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Abstract. The deep connection between session-typed concurrency and
linear logic is embodied in the language SILL that integrates functional
and message-passing concurrent programming. The exacting nature of
linear typing provides strong guarantees, such as global progress, absence
of deadlock, and race freedom, but it also requires explicit resource man-
agement by the programmer. This burden is alleviated in an affine type
system where resources need not be used, relying on a simple form of
garbage collection.
In this paper we show how to effectively support both linear and affine
typing in a single language, in addition to the already present unre-
stricted (intuitionistic) types. The approach, based on Benton’s adjoint
construction, suggests that the usual distinction between synchronous
and asynchronous communication can be viewed through the lens of
modal logic. We show how polarizing the propositions into positive and
negative connectives allows us to elegantly express synchronization in
the type instead of encoding it by extra-logical means.

1 Introduction

Session types prescribe the communication behavior of concurrent message-
passing processes [13, 14]. Anticipated with some analogies for some time [11,
23], session types have recently been placed upon the firm foundation of linear
logic via a Curry-Howard interpretation of linear propositions as types, proofs as
processes, and cut reduction as communication. Variations apply for both intu-
itionistic [5, 6] and classical [24] linear logic. This has enabled the application of
proof-theoretic techniques in this domain, for example, developing logical rela-
tions [17], corecursion [22], and parametricity and behavioral polymorphism [4].
It has also given rise to the design of SILL, a modular extension of an underlying
functional language with session-typed concurrency [21].

Practical experience with a SILL prototype has led to a number of new ques-
tions. For example, should the type system really be linear, where all resources
must be fully accounted for by the programmer, or should it be affine[16], where
resources may be reclaimed by a form of garbage collection? Another question
concerns the underlying model of communication: should it be synchronous or
asynchronous? The proof theory does not provide a definitive answer to this
question, supporting both. The purpose of this paper is to show that we can



have our cake and eat it, too, in both cases. First, we combine linear and affine
types in an elegant and proof-theoretically justified way, slightly reformulating
unrestricted types along the way. Second, we show how to support synchronous
and asynchronous communication patterns in a single language, again taking
our inspiration from proof theory.

The central idea behind the first step is to generalize Benton’s LNL [3] in
the spirit of Reed’s adjoint logic [18]. This stratifies the propositions into linear,
affine, and unrestricted ones, with modal operators shifting between the strata.
For example, the familiar exponential of linear logic !A is decomposed into two
shifting modalities, one going from A (which is linear) into the unrestricted
layer, and one going from the unrestricted layer back to the linear one. Similar
modalities connect the linear and affine layers of the language.

The main idea behind the second step is to polarize the presentation of linear
logic [15], segregating positive (sending) connectives from negative (receiving)
connectives. Surprisingly, the two sublanguages of propositions can be connected
by new versions of the shift modalities, fully consistent with the adjoint construc-
tion, leading to a pleasantly coherent language.

In the rest of this note we walk through these steps, taking small liberties
with previously published notations for the sake of consistency.

2 Linear Logic and Session Types

We give here only the briefest review of linear logic and its deep connection to
session types. The interested reader is referred to [5, 6, 21] for further background.

The key idea of linear logic [12] is to view logical propositions as resources:
they must be used exactly once in a proof. We adopt the intuitionistic version [2],
which is defined via a linear hypothetical judgment [8]

A1, . . . , An ` A

where the hypotheses A1, . . . , An must be used exactly once in the proof of
the conclusion A. We do not care about the order of the assumptions, treating
them like a multiset, and use ∆ to denote such a multiset. The judgmental
rules (sometimes called structural rules) explain the meaning of the hypothetical
judgment itself and are independent of any particular propositions. In a sequent
calculus, there are two such rules: cut, which states that if we can prove A we
are justified to use A as a resource, and identity, which says that we can use a
resource A to prove A.

∆ ` A ∆′, A ` C
∆,∆′ ` C cut

A ` A id

Under the Curry-Howard isomorphism for intuitionistic logic, propositions
are related to types, proofs to programs, and proof reduction to computation.
Here, linear logic propositions are related to session types, proofs to concurrent
programs, and cut reduction in proofs to computation. For this correspondence,
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each hypothesis is labeled by a channel (rather than a variable). In addition,
we also label the conclusion by a channel. This is because, unlike functional
programming, we do not reduce a process to a value but we interact with it. For
such interaction to take place in the concurrent setting, we need a channel to
communicate along.

x1:A1, . . . , xn:An ` P :: (x : A)

Here, x1, . . . , xn and x are distinct channels, and A1, . . . , An and A are their
respective session types. We say that process P provides A along channel x and
uses channels x1, . . . , xn.

The rule of cut now is a form of process composition, connecting a client (here
Q) to a provider (here P ).

∆ ` Px :: (x : A) ∆,x:A ` Qx :: (z : C)

∆,∆′ ` (x← Px ; Qx) :: (z : C)
cut

We use syntactic forms for processes, rather than π-calculus terms, to emphasize
the interpretation of proofs as programs. Because every (well-typed) process P
offers a session along exactly one channel, and each channel is provided by exactly
one process, we can think of channels as unique process identifiers. Under this
interpretation, suggested by the intuitionistic formulation of linear logic, we can
see that the cut rule spawns P as a new process. More precisely, the process
identified by z executing (x ← Px ; Qx) creates a fresh channel a, spawns a
process executing Pa that provides session A along a, and continues as Qa.
Because a is fresh, this channel will be a private channel between Pa and Qa.

