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Abstract
We show that multiple intuitionistic logics with varying structural properties among weakening
and contraction can be combined conservatively by adjoint pairs of modal operators. The result-
ing adjoint logic lies at the confluence of the ideas behind Benton’s LNL and Nigam and Miller’s
subexponentials. We provide three different formulations of adjoint logic and show their equiva-
lence: one with explicit structural rules, a second with implicit structural rules, and a third with
focused rules. The first two provide the foundation for proofs-as-programs interpretations, while
the third is well-suited for logic programming and logical frameworks.

We show that we can directly embed a number of previously proposed intuitionistic logics of
interest in computer science such as linear logic, affine logic, strict logic, normal judgmental S4,
lax logic, LNL, and normal intuitionistic subexponential linear logic. An interesting property of
these embeddings is that proof-theoretic properties of the individual logics such as cut elimination,
identity expansion, and focusing are immediate consequences of the corresponding theorems in
adjoint logic.
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1 Introduction

How do we combine logics? One approach is to encode a less expressive into a more expressive
logic. This is the approach, for example, taken by Girard [10] who represents the usual
intuitionistic implication A → B as linear implication !A ( B through the use of the
exponential modality !A that controls weakening and contraction. The rules of the source
logic then become derived or admissible rules in the target logic. If we are interested in
the computational interpretation of proofs via proof reduction, we then have to reconsider
or reconstruct their meaning via their translation. Similarly, if we are interested in logic
programming we typically lose the direct computational interpretation of propositions that
is based on the fine structure of proofs.
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An alternative is to keep the original logics intact and provide modal operators we
call shifts to switch between them. This is the approach taken in the seminal work by
Benton [4] on LNL. In this approach the individual logics are directly embedded into each
other, which preserves not just provability but also the fine structure of proofs and thereby
their computational interpretations.

In this paper we restrict our attention to intuitionistic logics and, in particular, we take
the verificationist perspective [9, 7] where the meanings of the logical connectives in each
logic are defined by the left and right rules of the sequent calculus. Cut elimination and
identity expansion are necessary to justify this point of view.

All logics we consider satisfy associativity and exchange among the antecedents, and may
or may not satisfy weakening or contraction. We identify a logic by its mode of truth m and
write σ(m) ⊆ {W,C} for the structural rules satisfied by mode m. We use the same definition
for the logical connectives at all modes. For example, Am (m Bm denotes implication,
which could be linear (σ(m) = { }), structural (σ(m) = {W,C}), affine (σ(m) = {W}), or
strict (σ(m) = {C}). We often drop the subscript on the logical connective when it can be
uniquely determined from context. In addition, we allow a preorder m ≥ k between modes
of truth. As in subexponential linear logic [19] it is subject to the requirement that m ≥ k
implies that σ(m) ⊇ σ(k). As in LNL [4], each pair of shifts ↑m

k Ak and ↓m
k Am must form an

adjunction, which is guaranteed by their left and right rules.
Adjoint logic (ADJ) is designed so it satisfies the following properties: (1) Conservative

extension: a proposition is provable in each source logic if and only if it is provable in the
combination. (2) Preservation of proofs and proof reduction: proofs in each source logic
will remain valid in the combination. Then proof reductions (the source of operational
interpretations) also remain sound. Due to the presence of cut, additional proofs may be
available in the combination. (3) Preservation of focusing: Focused proofs [1], which provide
the foundation of logic programming, logical frameworks [21], and theorem provers [6, 17],
remain complete for the combined logic.

Adjoint logic allows us to directly embed, combine, and uniformly generalize a number
of previously investigated logics, such as intuitionistic linear logic [10, 2], LNL [4], normal
judgmental S4 [23], lax logic [8, 12, 23], normal intuitionistic subexponential linear logic [5, 13],
and its fragments such as affine logic or strict logic. In each case we construct a particular
partial order and decomposition of modal operators into shifts. The original logic can then be
clearly identified as a syntactic fragment, with some new propositions that can be expressed
directly.

Providing a unified presentation of multiple logics with varying structural properties has
a long history. For example, Belnap [3] defined Display Logic with structural connectives
that control inferences such as weakening or contraction. Significant coding is required to put
logics into display form, which impacts both proof reduction and proof search and therefore
operational interpretations of a logic. Among the most closely related work we find work on
LU [11] and LKU [15]. LU uses three explicit polarities, carefully controlled structural rules,
and multiple versions of right and left rules to achieve an integration of classical, intuitionistic,
and linear logic. This does not have the flexibility or parsimony of our approach, but allows
classical logic to be a easily recognizable fragment. The same is true for LKU, which is based
on classical logic, four different polarities, and focusing from the start. ADJ satisfies focusing,
but does not require it, which is important for its proofs-as-programs interpretation that we
are currently investigating [24].

Finally, work by Licata et al. [16] elegantly generalizes Reed’s first and unpublished
definition of adjoint logic [25] by providing more structure to the adjunctions. Briefly, the
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preorder of modes is replaced by a 2-category, which allows the faithful representation of
additional examples (for example, all of judgmental S4 instead of just its normal fragment),
including some constructions in homotopy type theory. They also provide a detailed categor-
ical semantics. However, the independence principle upon which ADJ is based is only an
emergent property of some mode structures, which in some cases leads to more complicated
adequacy proofs. Also, they do not investigate focusing or polarization.

