
15-851 COMPUTATION AND DEDUCTION

MODEL SOLUTION OF ASSIGNMENT 1
BRIGITTE PIENTKA

January 31, 2001

Exercise 2.1: Write Mini-ML programs for multiplication, exponentiation, sub-
traction, and a function that returns a pair of (integer) quotient and remainder
of two natural numbers.

Solution:

add = fix f. lam x. lam y. case x of z⇒ y | s x′ ⇒ s (f x′ y)
sub = fix f. lam x. lam y.

case x of z⇒ z
| s x′ ⇒ case y of z⇒ x | s y′ ⇒ f x′ y′.

mult = fix f. lam x. lam y.

case x of z⇒ z | s x′ ⇒ add (f x′ y) y
expo = fix f. lam x. lam n.

case n of z⇒ (s z) | s n′ ⇒ mult x (f xn′)

quot = fix f. lam x. lam y.
case sub x y of

z⇒ case sub y x of z⇒ 〈s z, z〉 | s x′ ⇒ 〈z, x〉
| s w⇒ let val v = f (s w) y in 〈s (fst v), snd v〉

Exercise 2.13: Specify a call-by-name operational semantics for our language
where the constructors are lazy that is they should not evaluate their argu-
ments.

Solution: We start by defining lazy values. If we discover an expression s e
then we reached a value as we will only evaluate e when needed. Similarly, a
pair 〈e1, e2〉 is a value.

lval z
z Lazy V al

lval s
s e Lazy V al

lval lam
lam x.e Lazy V al

lval pair
〈e1, e2〉 Lazy V al

1

2 MODEL SOLUTION OF ASSIGNMENT 1 BRIGITTE PIENTKA January 31, 2001

We proceed by revising the operational semantics of Mini-ML.

evl z

z
l
↪→ z

evl s

s e
l
↪→ s e

e
l
↪→ z e1

l
↪→ v

evl case z

case e of z⇒ e1 | s x′ ⇒ e2
l
↪→ v

e
l
↪→ s e′ [e′/x′]e2

l
↪→ v

evl case s

case e of z⇒ e1 | s x′ ⇒ e2
l
↪→ v

evl lam

lam x.e
l
↪→ lam x.e

e1
l
↪→ lam x.e′ [e2/x]e′

l
↪→ v

evl app

e1 e2
l
↪→ v

evl pair

〈e1, e2〉
l
↪→ 〈e1, e2〉

e
l
↪→ 〈e1, e2〉 e1

l
↪→ v

evl fst

fst e
l
↪→ v

e
l
↪→ 〈e1, e2〉 e2

l
↪→ v

evl snd

snd e
l
↪→ v

The evl letn rule does not change as it already is lazy, i.e. it does not
evaluate the argument x. In order to force the evaluation of an expression,
we choose to include the evl letv rule.

e1
l
↪→ v1 [v1/x]e2

l
↪→ v

evl letv

let val x = e1 in e2
l
↪→ v

[e1/u]e2
l
↪→ v

evl letn

let name u = e1 in e2
l
↪→ v

The evl fix rule stays the same.

[fix e/x] e
l
↪→ v

evl fix

fix e
l
↪→ v

Theorem 1 (Value Soundness). If D :: e
l
↪→ v then E :: v Lazy V al.

Proof. The proof follows by induction over the structure of the deduction

D :: e
l
↪→ v. We will only show a few typical cases.

Case: D = evl z

z
l
↪→ z

. Then z Lazy V al by the rule lval z.

Case: D = evl s

s e
l
↪→ s e

. Then s e Lazy V al by the rule lval s.

Case: D = evl lam

lam x.e
l
↪→ lam x.e

.

15-851 COMPUTATION AND DEDUCTION 3

Then lam x.e Lazy V al by the rule lval lam.

Case: D =

D1

e1
l
↪→ lam x.e′

D2

[e2/x]e′
l
↪→ v

evl app

e1 e2
l
↪→ v

The induction hypothesis on D2 yields a deduction E :: v Lazy V al.

Case: D =

D1

e
l
↪→ 〈e1, e2〉

D2

e1 ↪→ v
evl fst

fst e
l
↪→ v

The induction hypothesis on D2 yields a deduction E :: v Lazy V al.

Exercise 2.14 - Part 1: Prove that v V alue is derivable if and only if v ↪→ v
is derivable. That is, values are exactly those expressions that evaluate to
themselves.

Solution: Theorem 2. If D :: v V alue then E :: v ↪→ v.

Proof. By induction over the structure of the deduction D :: v V alue.

Case: D = val z
z V alue

. Then z ↪→ z by the rule ev z.

Case: D =

D1

v V alue
val s

s v V alue
The induction hypothesis on D1 yields a deduction E1 :: v ↪→ v. Using
the inference rule ev s we conclude that s v ↪→ s v.

Case: D = val lam
lam x.e V alue

.

Then lam x.e ↪→ lam x.e by the rule ev lam.

Case: D =

D1

v1 V alue
D2

v2 V alue
val pair

〈v1, v2〉 V alue
v1 ↪→ v1 by induction hypothesis on D1

v2 ↪→ v2 by induction hypothesis on D2

〈v1, v2〉 ↪→ 〈v1, v2〉 by rule ev pair

Theorem 3. If E :: v ↪→ v then D :: v V alue.

Proof. Follows immediately from the value-soundness theorem Theorem 2.1
p 19 of the lecture notes.

4 MODEL SOLUTION OF ASSIGNMENT 1 BRIGITTE PIENTKA January 31, 2001

Exercise 2.14 - Part 2: Write a Mini-ML function observe : nat → nat that,
given a lazy value of type nat, returns the corresponding eager value if it
exists.

Solution:
There are two possible ways to observe the value of a lazy expression. The first
solution uses the let val construct to force the evaluation of a lazy expression.

observe = fix f.lam x.case x of z⇒ z | s x′ ⇒ let val v = f x′ in s v.

The second solution is based on continuations. The basic idea is the fol-
lowing: any function f : t → s can be rewritten into a function f ′ of type
t → (s → b) → b. In contrast to f , the function f ′ takes an extra function
as an argument, called a continuation, which accumulates the results. To use
the function f ′ to compute the original function f , we give it the initial con-
tinuation which is often the identity function as an argument. Applying this
idea to define observe we first define a function observe′ which takes x and a
continuation k as an argument. In the base case, we just call the continua-
tion k applied to z. In the recursive case, we apply the successor function to
the result of the continuation. Note that the successor function will be only
applied to values once it is executed.

observe′ = fix f.lam x.lam k.case x of z⇒ k z | s x′ ⇒ f x′ (lam v.k (s v)).
observe = lam x. observe′ x (lam v.v).

Let us consider the following evaluation: observe′ s (s ((λx.x)z)) k.

first rec. call: observe′ (s ((λx.x) z)) (lam v1.k (s v1))
sec. rec. call : observe′ ((λx.x) z) (lam v2.(lam v1.k (s v1)) (s v2))

Now observe′ will evaluate ((λx.x) z) to z and reach the base case where
we need to compute (lam v2.(lam v1.k(s v1))(s v2)) z.