We can express this in a substructural operational semantics [19] which is
based on multiset rewriting [7]. The notation is again borrowed from linear logic,
but it should not be confused with the use of linear logic propositions as session
types.

cut : procc(x← Px ; Qx) ( {∃a. proca(Pa)⊗ procc(Qa)}

In this formalization procc(P ) is the state of a process executing program P ,
offering along channel c. The multiplicative conjunction (⊗) combines processes
in the same state, linear implication (() expresses a state transition from left
to right, and the existential quantification corresponds to generation of a fresh
channel. The curly braces {· · · } indicate a monad which essentially forces the
rule above to be interpreted as a multiset rewriting rule.

The identity rule instead forwards between its client and the process that it
uses, which must be of the same type.

y:A ` (x← y) :: x : A
id

There are several ways to describe this action operationally. A straightforward
one globally identifies the channels x and y, while the forwarding process itself
terminates.

id : procc(c← d) ( {c = d}
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This could be implemented in the substrate of the network or operating system.
Or it could be implemented more explicitly by sending a message along c asking
the client to use d for subsequent interactions. For now, we abstract over such
lower level details.

Assigning process expressions to each rule of linear logic yields the following
interpretation of propositions.

A,B,C ::= 1 send end and terminate
| A⊗B send channel of type A and continue as B
| A⊕B send inl or inr and continue as A or B, respectively
| τ ∧B send value v of type τ and continue as B
| A( B receive channel of type A
| ANB receive inl or inr and continue as A or B, respectively
| τ ⊃ B receive value V of type τ and continue as B

Here, we wrote τ ∧B as a special case of ∃x:τ.B where x does not appear in B,
and τ ⊃ B is a special case of ∀x:τ.B. The syntactic simplification is justified
because in this paper we do not consider propositions that depend on terms.

Below is a summary of the process expressions, with the sending construct
followed by the matching receiving construct. For the purpose of the examples
we generalize the binary choice constructs A N B and A ⊕ B to n-ary choice
N{labi : Ai}i and ⊕{labi : Ai}i, respectively. We have as a special case ANB =
N{inl : A, inr : B} and A⊕B = ⊕{inl : A, inr : B}.

P,Q,R ::= x← Px ; Qx cut (spawn)
| c← d id (forward)
| close c | wait c 1
| send c (y ← Py) ; Q | x← recv c ; Rx A⊗B,A( B
| send c d derived form A⊗B, A( B
| send c M ; P | n← recv c ; Qn A ∧B,A ⊃ B
| c.lab ; P | case c {labi → Qi}i N{labi : Ai}i,⊕{labi : Ai}i

As a running example in this paper we will use variations of an implemen-
tation of polymorphic queues. We begin with the purely linear version. The
interface specifies that a queue presents an external choice between enqueue and
dequeue operations. When the client selects to enqueue, we input a channel of
type A (to be stored in the queue), and recurse. When the client selects to de-
queue, we either indicate that the queue is empty and terminate, or we indicate
that there is some element in the queue, send the first element (removing it in
the process), and recurse. The “recursion” here is an instance of an equirecur-
sive session type [10]; some logical underpinnings are available for coinductive
types [22]. We also use polymorphism intuitively; a formal development can be
found in [4].

First, the specification of the queue interface.

queueA = N{enq : A( queueA, deq : ⊕{none : 1, some : A⊗ queueA}}
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We implement queues with two forms of recursive processes, empty for the empty
queue and elem for a process holding exactly one element. For processes with

x1:A1, . . . , xn:An ` P :: (x : A)

we write P : {A ← A1, . . . , An} to specify its typing and x ← P ← x1, . . . , xn
to provide its interface.

empty : {queueA}
c← empty =
case c of
| enq→ x← recv c ;

e← empty ;
c← elem ← x, e

| deq→ c.none ;
close c

elem : {queueA← A, queueA}
c← elem ← x, d =
case c of
| enq→ y ← recv c ;

d.enq ; send d y ;
c← elem ← x, d

| deq→ c.some ;
send c x ;
c← d

From the perspective of the client, this implementation has constant time en-
queue and dequeue operations. For dequeue this is obvious. For enqueue, the
process at the front of the queue passes the element down the queue and is im-
mediately available to serve another request while the element travels to the end
of the queue.

3 Categorical Truth

The linear logic proposition !A allows A to be used arbitrarily often in a proof—
it functions as an unrestricted resource. In the intuitionistic reconstruction of
linear logic [8], !A internalizes a categorical judgment. We say that A is valid if
it is true, and its proof does not depend on any assumptions about the truth of
other propositions. Since we are working with a linear hypothetical judgment,
this means that the proof of A does not depend on any resources. We further
allow hypotheses Γ that are assumed to be valid (rather than merely true), and
these are allowed in a proof A valid .