We begin with a variation of Reed’s first and unpublished definition of adjoint logic [25]
by using explicit structural rules and just a single pair of left and right rules for each of the
logical connectives and shifts. This formulation allows an elegant proof of cut elimination,
closely modeled upon Gentzen’s original proof [9], using the rule of multicut. Cut elimination
immediately yields a conservative extension result for the combined logic over all of its modes
of truth. Next, we provide a formulation where structural rules remain implicit: that is,
they are incorporated directly into the various rules of the calculus. This avoids explicating
weakening and contraction that are implicit in some of the source logics we model, and also
provides a stepping stone towards focusing. Finally, we provide a polarized and focused
presentation of adjoint logic. Focusing fits neatly into the framework of shifts upon which
adjoint logic is based by using shifts within a mode to represent polarization.

2 Adjoint Logic with Explicit Structural Rules (ADJE)

Adjoint logic (in all of the forms that we present it in) can be thought of as a schema to define
particular logics. As described in Section 1, the schema is parameterized by a preorder of
modes of truth m, along with a monotone map σ from this preorder into P({W,C}) assigning
to each mode its set of structural properties. As a concession to simplicity of the presentation,
in this paper we always allow exchange, although nothing stands in the way of an even more
general framework [13]. This preorder of modes embodies the declaration of independence:

A proof of Ak may only depend on hypotheses Bm for m ≥ k.

The form of a sequent is therefore

Ψ ` Ak where Ψ ≥ k

where Ψ is a collection of antecedents of the form Bi
mi

with each mi ≥ k. This critical
presupposition, abbreviated as Ψ ≥ k, generalizes the common dyadic [1] or two-zone
presentation of logics with modal operators [2] where the judgment of validity may not
depend on hypotheses about truth [23]. Example 2 illustrates that for cut elimination to
hold, the structural properties of the permissible antecedent modes must include those of the
succedent mode.

The propositions at each mode are constructed uniformly, remaining within the same
mode, except for the shift operators that move between modes. They are ↑m

k Ak (pronounced
up), which is a proposition at mode m and requires m ≥ k; and ↓`

mA` (down), which is also
a proposition at mode m, and which requires ` ≥ m.

At this point we can already write out the syntax of propositions.

Am, Bm ::= pm | Am (m Bm | Am ⊗m Bm | 1m | ⊕j∈JA
j
m | Nj∈JA

j
m | ↑

m
k Ak | ↓`

mA`

Here pm stands for atomic propositions at mode m. Anticipating the needs of an operational
interpretation (see [24] for a sketch), we have generalized internal and external choice to
n-ary constructors parameterized by a finite index set J . With J = ∅ we recover > = Nj∈∅( )
and 0 = ⊕j∈∅( ) in any mode. The right and left rules in the sequent calculus defining the
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Am ` Am
id

Ψ1 ≥ m ≥ k Ψ1 ` Am Ψ2, Am ` Ck

Ψ1,Ψ2 ` Ck
cut

W ∈ σ(m) Ψ ` Ck

Ψ, Am ` Ck
weaken

C ∈ σ(m) Ψ, Am, Am ` Ck

Ψ, Am ` Ck
contract

i ∈ J Ψ ` Ai
m

Ψ ` ⊕j∈JA
j
m

⊕Ri
Ψ, Aj

m ` Ck for all j ∈ J
Ψ,⊕j∈JA

j
m ` Ck

⊕L

Ψ ` Aj
m for all j ∈ J

Ψ ` Nj∈JA
j
m

NR
i ∈ J Ψ, Ai

m ` Ck

Ψ,Nj∈JA
j
m ` Ck

NLi

Ψ1 ` Am Ψ2 ` Bm

Ψ1,Ψ2 ` Am ⊗Bm
⊗R

Ψ, Am, Bm ` Ck

Ψ, Am ⊗Bm ` Ck
⊗L

Ψ, Am ` Bm

Ψ ` Am ( Bm
(R

Ψ1 ≥ m Ψ1 ` Am Ψ2, Bm ` Ck

Ψ1,Ψ2, Am ( Bm ` Ck
(L

W ∈ σ(Ψ)
Ψ ` 1m

1R
Ψ ` Ck

Ψ,1m ` Ck
1L

Ψ ≥ m Ψ ` Am

Ψ ` ↓m
k Am

↓R
Ψ, Am ` C`

Ψ, ↓m
k Am ` C`

↓L

Ψ ` Ak

Ψ ` ↑m
k Ak

↑R
k ≥ ` Ψ, Ak ` C`

Ψ, ↑m
k Ak ` C`

↑L

Figure 1 Adjoint Logic with Explicit Structural Rules (ADJE).
We presuppose that the conclusion of each rule satisfies the declaration of independence and ensure,
with conditions on modes, that the premises will, too.

logical connectives are the same for each mode and are complemented by the permissible
structural rules.

In order to be able to describe side conditions for rules, we generalize σ(m) to σ(Ψ) for
contexts Ψ.

I Definition 1. We define σ(Ψ) inductively as follows:

σ(·) = {W,C}
σ(Am) = σ(m)

σ(Ψ1,Ψ2) = σ(Ψ1) ∩ σ(Ψ2)

Intuitively, σ(Ψ) is the smallest set of structural properties shared by all propositions in Ψ,
so if W ∈ σ(Ψ), then every proposition in Ψ is subject to weakening, and if C ∈ σ(Ψ), then
every proposition in Ψ is contractible.

2.1 Judgmental and structural rules
The rules for this first version of adjoint logic (ADJE) can be found in Figure 1. We begin with
the judgmental rules of identity and cut, which express the connection between antecedents
and succedents. Identity says that if we assume Am we are allowed to conclude Am. Cut says
the opposite: if we can conclude Am we are allowed to assume Am as long as the declaration
of independence is respected.
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As is common for the sequent calculus, we read the rules in the direction of bottom-up
proof construction. For the cut rule, this means we should assume that the conclusion
Ψ1,Ψ2 ` Ck is well-formed and, in particular, that Ψ1 ≥ k and Ψ2 ≥ k. Therefore, if
we check that m ≥ k, then we know that the second premise, Ψ2, Am ` Ck, will also be
well-formed. For the first premise to be well-formed, we need to check outright that Ψ1 ≥ m.

