and complete-
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ness results, given by Theorems 1, 4, 6 respectively, achieve our goal of a sound and
complete focused inverse method with respect to NR�♦.

NR�♦ ←→ LR�♦

R∼ ≡←−−→ P≡�♦ ←→ P≡Inv

�♦

While the world path calculus was convenient from an automated deduction standpoint,
it is not altogether satisfactory. There are other features of the visibility graphs of LR�♦

that we can not currently see how to model using the path calculus. For instance, it is
not clear to us how to use the algebraic properties of paths to represent, e.g. directedness
or Euclideanness.

∀w1 w2 w3. w1Rw2 ∧ w1Rw3 ⊃ ∃w4. w2Rw4 ∧ w3Rw4

∀w1 w2 w3. w1Rw2 ∧ w2Rw3 ⊃ w1Rw3

Indeed, it seems almost serendipitous that the most common and useful properties can
be represented algebraically. Perhaps there are extensions of path unification that can
capture such properties.

We hope to extend the ideas presented here to prove theorems in some non-traditional
intuitionistic modal logics. One such logic, designed for use with security and au-
thentication protocols, is DKAL [10]. DKAL extends the intuitionistic propositional
calculus with two (indexed) modal operators said and implied. The two modalities
behave differently than our � and ♦. While said has the same behavior as � in (a
multi-modal version of) K, the rule for implied is unusual. It allows evidence of, e.g.,
alice said A to be used in verifying a proposition of the form alice implied B.

Γ ` A
∆, alice said Γ ` alice saidA

Γ1, Γ2 ` A
∆, alice said Γ1, alice implied Γ2 ` alice impliedA

We are still at work designing an efficient unification algorithm that takes this interfer-
ence of the modalities into account. Once the necessary unification algorithm is in place,
we intend to extend Imogen to allow direct reasoning in these modalities. Recently Mera
and Bjørner [17] show how to translate the DKAL modalities into first-order classical
logic with equality and arithmetic constraints that they can solve using the Z3 SMT
solver. We hope to be able to compare these two methods of theorem proving in the
near future.
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