Γ ; ∆ ` C

The meaning of validity is captured in the following two judgmental rules, where
‘·’ stands for an empty context:

Γ ; · ` A (Γ,A) ; ∆ ` C
Γ ; ∆ ` C cut!

(Γ,A) ; ∆,A ` C
(Γ,A) ; ∆ ` C

copy

The first, cut!, states that we are justified in assuming that A is valid if we
can prove it without using any resources. The second, copy, states that we are
justified in assuming a copy of the resource A if A is known to be valid. All the
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purely linear rules are generalized by adding an unrestricted context Γ which is
propagated to all premises.

How do we think of these in terms of processes? We introduce a new form of
channel, called a shared channel (denoted by u,w) which can be used arbitrarily
often in a client, and by arbitrarily many clients. It is offered by a persistent
process. Operationally, a persistent process offering along w : A inputs a fresh
linear channel c and spawns a new process P that offers A along c.

We have the following typing rules, first at the level of judgments.

Γ, u:A ; ∆,x:A ` Px :: (z:C)

Γ, u:A ; ∆ ` (x← send u ; Px) :: (z:C)
copy

Γ ; · ` Py :: (y:A) Γ, u:A ; ∆ ` Qu :: (z:C)

Γ ; ∆ ` (u← !(y ← recv u ; Py) ; Qu) :: (z:C)
cut!

The copy rule has a slightly strange process expression,

x← send u ; Px

It expresses that we send a new channel x along u. The continuation P refers to
x so it can communicate along this new channel. This pattern will be common
for sending fresh channels in a variety of constructs in this paper.

We see that the cut! rule incorporates two steps: creating a new shared chan-
nel u and then immediately receiving a linear channel y along u. There is no
simple way to avoid this, since P in the first premise offers along a linear channel
y. We will see alternatives in later sections.

In the operational semantics we write !procw(P ) for a persistent process,
offering along shared channel w. In the language of substructural specification,
!procw(P ) on the left-hand side of a rule means that it has to match a persistent
proposition. We therefore do not need to repeat it on the right-hand side: it will
continue to appear in the state. In this notation, the operational semantics is as
follows:

copy : !procw(y ← recv w ; Py)⊗ procc(x← send w ; Qx)
( {∃a. proca(Pa)⊗ procc(Qa)}

cut! : procc(u← !(y ← recv u ; Py) ; Qu)
( {∃w. !procw(y ← recv w ; Py)⊗ procc(Qw)}

The validity judgment realized by persistent processes offering along unrestricted
channels can be internalized as a proposition !A with the following rules. Note
that the linear context must be empty in the !R rule, since validity is a categorical
judgment. Allowing dependence on linear channels would violate their linearity.

Γ ; · ` Py :: (y:A)

Γ ; · ` (u← send x ; !(y ← recv u ; Py)) :: (x:!A)
!R

Γ, u:A ; ∆ ` Qu :: (z:C)

Γ ; ∆,x:!A ` (u← recv x ; Qu) :: (z:C)
!L
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Again the !R rule combines two steps: sending a new persistent channel u along
x and then receiving a linear channel y along u. Operationally:

bang : procc(u← recv a ; Qu)⊗ proca(u← send a ; !(y ← recv u ; Py))
( {∃w. procc(Qw)⊗ !procw(y ← recv w ; Py)}

As expected, the persistent process spawned by the bang computation rule has
exactly the same form as the one spawned by cut!, because a linear cut for a
proposition !A becomes a persistent cut for a proposition A.

Let’s analyze the two-step rule in more detail.

Γ ; · ` Py :: (y:A)

Γ ; · ` (u← send x !(y ← recv u ; Py)) :: (x:!A)
!R

The judgmentA valid (corresponding to an unrestricted hypothesis u:A) is elided
on the right-hand side: we jump directly from the truth of !A to the truth of A.
Writing it out as an intermediate step appears entirely reasonable. We do not
even mention the linear hypotheses in the intermediate step, since the validity
of A depends only on assumptions of validity in Γ .

Γ ; · ` Py :: (y:A)

Γ ` (y ← recv u ; Py) :: (u:A)
valid

Γ ; · ` (u← send x ; !(y ← recv u ; Py)) :: (x:!A)
!R

We emphasize that !A is positive (in the sense of polarized logic), so it corre-
sponds to a send, while A valid is negative as a judgment, so it correspond to
a receive. In the next section we elevate this from a judgmental to a first-class
logical step.