The structural rules of weakening and contraction just need to verify that the mode of
the principal formula permits the rule.

2.2 Additive and multiplicative connectives
The logical rules defining the additive and multiplicative connectives are simply the linear
rules for all modes, since we have separated out the structural rules. Except in one case,
(L, the well-formedness of the conclusion implies the well-formedness of all premises.

As for (L, we know from the well-formedness of the conclusion that Ψ1 ≥ k, Ψ2 ≥ k,
and m ≥ k. These facts by themselves already imply the well-formedness of the second
premise, but we need to check that Ψ1 ≥ m in order for the first premise to be well-formed.

2.3 Shifts
The shifts represent the most interesting aspects of the rules. Recall that in ↑m

k Ak and ↓m
k Am

we require that m ≥ k. We first consider the two rules for ↑. We know from the conclusion
of the right rule that Ψ ≥ m and from the requirement of the shift that m ≥ k. Therefore, as
≥ is transitive, Ψ ≥ k and the premise is always well-formed. This also means that this rule
is invertible, an observation integrated into the focusing rules for system ADJF presented in
Section 4.

From the conclusion of the left rule, we know Ψ ≥ `, m ≥ `, and m ≥ k. This does not
imply that k ≥ `, which we need for the premise to be well-formed and thus needs to be
checked. Therefore, this rule is non-invertible.

The downshift rules are constructed analogously, taking only the declaration of indepen-
dence and properties of the preorder ≤ as guidance. Note that in this case the left rule is
always applicable (that is, invertible), while the right rule is non-invertible.

The fact that the shift operators form an adjunction in an appropriate category was
first observed by Benton [4] for LNL where F X = ↓U

L XU is shown to be the left adjoint to
GA = ↑U

L AL (see Section 3.2 for more detail on interpreting LNL in ADJ), going between
cartesian closed and symmetric monoidal categories. A more general categorical interpretation
is given by Licata et al. [16]. A direct proof of the adjunction property is given in [24, A.3],
by considering equivalence classes of proofs up to cut reductions, commuting conversions,
and identity expansion.

I Example 2 (Counterexample for independence). Consider an instance with two modes
L < U where σ(L) = ∅ and σ(U) = {W,C} and consider the following faulty(!) “proof”
showing that contraction for linear propositions is derivable:

AL ` AL
id

AL `?? ↑U
LAL

↑R

AL, AL ` CL

AL, ↑U
LAL ` CL

↑L

↑U
LAL, ↑U

LAL ` CL

↑L

↑U
LAL ` CL

contract

AL ` CL
cut

The fallacy lies with the sequent marked `?? because it violates our declaration of indepen-
dence: the succedent ↑U

LAL of mode U depends on an antecedent of mode L, and L 6≥ U.
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If we wanted to blame a particular inference, it would be either cut, viewed bottom-up,
or ↑R, viewed top-down. In our case, the bottom-up construction of this proof would fail
because the condition AL ≥ U of the cut rule is violated.

It is an immediate corollary that cut elimination fails if the declaration of independence
is not enforced. For example, using the above faulty reasoning, we could prove AL ` AL ⊗AL,
which in general has no cut-free proof.

2.4 Cut elimination
Because we have an explicit rule of contraction, cut elimination does not follow by a simple
structural induction. However, we can follow Gentzen [9] and allow multiple copies of the
same proposition to be removed by the cut, which then allows a structural induction argument.
The generalized form of cut called multicut (see, for example, Negri and von Plato [18])
can remove n ≥ 0 copies of a proposition, provided that the structural properties of that
proposition allow it.

We define µ(S) for S ⊆ {W,C} to be the set of permissible multiplicities corresponding
to the set S of structural properties. This has the following definition:

µ({}) = {1} µ({W}) = {0, 1} µ({C}) = N \ {0} µ({W,C}) = N

With this, we can write down a general multicut rule where we allow cutting out n copies of
Am if n ∈ µ(σ(m)):

Ψ1 ≥ m ≥ k n ∈ µ(σ(m)) Ψ1 ` Am Ψ2, A
n
m ` Ck

Ψ1,Ψ2 ` Ck
cut(n)

Note that the standard cut rule is the instance of the multicut rule where n = 1, and so
proving multicut elimination for adjoint logic also yields cut elimination for the standard cut
rule.

In order to distinguish proofs in ADJE from proofs in the other two systems that we
will present, we use `E for proofs in ADJE . Analogously, we will use `I for proofs in ADJI

(Section 3) and `F for proofs in ADJF (Section 4). For the purposes of our cut admissibility
and cut elimination proofs, we also introduce the notation `̀ E for proofs in ADJE that do
not use the cut rule.

I Theorem 3 (Admissibility of multicut). If Ψ1 ≥ m ≥ k, n ∈ µ(σ(m)), Ψ1 `̀ E Am, and
Ψ2, A

n
m `̀ E Ck, then Ψ1,Ψ2 `̀ E Ck.

Sketch of proof. This follows straightforwardly by induction on the (lexicographically or-
dered) triple (Am,D, E), where D is the proof that Ψ1 `E Am and E is the proof that
Ψ2, A

n
m `E Ck. J

I Theorem 4 (Cut elimination for ADJE). If Ψ `E Am, then Ψ `̀ E Am.