Revisiting the example, recall that if we are the client of a channel c : queueA,
we must use this channel. This means we have to explicitly dequeue all its ele-
ments. In fact, we have to explicitly consume each of the elements as well, since
they are also linear. However, if we know that each element in the queue is in
fact unrestricted, we can destroy it recursively with the following program.

destroy : {1← queue (!A)}
c← destroy ← q =
q.deq ;
case q of
| none→ wait q ; close c
| some→ x← recv q ; % obtain element x

u← recv x ; % receive shared channel u, using x
c← destroy ← q % recurse, ignoring u

4 Adjoint Logic

Adjoint logic is based on the idea that instead of a modality like !A that remains
within a given language of propositions, we have two mutually dependent lan-
guages and two modalities going back and forth between them. For this to make
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sense, the operators have to satisfy certain properties that pertain to the seman-
tics of the two languages. We have in fact three language layers, which we call
linear propositions AL, affine propositions AF, and unrestricted propositions AU.
They are characterized by the structural properties they satisfy: linear proposi-
tions are subject to none (they must be used exactly once), affine proposition
can be weakened (they can be used at most once), and unrestricted propositions
can be contracted and weakened (they can be used arbitrarily often). The or-
der of propositions in the context matters for none of them. The hierarchy of
structural properties is reflected in a hierarchy of modes of truth:

U > F > L

U is stronger than F in the sense that unrestricted hypotheses can be used to
prove affine conclusions, but not vice versa, and similarly for the other relations.
Contexts Ψ combine assumptions with all modes. We write ≥ for the reflexive
and transitive closure of > and define

Ψ ≥ k if m ≥ k for every Bm in Ψ

and

Ψ ` Ak presupposes Ψ ≥ k

We use the notation ↑mk Ak for an operator going from mode k up to mode m,
and ↓mk Am for an operator going down from mode m to mode k. In both cases
we presuppose m > k.

Taking this approach we obtain the following language:

Modes m, k, r ::= U | F | L
Propositions Am, Bm ::= 1m | Am ⊗m Bm | Am ⊕m Bm | τ ∧m Bm

| Am (m Bm | Am Nm Bm | τ ⊃m Bm

| ↑mk Ak (m > k)
| ↓rmAr (r > m)

Because both !A and A are linear propositions, the exponential !A decomposes
into two modalities:

!A = ↓UL ↑
U
LAL

Because linear and affine propositions behave essentially the same way except
that affine channels need not be used, we reuse all the same syntax (both for
propositions and for process expressions) at these two layers. Unrestricted propo-
sitions would behave quite differently in ways that are outside the scope of this
note, so we specify that there are no unrestricted propositions besides ↑ULAL and
↑UFAF.

In the following logical rules we always presuppose that the sequent in the
conclusion is well-formed and add enough conditions to verify the presupposition
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in the premises.

Ψ ` Ak

Ψ ` ↑mk Ak
↑R

k ≥ r Ψ,Ak ` Cr

Ψ, ↑mk Ak ` Cr
↑L

Ψ≥m ` Am

Ψ ` ↓mk Am
↓R

Ψ,Am ` Cr

Ψ, ↓mk Am ` Cr
↓L

Here Ψ≥m is the restriction of Ψ to propositions Ak with k ≥ m. The rule
does not apply if this would erase a linear proposition AL since only affine and
unrestricted propositions are subject to weakening.

The rules with no condition on the modes are invertible, while the others are
not invertible. This means ↑A is negative while ↓A is positive (in the terminology
of polarized logic [15]). We already noted that processes offering a negative type
receive, while processes offering a positive type send. But what do we send or
receive? Thinking of channels as intrinsically linear, affine, or shared suggests
that we should send and receive fresh channels of different modes. Following this
reasoning we obtain:

Ψ ` Pxk
:: (xk:Ak)

Ψ ` (xk ← recv xm ; Pxk
) :: (xm:↑mk Ak)

↑R

k ≥ r Ψ, xk:Ak ` Qxk
:: (zr:Cr)

Ψ, xm:↑mk Ak ` (xk ← send xm ; Qxk
) :: (zr:Cr)

↑L

For clarity, we annotate each channel with its mode, although it may not be
strictly necessary. Operationally:

upmk : procar
(xk ← send cm ; Qxk

)⊗ proccm(yk ← recv cm ; Pyk
)

( {∃ck. procar
(Qck)⊗ procck(Pck)}

And for the other modality:

Ψ ≥ m Ψ ` Qxm :: (xm:Am)

Ψ ` (xm ← send xk ; Qxm
) :: (xk:↓mk Am)

↓R

Ψ, xm:Am ` Pxm
:: (zr:Cr)

Ψ, xk:↓mk Am ` (xm ← recv xk ; Pxm
) :: (zr:Cr)

↓L

Operationally:

downmk : procar
(ym ← recv ck ; Pym

)⊗ procck(xm ← send ck ; Qxm
)

( {∃cm. procar
(Pcm)⊗ proccm(Qcm)}

Since processes offering along unrestricted channels are persistent, we use here
the (admittedly dangerous) notational convention that all processes offering
along unrestricted channels cU are implicitly marked persistent. In particular,
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we should read upUk and downUk as

upUk : procar
(xk ← send cU ; Qxk

)⊗ !proccU(xk ← recv cU ; Pxk
)

( {∃ck. procar
(Qck)⊗ procck(Pck)}

downUk : procar
(xU ← recv ck ; PxU

)⊗ procck(xU ← send ck ; QxU
)

( {∃cU. procar
(PcU)⊗ !proccU(QcU)}

At this point we have achieved that every logical connective, including the up and
down modalities, correspond to exactly one matching send and receive action.
Moreover, as we can check, the compound rules for !A decompose into individual
steps.

Returning to our example, we can now specify that our queue is supposed
to be affine, that is, that we can decide to ignore it. We annotate defined types
and type variables with their mode (U, F, or L), but we overload the logical
connectives since their meanings, when defined, are consistent. The elements of
an affine queue should also be affine. If we make them linear, as in

queueFAL = N{ enq : ↑FLAL ( queueFAL,

deq : {none : 1, some : ↑FLAL ⊗ queueFAL} }

then we could never use x : ↑FLAL in a process offering an affine service (rule ↑L)
since L 6≥ F. So instead we should define an affine queue as

queueFAF = N{ enq : AF ( queueFAF,
deq : {none : 1, some : AF ⊗ queueFAF} }

so that all types in the definition (including AF) are affine. Now we no longer
need to explicitly destroy a queue, we can just abandon it and the runtime
system will deallocate it by a form of garbage collection.

If we want to enforce a linear discipline, destroying a queue with linear el-
ements will have to rely on a consumer for the elements of the queue. This
consumer must be unrestricted because it is used for each element. Channels
are linear by default, so in the example we only annotate affine and unrestricted
channels with their mode.

destroy : {1← queueLAL, ↑UL (AL ( 1)}
c← destroy ← q, uU =

q.deq ;
case q of
| none→ wait q ; close c
| some→ x← recv q ;

d← send uU ; % obtain instance d of uU
send d x ; wait d ; % use d to consume x
c← destroy ← q, uU % recurse, reusing uU
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5 Polarized Logic

We now take a step in a different direction by introducing asynchronous com-
munication, postponing discussion of the modalities for now. In asynchronous
communication each linear channel contains a message queue [11], which can be
related directly to the proof system via continuation channels [9]. Sending adds
to the queue on one end and receiving takes from the other. Because session-
based communication goes in both directions, the queue switches direction at
certain times. Moreover, the queue must maintain some information on the di-
rection of the queue so that a process that performs a send followed by a receive
does not incorrectly read its own message. Fortunately, session typing guarantees
that there is no send/receive mismatch.

A simple way to maintain the direction of a queue is to set a flag when
enqueuing a message. We write just q when the direction of q does not matter,

and
←−
q and

−→
q for the two directions. Our convention is that

←−
q corresponds to

messages from a provider to its client, and
−→
q for messages from a client to the

provider. The reasons for this convention is that in procc(P ), the channel c is to
the left of P , which is in turn derived from c ← P for a process expression P
offering a service along c.

We have a predicate queue(c, q, d) for a queue q connecting a process Q using
c with one providing d. Here are two example rules for sending and receiving
data values.

and s : queue(c, q, d)⊗ procd(send d v ; P )

( {queue(c,
←−−
q · v, d)⊗ procd(P )}

and r : procc(x← recv c ; Qx)⊗ queue(c,
←−−
v · q, d)

( {procc(Qv)⊗ queue(c, q, d)}

We see some difficulty in the second rule, where the direction of q is unclear. It

should be
←−
q unless q is empty, it which case it is unknown. This ambiguity is

also present in forwarding.

fwd : queue(c, p, d)⊗ procd(d← e)⊗ queue(d, q, e)
( {queue(c, p · q, e)}

We won’t go into detail why there are some difficulties implementing this, but
we see that there are multiple possibilities for p and q pointing left, right, or
being empty.

Next we note that the polarity of each connective determines the direction
of communication. From the perspective of the service provider, if we have P ::
(x:A) for a positive A then the action of P along x will be a send, if A is negative it
will be receive. Intuitively this is because the right rules for negative connectives
are invertible and therefore carry no information: any information has to come
from the outside. Conversely, the right rules for positive connectives involve
some choice and can therefore communicate the essence of that information.
We can make this explicit by polarizing the logic, dividing the propositions into
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positive and negative propositions with explicit shift operators connecting them.
Omitting other modalities, the syntax of polarized logic is:

Positive propositions A+, B+ ::= 1 send end and terminate
| A+ ⊗B+ send channel of type A+

| A+ ⊕B+ send inl or inr
| τ ∧B+ send value of type τ
| ↓A− send shift, then receive

Negative propositions A−, B− ::= A+ ( B− receive channel of type A+

| A− NB− receive inl or inr
| τ ⊃ B− receive value of type τ
| ↑A+ receive shift, then send

Note that a process that sends along a channel will continue to do so until it
sends a shift and then it starts receiving. Conversely, a process that receives
continues to do so until it receives a shift after which it starts sending. The new
constructs are:

P,Q,R ::= send c shift ; P send shift, then receive along c in P
| shift← recv c ; Q receive shift, then send along c in Q

We have already annotated the shifts with their expected operational seman-
tics. Queues now always have a definite direction and there can be no further
messages following a shift. We write m for messages other than shift, such as data
values, labels, and channels and treat · as an associative concatenation operator
with the empty queue as its unit.