Proof. This follows from admissibility of multicut by induction over the proof that Ψ `E Am,
using admissibility of multicut to eliminate each cut as it is encountered. J

2.5 Identity Expansion
Identity expansion for this system is very standard in both its statement and its proof.

I Theorem 5 (Identity Expansion). If Ψ `E Am, then there exists a proof that Ψ `E Am

using identity rules only at atomic propositions, which is cut-free if the original proof is.
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Proof. We begin by proving that for any formula Am, there is a cut-free proof that Am `E Am

using identity rules only at atomic propositions. This follows easily from an induction on
Am. Now, we arrive at the theorem by induction over the structure of the given proof that
Ψ `E Am. J

3 Adjoint Logic with Implicit Structural Rules (ADJI)

As a first step along the way to focusing, we present a system which removes some of the
nondeterminism arising in proof search from the explicit structural rules, analogously to the
dyadic system Σ2 presented by Andreoli [1]. A side benefit of this system is that its implicit
treatment of structural rules makes it better suited for embedding logics which similarly
leave structural properties implicit.

As we allow modes to have only one of weakening and contraction and as we also have
shifts built into the logic, we cannot take exactly the same approach as Andreoli. Most of
the shift rules are straightforward to translate, but ↓R requires some thought because of its
restriction on the modes allowed in the context. In ADJE , we can weaken away any Am with
W ∈ σ(m) before applying ↓R in order to satisfy that restriction. In order to match that
behavior, we split the context into two pieces, Ψ1 and Ψ2, and require that Ψ1 ≥ m, while
W ∈ σ(Ψ2). This rule then corresponds to the ADJE proof which weakens everything in Ψ2
and then applies ↓R. Weakening is otherwise easily handled at the leaves of the proof in a
similar manner.

Contraction without weakening leads to most of the complication in this system. For
each multiplicative rule with two premises (⊗R, (L, and cut), we split the context into
three parts sending Ψ1 to the first premise only, Ψ3 to the second premise only, and Ψ2 to
both (and, of course, we require that Ψ2 be contractible). The nondeterminism in choice of
Ψ2 allows us to propagate contractible propositions to precisely those premises where they
will be needed. Similarly, using the notation of Definition 6, we allow for (but do not force)
the principal formula to be kept after applying a left rule. These changes, along with the
removal of the weakening and contraction rules, give us ADJI , as shown in Figure 2.

I Definition 6.
1. (Am)? may always denote the empty context (·).
2. If C ∈ σ(m), then (Am)? may denote Am.

3.1 Equivalence of ADJI and ADJE

We now show the equivalence (in terms of provability) of ADJE and ADJI . Soundness
is almost immediate, as the changes necessary to turn ADJE into ADJI are fairly minor.
Completeness follows quickly from Lemma 8. An interesting (if unsurprising) feature of the
translations used in both soundness and completeness is that cut-free proofs are taken to
cut-free proofs, and so cut elimination can be transported from one system to the other.
Similarly, the translations take identities at Am to identities at Am, and so identity expansion
can also be transported from one system to the other. We therefore get for free that ADJI

has both cut elimination and identity expansion as a result of its soundness and completeness
proofs. Since the proofs are entirely standard we omit them here for the sake of brevity.

I Theorem 7 (Soundness of ADJI). If Ψ `I Am, then Ψ `E Am.

I Lemma 8 (Admissibility of weakening and contraction for ADJI).
1. If Ψ `I Ck and W ∈ σ(m), then Ψ, Am `I Ck.
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W ∈ σ(Ψ)
Ψ, Am ` Am

id
Ψ1,Ψ2 ≥ m ≥ k C ∈ σ(Ψ2) Ψ1,Ψ2 ` Am Ψ2,Ψ3, Am ` Ck

Ψ1,Ψ2,Ψ3 ` Ck
cut

i ∈ J Ψ ` Ai
m

Ψ ` ⊕j∈JA
j
m

⊕Ri
Ψ, (⊕j∈JA

j
m)?, Aj

m ` Ck for all j ∈ J
Ψ,⊕j∈JA

j
m ` Ck

⊕L(∗)

Ψ ` Aj
m for all j ∈ J

Ψ ` Nj∈JA
j
m

NR
i ∈ J Ψ, (Nj∈JA

j
m)?, Ai

m ` Ck

Ψ,Nj∈JA
j
m ` Ck

NLi

C ∈ σ(Ψ2) Ψ1,Ψ2 ` Am Ψ2,Ψ3 ` Bm

Ψ1,Ψ2,Ψ3 ` Am ⊗Bm
⊗R

Ψ, (Am ⊗Bm)?, Am, Bm ` Ck

Ψ, Am ⊗Bm ` Ck
⊗L

Ψ, Am ` Bm

Ψ ` Am ( Bm
(R

Ψ1,Ψ2 ≥ m C ∈ σ(Ψ2) Ψ1,Ψ2, (Am ( Bm)? ` Am Ψ2,Ψ3, (Am ( Bm)?, Bm ` Ck

Ψ1,Ψ2,Ψ3, Am ( Bm ` Ck
(L

W ∈ σ(Ψ)
Ψ ` 1m

1R
Ψ, (1m)? ` Ck

Ψ,1m ` Ck
1L

Ψ1 ≥ m W ∈ σ(Ψ2) Ψ1 ` Am

Ψ1,Ψ2 ` ↓m
k Am

↓R
Ψ, (↓m

k Am)?, Am ` C`

Ψ, ↓m
k Am ` C`

↓L

Ψ ` Ak

Ψ ` ↑m
k Ak

↑R
k ≥ ` Ψ, (↑m

k Ak)?, Ak ` C`

Ψ, ↑m
k Ak ` C`

↑L

Figure 2 Adjoint Logic with Implicit Structural Properties (ADJI).
We presuppose that the conclusion of each rule satisfies the declaration of independence and ensure,
with conditions on modes, that the premises will, too. (Am)? denotes an optional antecedent if
C ∈ σ(m).
(∗) All premises of ⊕L must uniformly retain or delete ( )?.