Queue filled by provider
←−
q ::=

←−
· |
←−−
m · q |

←−
end |

←−−
shift

Queue filled by client
−→
q ::=

−−→
shift |

−−→
q ·m |

−→
·

In the polarized setting, we just need to initialize the direction correctly when a
new channel is created, after which the direction is maintained correctly through-
out. When receiving, the direction needs to be checked. When sending, the di-
rection will always be correct by invariant.

and s : queue(c,
←−
q , d)⊗ procd(send d v ; P )

( {queue(c,
←−−
q · v, d)⊗ procd(P )}

and r : procc(n← recv c ; Qn)⊗ queue(c,
←−−
v · q, d)

( {procc(Qv)⊗ queue(c,
←−
q , d)}

The shift reverses direction when received.

shift s : queue(c,
←−
q , d)⊗ procd(send d shift ; P )

( {queue(c,
←−−−−
q · shift, d)⊗ procd(P )}

shift r : proca(shift← recv c ; Q)⊗ queue(c,
←−−
shift, d)

( {proca(Q)⊗ queue(c,
−→
· , d)}
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There are symmetric rules for
−−→
shift, which we elide here.

In our running example, the natural polarization would interpret queue as a
negative type, since it offers an external choice. We have to switch to positive
when we send a response to the dequeue request, and then switch again before we
recurse. The type parameter A is most naturally positive, since both occurrences
in the type are in fact positive.

queue−A+ = N{ enq : A+ ( queue−A+,
deq : ↑ ⊕ {none : 1, some : A+ ⊗ ↓ queue−A+} }

The code requires some minimal changes: we have to insert three shift operators.

empty : {queue−A+}
c← empty =
case c of
| enq→ x← recv c ;

e← empty ;
c← elem ← x, e

| deq→ shift← recv c ;
c.none ;
close c

elem : {queue−A+ ← A+, queue−A+}
c← elem ← x, d =

case c of
| enq→ y ← recv c ;

d.enq ; send d y ;
c← elem ← x, d

| deq→ shift← recv c ; % shift c to send
c.some ; send c x ;
send c shift ; % shift c to recv
c← d

6 Recovering Synchronous Communication

We obtain maximally asynchronous communication by inserting shifts in a bare
(unpolarized) session type only where necessary.

(1)+ = 1
(A⊗B)+ = (A)+ ⊗ (B)+

(A⊕B)+ = (A)+ ⊕ (B)+

(τ ∧B)+ = τ ∧ (B)+

(A)+ = ↓(A)− for other propositions A
(A( B)− = (A)+ ( (B)−

(ANB)− = (A)− N (B)−

(τ ⊃ B)− = τ ⊃ (B)−

(A)− = ↑(A)+ for other propositions A

As a provider, we can send asynchronously at a positive session type until we
shift explicitly to perform an input because we are now at a negative proposition.
A client behaves dually.

In order to simulate synchronous communication, we insert additional shifts
to prevent two consecutive send operations on the same channel. Here, the down
shift after a send switches to a mode where we wait for an acknowledgment,
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which is implicit in the next receive. If this is another shift, it acts as a pure
acknowledgment, otherwise it is already the next message.

(1)+ = 1
(A⊗B)+ = (A)+ ⊗ ↓(B)−

(A⊕B)+ = ↓(A)− ⊕ ↓(B)−

(τ ∧B)+ = τ ∧ ↓(B)−

(A)+ = ↓(A)− for other propositions A
(A( B)− = (A)+ ( ↑(B)+

(ANB)− = ↑(A)+ N ↑(B)+

(τ ⊃ B)− = τ ⊃ ↑(B)+

(A)− = ↑(A)+ for other propositions A

If we want to bound the size of message queues then we can insert shift in session
types which would otherwise allow an unbounded number of consecutive sends.

In our running example, a client of a queue can perform an unbounded num-
ber of enqueue operations in the asynchronous operational semantics before the
queue implementation must react. This is because this portion of the queue type
is entirely negative. In order to force synchronization, we can change the type
of the enqueue operation before we recurse.

queue−A+ = N{ enq : A+ ( ↑ ↓ queue−A+,
deq : ↑⊕{none : 1, some : A+ ⊗ ↓ queue−A+} }

Now the maximal size of the queue will be 3 in one direction (shift · x · enq) and
also 3 in the other direction (some · x · shift). In a slightly different language,
boundedness calculations for queues in asynchronous session-typed communica-
tion can be found in [11], so we do not repeat a more formal analysis here.

7 Synthesis in Polarized Adjoint Logic

Now we are ready to combine the ideas from adjoint logic in Sec. 4 with po-
larization in Sec. 5. Amazingly, they are fully consistent. The two differences to
the polarized presentation are that (a) the modalities go between positive and
negative propositions (already anticipated by the fact that ↓ is positive and ↑ is
negative), and (b) the modalities ↓mk A and ↑mk allow m ≥ k rather than presup-
posing m > k as before. We no longer index the connectives, overloading their
meaning at the different layers.

Pos. propositions A+
m, B

+
m ::= 1 send end and terminate
| A+

m ⊗B+
m send channel of type A+

m

| A+
m ⊕B+

m send inl or inr
| τ ∧B+

m send value of type τ
| ↓rmA−r (r ≥ m), send shift, then receive

Neg. propositions A−m, B
−
m ::= A+

m ( B−m receive channel of type A+
m

| A−m NB−m receive inl or inr
| τ ⊃ B−m receive value of type τ
| ↑mk A+

k (m ≥ k), receive shift, then send

14



A shift staying at the same level just changes the polarity but is otherwise not
subject to any restrictions. We can see this from the rules, now annotated with
a polarity: if m = k in ↑L, then k ≥ r by presupposition since (Ψ, ↑mk A+

k ) ≥ r.
Similarly, in ↓R, Ψ ≥ m by presupposition if m = k.