2. If Ψ, Am, Am `I Ck and C ∈ σ(m), then Ψ, Am `I Ck.

I Theorem 9 (Completeness of ADJI). If Ψ `E Am then Ψ `I Am.

3.2 Logic Embeddings
We now illustrate how adjoint logic can be used to embed various logics.

I Example 10 (Linear logic). We obtain intuitionistic linear logic [10, 2] by using two modes,
U (for unrestricted or structural) and L (for linear) with U > L. Moreover, σ(U) = {W,C}
and σ(L) = { }, and the structural layer contains only shifted propositions.

AU ::= ↑U
LAL

AL, BL ::= pL | AL ( BL | AL ⊗BL | 1 | ⊕j∈JA
j
L | Nj∈JA

j
L | ↓U

LAU

In this representation the exponential modality is decomposed into shift modalities !AL =
↓U

L ↑
U
LAL. We do not state an explicit correctness theorem because it follows from the embedding

of LNL (Theorem 12) and Benton’s results [4].
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I Example 11 (LNL). We obtain LNL [4] just like linear logic with two modes U > L, but
we populate the unrestricted layer with additional propositions, where we write × = ⊗U and
→ =(U.

AU, BU ::= pU | AU → BU | AU ×BU | 1U | ↑U
LAL

AL, BL ::= pL | AL ( BL | AL ⊗BL | 1L | ↓U
LAU

Benton’s notation for shifts is F = ↓U
L and G = ↑U

L . Our formulation then combines the various
versions of the rules by combining the two contexts, using the declaration of independence
instead to force that unrestricted succedents depend only on unrestricted antecedents. A
small difference arises only in the ×-left rules where our version has both components in the
premise, which is, of course, logically equivalent to LNL in the presence of weakening and
contraction.

As LNL uses explicit structural rules, it is more direct to embed LNL into ADJE than
into ADJF , and so our theorem is stated using ADJE . It is, of course, equivalent to use ADJI .

I Theorem 12. If we let τ embed propositions of LNL into the instance of adjoint logic
described above, then
1. Θ `C X in LNL iff τ(Θ) `E τ(X).
2. Θ; Γ L̀ A in LNL iff τ(Θ), τ(Γ) `E τ(A).

I Example 13 (Judgmental S4). The judgmental modal logic S4 [23] arises from two modes
V (validity) and U (truth) with V > U. The declaration of independence here expresses that
validity is categorical with respect to truth—that is, a proof of AV may not depend on any
hypotheses of the form BU. Previously, this had been enforced by segregating the antecedents
into two zones and managing their dependence accordingly.

AV ::= ↑V
UAU

AU, BU ::= pU | AU ( BU | AU ⊗BU | 1 | ⊕j∈JA
j
U | Nj∈JA

j
U | ↓V

UAV

Analogous to the encoding of linear logic, we only need to allow ↑V
UAU in the validity layer.

Under that interpretation, we encode �AU = ↓V
U ↑

V
UAU, which is entirely analogous to the

representation of !A in linear logic.
The adjoint reconstruction now gives rise to a richer logic where additional connectives

speaking about validity can be decomposed directly via their left and right rules, such as the
strong implication A⇒ B which was previously ad hoc.

Note that we cannot easily model ♦A, which is not a normal modality in the technical
sense that it does not satisfy ♦(A( B)( (♦A( ♦B). Reed [25] provides a less direct,
but adequate encoding that we elide here. Licata et al. [16] use the 2-categorical structure
that generalizes our preorder to provide a more elegant representation.

I Theorem 14. If we let τ embed propositions of normal judgmental S4 into the instance of
adjoint logic described above, then
1. ∆; Γ ` A in judgmental S4 iff ↑V

Uτ(∆), τ(Γ) `I τ(A).
2. ∆; · ` A in judgmental S4 iff ↑V

Uτ(∆) `I ↑V
Uτ(A).

I Example 15 (Lax logic). Lax logic [8, 23] encodes a weaker form of truth called lax truth.
We can represent it as a substructural adjoint logic with two modes, U > X, where both
modes satisfy weakening and contraction. We restrict the lax layer to a single connective
and omit additive connectives for simplicity.

AU, BU ::= pU | AU → BU | AU ×BU | 1U | ↑U
XAX

AX ::= ↓U
XAU
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Now the lax modality is defined as ©AU = ↑U
X ↓

U
XAU.

We can now add further connectives directly operating on the lax layer and obtain
consistent left and right rules for them.

I Theorem 16. If we let τ embed propositions of lax logic into the instance of adjoint logic
described above, then
1. Γ ` A true in lax logic iff τ(Γ) `I τ(A).
2. Γ,Γ′ ` A lax in lax logic iff τ(Γ), ↓U

Xτ(Γ′) `I ↓U
Xτ(A).

I Example 17 (Intuitionistic Subexponential Linear Logic). We can represent a somewhat
restricted form of intuitionistic subexponential linear logic (ISELL) [5] as a fragment of
adjoint logic. Subexponential labels of zones correspond to modes, and we preserve the
preorder between labels as the preorder between modes. There is a working zone which
corresponds to a distinguished mode L.

We require z ≥ L for all modes z 6= L and define !zA = ↓z
L ↑

z
LA for z > L. We also

work on the ?-free fragment (for much the same reasons that we work with the normal
fragment of judgmental S4 in Example 13), making this slightly less general than ISELL,
which also includes ?zA and allows labels z < L. Indeed, the rules for the shifts under the
obvious candidate representation ?zA = ↑L

z ↓
L
zA do not match the rules for ?zA in ISELL.