Ψ ` A+
k

Ψ ` ↑mk A+
k

↑R
k ≥ r Ψ,A+

k ` Cr

Ψ, ↑mk A+
k ` Cr

↑L

Ψ≥m ` A−m
Ψ ` ↓mk A−m

↓R
Ψ,A−m ` Cr

Ψ, ↓mk A−m ` Cr

↓L

Adding process expressions in a straightforward manner generalizes the shift to
carry a fresh channel because there may now be a change in modes associated
with the shift. We have the following new syntax

P,Q ::= shift xk ← send cm ; Pxk
send fresh shift xk, then recv. along xk in P

| shift xk ← recv cm ; Qxk
receive shift xk, then send along xk in Q

and the modified rules

Ψ ` Pxk
:: (xk:A+

k )

Ψ ` (shift xk ← recv xm ; Pxk
) :: (xm:↑mk A+

k )
↑R

k ≥ r Ψ, xk:A+
k ` Qxk

:: (zr:Cr)

Ψ, xm:↑mk A+
k ` (shift xk ← send xm ; Qxk

) :: (zr:Cr)
↑L

Ψ≥m ` Qxm
:: (xm:A−m)

Ψ ` (shift xm ← send xk ; Qxm
) :: (xk:↓mk A−m)

↓R

Ψ, xm:A−m ` Pxm :: (zr:Cr)

Ψ, xk:↓mk A−m ` (shift xm ← recv xk ; Pxm
) :: (zr:Cr)

↓L

Operationally:

upmk s : procar
(shift xk ← send cm ; Qxk

)⊗ queue(cm,
−→
q , dm)

( {∃ck. ∃dk. procar
(Qck)⊗ queue(ck,

−−−−−−→
shift dk · q, dm)}

upmk r : queue(ck,
−−−−→
shift dk, dm)⊗ procdm

(shift xk ← recv dm ; Pxk
)

( {queue(ck,
←−
· , dk)⊗ procdk

(Pdk
)}

downmk s : queue(ck,
←−
q , dk)⊗ procdk

(shift xm ← send dk ; Qxm
)

( {∃cm. ∃dm. queue(ck,
←−−−
q · cm, dm)⊗ procdm

(Qdm
)}

downmk r : procar
(shift xm ← recv ck ; Pxm

)⊗ queue(ck,
←−−−−−
shift cm, dm)

( {procar
(Pcm)⊗ queue(cm,

−→
· , dm)}

As pointed out in Sec. 4, we have to assume that processes that offer along an
unrestricted channel cU are persistent. Also, this formulation introduces a new
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channel even when m = k, a slight redundancy best avoided in the syntax and
semantics of a real implementation. Even when going between linear and affine
channels, creating new channels might be avoided in favor of just changing some
channel property.

Returning to forwarding, the earlier agnostic formulation will work more
elegantly, since both queues to be appended are guaranteed to go into the same
direction.

fwd : queue(c, p, d)⊗ procd(d← e)⊗ queue(d, q, e)
( {queue(c, p · q, e)}

If implementation or other considerations suggest forwarding as an explicit mes-
sage, we can also implement this, taking advantage of the direction information
that is always available. Here we write x← recv c as a generic receive operation
along channel c, which is turned into a receive along the forwarded channel e.

fwd s : queue(c,
←−
p , d)⊗ procd(d← e)

( {queue(c,
←−−−−
p · fwd, e)}

fwd r : proca(x← recv c ; Px)⊗ queue(c,
←−
fwd, e)

( {proca(x← recv e ; Px)}

We elide the symmetric version of the rules pointing to the right. The reason
we would forward in the direction of the current communication is so that send
remains fully asynchronous and does not have to check if a forwarding message
may be present on the channel.

Once again rewriting the linear version of the example, forcing synchroniza-
tion.

queue−A+ = N{ enq : A+ ( ↑ ↓ queue−A+,
deq : ↑⊕{none : 1, some : A+ ⊗ ↓ queue−A+} }

empty : {queue−A+}
c← empty =
case c of
| enq→ x← recv c ;

shift c← recv c
shift c← send c
e← empty ;
c← elem ← x, e

| deq→ shift c← recv c
c.none ;
close c

elem : {queue−A+ ← A+, queue−A+}
c← elem ← x, d =

case c of
| enq→ y ← recv c ;

shift c← recv c ; % shift to send
shift c← send c ; % send ack
d.enq ; send d y ;
shift d← send d ; % shift to recv
shift d← recv d ; % recv ack
c← elem ← x, d

| deq→ shift c← recv c ; % shift to send
c.some ; send c x ;
shift c← send c ; % shift to recv
c← d

And destroying a linear queue with affine elements:
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destroy : {1← queue (↓FLAF)}
c← destroy ← q =
q.deq ;
shift q ← send q ; % shift to recv
case q of
| none→ wait q ; close c
| some→ x← recv q ; % obtain element x

shift aF ← recv x ; % obtain affine aF, consuming x
shift q ← send q ; % shift to recv
c← destroy ← q % recurse, ignoring aF

8 Sequent Calculus for Polarized Adjoint Logic

We summarize the sequent calculus rules for polarized adjoint logic in Fig. 1,
omitting the uninteresting rules for existential and universal quantification. How-
ever, we have added in atomic propositions p+m and p−m (corresponding to session
type variables) and removed the stipulation that the only unrestricted proposi-
tions are ↑UmA+

m, thereby making our theorem slightly more general at the ex-
pense of a nonstandard notation for intuitionistic connectives such as AU (U BU

for A ⊃ B.
We have the following theorem.

Theorem 1.

1. Cut is admissible in the system without cut.
2. Identity is admissible for arbitrary propositions in the system with the iden-

tity restricted to atomic propositions and without cut.

Proof. The admissibility of cut follows by a nested structural induction, first
on the cut formula A, second simultaneously on the proofs of the left and right
premise. We liberally use a lemma which states that we can weaken a proof with
affine and unrestricted hypotheses without changing its structure and we exploit
the transitivity of ≥. See [8, 18] for analogous proofs.

The admissibility of identity at A follows by a simple structural induction on
the proposition A, exploiting the reflexivity of ≥ in one critical case. ut

A simple corollary is cut elimination, stating that every provable sequent has
a cut-free proof. Cut elimination of the logic is the central reason why the session-
typed processes assigned to these rules satisfy the by now expected properties
of session fidelity (processes are guaranteed to follow the behavior prescribed by
the session type) and global progress (a closed process network of type c0 : 1 can
either take a step will send end along c0). In addition, we also have productivity
(processes will eventually perform the action prescribed by the session type)
and termination if recursive processes are appropriately restricted. The proofs
of these properties closely follow those in the literature for related systems [6,
22, 20], so we do not formally state or prove them here.
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m, k, r ::= U | F | L with U > F > L
A+

m, B
+
m ::= p+m | 1m | A+

m ⊗m B+
m | A+

m ⊕m B+
m | ↓rmA−r (r ≥ m)

A−m, B
−
m ::= p−m | A+

m (m B−m | A−m Nm B−m | ↑mk A
+
k (m ≥ k)

Am, Bm, Cm ::= A+
m | A−m

Ψ ≥ F

Ψ,Am ` Am
id

Ψ ≥ m ≥ r Ψ ` Am Ψ ′, Am ` Cr

Ψ, Ψ ′ ` Cr

cut

Ψ ` A+
k

Ψ ` ↑mk A
+
k

↑R
k ≥ r Ψ,A+

k ` Cr

Ψ, ↑mk A
+
k ` Cr

↑L

Ψ≥m ` A−m
Ψ ` ↓mk A−m

↓R
Ψ,A−m ` Cr

Ψ, ↓mk A−m ` Cr

↓L

Ψ ≥ F

Ψ ` 1m
1R

Ψ ` Cr

Ψ,1m ` Cr
1L

Ψ ` A+
m Ψ ′ ` B+

m

Ψ, Ψ ′ ` A+
m ⊗m B+

m

⊗R
Ψ,A+

m, B
+
m ` Cr

Ψ,A+
m ⊗m B+

m ` Cr

⊗L

Ψ,A+
m ` B−m

Ψ ` A+
m (m B−m

(R
Ψ ≥ m Ψ ` A+

m Ψ ′, B−m ` Cr

Ψ, Ψ ′, A+
m (m B−m ` Cr

(L

Ψ ` A−m Ψ ` B−m
Ψ ` A−m Nm B−m

NR
Ψ,A−m ` Cr

Ψ,A−m Nm B−m ` Cr

NL1

Ψ,B−m ` Cr

Ψ,A−m Nm B−m ` Cr

NL2

Ψ ` A+
m

Ψ ` A+
m ⊕m B+

m

⊕R1

Ψ ` B+
m

Ψ ` A+
m ⊕m B+

m

⊕R2

Ψ,A+
m ` Cr Ψ,B+

m ` Cr

Ψ,A+
m ⊕m B+

m ` Cr

⊕L

All judgments Ψ ` Am presuppose Ψ ≥ m.
Ψ, Ψ ′ allows contraction of unrestricted AU shared between Ψ and Ψ ′

Fig. 1. Polarized Adjoint Logic
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9 Conclusion

We have developed a language which uniformly integrates linear, affine, and
unrestricted types, allowing the programmer to vary the degree of precision
with which resources are managed. At the same time, the programmer has fine-
grained control over which communications are synchronous or asynchronous,
and these decisions are reflected in the type in a logically motivated manner.

On the pragmatic side, we should decide to what extent the constructs here
are exposed to the programmer or inferred during type checking, and develop
a concise and intuitive concrete syntax for those that are explicitly available in
types and process expressions.

Finally, our language is polarized, but deductions are not focused [1]. This
is perhaps somewhat unexpected since the two are closely connected and his-
torically tied to each other. It suggests that some further benefits from proof-
theoretic concepts are still to be discovered, continuing the current line of inves-
tigation into the foundation of session-typed concurrency.
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