Fortunately, the modality ?z is not in the image of the translation [5, Section 4.1] from
classical subexponential logic [19] into ISELL, so it does not appear essential to gauge its
expressive power.

An instance of ISELL satisfying these requirements can then be seen as an instance of
adjoint logic where all modes a other than L contain only propositions of the form ↑a

LAL.
We also have a new opportunity, namely adding connectives that directly combine

propositions of mode z 6= L. These additional connectives may reduce the number of
subexponential modalities in a logic representation. This in turn streamlines the focusing
behavior of encodings since subexponential modalities interrupt focusing phases. For example,
the encodings proposed by Nigam et al. [20] for minimal logic (G1m in their Figure 4) or for
lax logic (in their Figure 12) require many modalities which interrupt focusing phases in the
represented logic, even while focusing is present in the metalogic. No such indirections are
needed here.

Since the relevant fragments of ISELL are also a fragment of ADJF (see Section 4), some
representations undertaken by Chaudhuri [5] (for classical logics, for example) also provide
additional examples for ADJF , but we have not yet investigated whether the increase in
expressiveness can be exploited for further results. Note that Chaudhuri only considers linear
modalities and those with both weakening and contraction, so we slightly generalize his
version of ISELL along this dimension.

I Theorem 18. If we let τ embed propositions of an instance of ISELL into the corresponding
instance of adjoint logic as described above, then
1. ∆, !a1A1, . . . , !anAn ` B in ISELL iff τ(∆), ↑a1

L τ(A1), . . . , ↑an

L τ(An) `E τ(B).
2. !a1A1, . . . , !an

An ` !bB in ISELL iff ↑a1
L τ(A1), . . . , ↑an

L τ(An) `E ↑b
Lτ(B).

We use `E rather than `I here because ISELL’s explicit structural rules make it more direct
to embed ISELL into ADJE rather than ADJI .
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4 Focused Adjoint Logic

We begin by polarizing the propositions of ADJ, giving us the following syntax for propositions:

Negative propositions A−m, B
−
m ::= p−m | A+

m (m B−m | Nj∈JA
j
m
− | ↑m

k A
+
k

Positive propositions A+
m, B

+
m ::= p+

m | A+
m ⊗m B+

m | 1+
m | ⊕j∈JA

j
m

+ | ↓`
mA
−
`

Here, p−m and p−m are negative and positive atoms, respectively.
We have chosen all shifts to reverse polarity: (↓m

k A
−
m)+ and (↑m

k A
+
k )−. We believe two

additional polarizations of shift operators are possible, namely (↓m
k A

+
m)+ and (↑k

mA
−
m)−.

These would appear as “regular” positive or negative logical operators and might streamline
some encodings. When we de-polarize they will, of course, be indistinguishable from their
polarity-reversing cousins. We leave more detailed investigation of these additional polarity-
preserving shifts to future work.

We then present our focused system in the style used in [26], using the following grammar
for the components of our sequents:

Stable antecedents Ψ ::= · | A−m | 〈A+
m〉 | Ψ,Ψ′

Inversion antecedents Ω ::= · | A+
m

• Ω
Succedents U ::= [A+

m] | A+
m | A−m | 〈A−m〉

Ordered antecedents L ::= Ω | [A−m]

We use • rather than , to separate propositions in the (ordered) inversion context Ω to
emphasize that those contexts are to be treated as lists rather than as multisets.

Similarly to the stable antecedents, only the succedents A+
m and 〈A−m〉 are stable (as A−m

is invertible on the right, and [A+
m] is in focus). We will use stability of succedents U as a

side condition of some proofs (as stability of the antecedent is implied by having an empty
inversion context Ω).

Propositions in square brackets ([A+
m] or [A−m]) are propositions in focus, while propositions

in angle brackets (〈A+
m〉 or 〈A−m〉) are suspended propositions. In the system of Figure 3,

suspended atoms 〈p+
m〉 and 〈p−m〉 are used so they can appear in stable sequents as antecedents

with otherwise positive and in succedents with otherwise negative propositions, respectively.
Suspending arbitrary propositions is a technical device introduced by Simmons [26] that
allows for a structural proof of identity expansion (see Section 4.1).

With these parts, we have the following three types of sequents:

Right focus Ψ `F [A+
m]

Inversion Ψ ; Ω `F U (where U 6= [A+
m])

Left focus Ψ ; [A−m] `F U (where U is stable)

Each of these sequents is a special case of the general form Ψ ; L `F U , but it is useful to
separate these cases for some theorem statements and proofs. The constraints on what form
U may take in each sequent are standard for intuitionistic focused systems [14, 26], and serve
to ensure that at most one formula is in focus at a time, and that if a formula is in focus,
then there are no formulae in inversion.

Most of the rules of ADJF arise straightfowardly from their ADJI counterparts by having
the principal formula either in focus or in inversion (depending on its polarity and whether it
is on the left or the right). We also add the focus+ and focus− rules, which allow us to focus
on positive propositions on the right and negative propositions on the left, as well as the
susp+ and susp− rules, which allow us to suspend atomic propositions (although we will later
prove that versions of these rules which suspend arbitrary propositions are admissible in
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Theorem 24). The identity rule of ADJI is split into the id+ and id− rules as in all focusing
systems [1, 14].

We now work to prove defocalization and focalization results which show that ADJI and
ADJF are equivalent. Composing these results with the results of Section 3, we will get that
ADJE and ADJF are equivalent.

In order to state (and prove) our defocalization theorem, we need to define an erasure
operation taking propositions and contexts in ADJF to propositions and contexts in ADJI .

I Definition 19 (Erasure). Given a context Ψ, antecedent L, or succedent U , we define the
erasure of Ψ, L, or U , denoted by (Ψ)• or (U)•, to be the result of removing all focusing and
suspension brackets. Formally, we give the following inductive definition:

(·)• = (·)
(A−m,Ψ)• = Am, (Ψ)•

(〈A+
m〉,Ψ)• = Am, (Ψ)•

([A−m])• = Am

(·)• = (·)
(A+

m
• Ω)• = Am, (Ω)•

(〈A−m〉)• = Am

([A+
m])• = Am

(A−m)• = Am

(A+
m)• = Am

I Theorem 20 (Defocalization). If Ψ ; L `F U , then (Ψ)•, (L)• `I (U)•.

Proof. We prove this by noting that each (erased) rule of the focused system is either a rule
of ADJI or a no-op (as in the case of the focus± or susp± rules). As such, we translate the
ADJF proof into an ADJI proof rule-by-rule, removing the no-op rules. J

4.1 Focalization
Our path to proving focalization is much the same as that used in [26], relying on admissibility
of cut and admissibility of suspension for general propositions. In order to prove cut admissible,
we must first prove admissibility of weakening and contraction (Lemma 21). These follow
much the same pattern as the comparable lemmas for ADJI .

I Lemma 21 (Admissibility of weakening and contraction for ADJF ). Take Pm to be either
A−m or 〈A+

m〉.
1. If Ψ ; L `F U and W ∈ σ(m), then Ψ, Pm ; L `F U .
2. If Ψ, Pm, Pm ; L `F U and W ∈ σ(m), then Ψ, Pm ; L `F U .

Proof. This follows from inductions over the proof that Ψ ; L `F U and the proof that
Ψ, Pm, Pm ; L `F U . J

The four cases of our cut admissibility theorem (Theorem 22) correspond to, respectively,
positive principal cuts, negative principal cuts, left-commutative cuts, and right-commutative
cuts.

I Theorem 22 (Cut admissibility for ADJF ). Assuming C ∈ σ(Ψ2), Ψ1,Ψ2 ≥ m, and that
Ψ1, Ψ2, Ψ3, and U contain no non-atomic suspended propositions:
1. If Ψ1,Ψ2 `F [A+

m] and Ψ2,Ψ3 ; A+
m

• Ω `F U , then Ψ1,Ψ2,Ψ3 ; Ω `F U .
2. If Ψ1,Ψ2 ; · `F A−m and Ψ2,Ψ3 ; [A−m] `F U and U stable, then Ψ1,Ψ2,Ψ3 ; · `F U .
3. If Ψ1,Ψ2 ; L `F A+

m and Ψ2,Ψ3 ; A+
m `F U and U stable, then Ψ1,Ψ2,Ψ3 ; L `F U .

4. If Ψ1,Ψ2 ; · `F A−m and Ψ2,Ψ3, A
−
m ; L `F U and U stable, then Ψ1,Ψ2,Ψ3 ; L `F U .

Proof. This proceeds in a relatively standard nested induction, except that cases (3) and
(4) depend on cases (1) and (2), respectively. As such, we prove this by induction over the
(lexicographically ordered) quadruple (A±m, i,D, E), where A±m is the formula cut out, i is
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W ∈ σ(Ψ)
Ψ, 〈p+

m〉 ` [p+
m] id+

Ψ1 ≥ m W ∈ σ(Ψ2) Ψ1 ; · ` A−m
Ψ1,Ψ2 ` [↓m

k A
−
m]

↓R
i ∈ J Ψ `

[
Ai

m
+]

Ψ `
[
⊕j∈JA

j
m

+] ⊕Ri

C ∈ σ(Ψ2) Ψ1,Ψ2 ` [A+
m] Ψ2,Ψ3 ` [B+

m]
Ψ1,Ψ2,Ψ3 ` [A+

m ⊗B+
m]

⊗R
W ∈ σ(Ψ)
Ψ ` [1+

m] 1R

Ψ ` [A+
m]

Ψ ; · ` A+
m

focus+
U stable Ψ, (A−m)? ; [A−m] ` U

Ψ, A−m ; · ` U focus−

Ψ, 〈p+〉 ; Ω ` U
Ψ ; p+ • Ω ` U

susp+ Ψ ; · ` 〈p−〉
Ψ ; · ` p−

susp−

Ψ, A−m ; Ω ` U
Ψ ; ↓m

k A
−
m

• Ω ` U
↓L

Ψ ; Aj
m

+
• Ω ` U for all j ∈ J

Ψ ; ⊕j∈JA
j
m

+
• Ω ` U

⊕L

Ψ ; A+
m

•B+
m

• Ω ` U
Ψ ; A+

m ⊗B+
m

• Ω ` U
⊗L

Ψ ; Ω ` U
Ψ ; 1+

m
• Ω ` U 1L

Ψ ; · ` A+
k

Ψ ; · ` ↑m
k A

+
k

↑R
Ψ ; · ` Aj

m
− for all j ∈ J

Ψ ; · ` Nj∈JA
j
m
− NR

Ψ ; A+
m ` B−m

Ψ ; · ` A+
m ( B−m

(R

W ∈ σ(Ψ)
Ψ ; [p−m] ` 〈p−m〉

id−

k ≥ ` Ψ ; A+
k ` U`

Ψ ; [↑m
k A

+
k ] ` U`

↑L
i ∈ J Ψ ;

[
Ai

m
−]
` U

Ψ ;
[
Nj∈JA

j
m
−]
` U

NLi

Ψ1,Ψ2 ≥ m C ∈ σ(Ψ2) Ψ1,Ψ2 ` [A+
m] Ψ2,Ψ3 ; [B−m] ` U

Ψ1,Ψ2,Ψ3 ; [A+
m ( B−m] ` U (L

Figure 3 Focused Adjoint Logic (ADJF ).
“U stable” means that U is either A+

m or 〈p−
m〉.
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the case number in the theorem statement, D is the left-hand proof of the cut, and E is the
right-hand proof of the cut.

Admissibility of weakening is key for the cases involving D or E being a leaf of the
proof—either an id± rule or a 1R rule, while admissibility of contraction is used throughout
the proof, primarily to handle propositions in Ψ2. J

Now, we proceed to proving identity expansion. We wish to prove that if W ∈ σ(Ψ), then
Ψ ; A+

m `F A+
m and Ψ, A−m ; · `F A−m. As described in [26], however, this does not follow

from induction on the structure of A±m, and so we take Simmons’ approach of generalizing
the identity and suspension rules. We first generalize the identity rules to allow arbitrary
propositions, rather than only atomic propositions. It is easy to see that these more general
identity rules are admissible, as the only rules (read bottom-up) which introduce suspended
propositions are the susp± rules, which only introduce atomic suspended propositions. As
such, the only propositions to which identity can be applied are atomic. Despite this, the
more general rules are important to the proof of identity expansion. As a preliminary
to identity expansion, we prove two cut-like rules, referred to in [26] as focal substitution,
admissible.

I Theorem 23 (Focal substitution). Assume Ψ1,Ψ2 ≥ m and C ∈ σ(Ψ2).
1. If Ψ1,Ψ2 `F [A+

m] and Ψ2,Ψ3, 〈A+
m〉 ; L `F U , then Ψ1,Ψ2,Ψ3 ; L `F U .

2. If Ψ1,Ψ2 ; L `F 〈A−m〉 and Ψ2,Ψ3 ; [A−m] `F U , then Ψ1,Ψ2,Ψ3 ; L `F U .

Proof. (1) follows by induction over the proof that Ψ2,Ψ3, 〈A+
m〉 ; L `F U , while (2) follows

by induction over the proof that Ψ1,Ψ2 ; L `F 〈A−m〉, using admissibility of weakening and
contraction in a similar manner to the proof of admissibility of cut. J

I Theorem 24 (Suspension Expansion for ADJF ).
1. If Ψ, 〈A+

m〉 ; Ω `F U , then Ψ ; A+
m,Ω `F U .

2. If Ψ ; · `F 〈A−m〉, then Ψ ; · `F A−m.

Proof. This proof proceeds by induction on the structure of A±m, using focal substitution in
each (non-atomic) case to eliminate the suspended proposition. J

It follows almost immediately from Theorem 24 that identity expansion in its standard
form holds—we arrive at the desired identity proofs by applying the admissible general
suspension rule, followed by a focus rule, followed by an identity rule.

I Corollary 25 (Identity Expansion for ADJF ).
1. If W ∈ σ(Ψ), then Ψ ; A+

m `F A+
m.

2. If W ∈ σ(Ψ), then Ψ, A−m ; · `F A−m.

With cut admissibility and identity expansion, we can now move on to prove focalization.
Since we are concerned with stable sequents, when translating a proof in ADJI into a proof
in ADJF , we stabilize the sequent by inserting shifts. Since Am is logically equivalent (in
ADJI) to ↑m

mAm, and similarly, Am is logically equivalent to ↓m
mAm (Example 26), the way

in which we do this stabilization is irrelevant—it only matters that there is some way of
doing so.

I Example 26. Given Am, we can construct the following two proofs:

W ∈ σ(·)
Am `I Am

id

Am `I ↑m
mAm

↑R m ≥ m
W ∈ σ(·)
Am `I Am

id

↑m
mAm `I Am

↑L
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I Theorem 27 (Focalization). If (Ψ−)• `I (A+
m)•, then Ψ− ; · `F A+

m

Proof. We first note that cut elimination for ADJI allows us to only consider cut-free proofs.
We then proceed by induction over the proof of (Ψ−)• `I (A+

m)•.
In each case other than the identity cases, we apply the inductive hypothesis to the

premise(s) of the last rule used, and then cut the result of this together with the result of
applying that rule to identies.

For instance, if the last rule used was ↓R, then we have as our initial proof that

Ψ1 ≥ m W ∈ σ(Ψ2)
D

(Ψ1)• `I Am

(Ψ1)•, (Ψ2)• `I ↓m
k Am

↓R

From this, we can construct the following proof:

D
(Ψ1)• `I Am

Ψ1 ; · `F A−m
i.h.(D)

A−m ≥ m W ∈ σ(Ψ2)
W ∈ σ(·)

A−m ; · `F A−m
id

Ψ2, A
−
m `F [↓m

k A
−
m]

↓R

Ψ2, A
−
m `F ↓m

k A
−
m

focus+

Ψ1,Ψ2 ; · `F ↓m
k A
−
m

cut

using the admissibility of cut and of identity to make the dotted inferences. J

5 Conclusion

We have developed adjoint logic as a generic way to combine multiple logics with varying
structural properties. A particular instance of adjoint logic is given by a preorder between
modes of truth, each of which may optionally satisfy weakening, contraction, or both. On one
hand, we decompose the subexponentials of subexponential linear logic [19, 5, 20] into shifts
that embed logics into each other, rather than coding all of them into a “master” logic. This
retains syntax and semantics of the individual components, with the adjunction properties
guaranteeing conservativity. On the other hand, we generalize Benton’s LNL allowing many
substructural (and structural) logics to be harmoniously combined, as can be seen from our
examples. In ongoing work [24] we are investigating an operational interpretation of adjoint
logic propositions as a rich language of session types, supporting new communication patterns
such as multicast or distributed garbage collection by virtue of the underlying adjoint logic.
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