
Midterm Exam

15-814 Types and Programming Languages
Frank Pfenning

October 17, 2019

Name: Andrew ID:

Instructions

• This exam is closed-book, closed-notes.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• For reference, on pages 9–11 there is an appendix with sections on the syntax, statics, and
dynamics.

Type Fork/Join Small-Step

λ-Calculus Isomorphisms Parallelism Determinacy

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score

Max 40 30 50 30 150

1

1 λ-Calculus (40 pts)

Recall the definition of Church numerals in the λ-calculus:

n = λs. λz. s (s . . . (s︸ ︷︷ ︸
n times

z))

Task 1 (20 pts). Fill in the missing definitions. You may use any definition in all subsequent
answers, including function composition in infix notation (f ◦ g).

zero =β 0
zero = λs. λz. z

succ n =β n+ 1

succ =

compose f g function composition, usually written in infix notation as f ◦ g

compose =

double n =β 2n

double =

mystery n =β

mystery = λn. n double (succ zero)

2

Next, we consider a Church-style representation of numbers in base 2, defined with

(an · · · a1a0)2 = an2n + . . . a12
1 + a02

0

where each ai is either 0 or 1. We then define 0 = b0 and 1 = b1 and

p(an · · · a1a0)2q = λb1. λb0. λe. a0 (a1 . . . (an e))

For example, p6q = p(110)2q = λb1. λb0. λe. b0 (b1 (b1 e)). As a special case, we represent the
number 0 as shown below with zero binary digits.

Task 2 (20 pts). Complete the following definitions, where you may use any definitions in subse-
quent answers, including all the definitions from Task 1.

bzero =β p0q

bzero = λb1. λb0. λe. e

btwo =β p2q = p(10)2q

btwo =

bdouble pxq =β p2xq

bdouble =

bin2nat pxq =β x

bin2nat =

bmystery pxq =β

bmystery = λx. x (λy. false) (λz. true) true

3

2 Type Isomorphism (30 pts)

Recall that two types τ and σ are isomorphic if we can supply a pair of functions Forth : τ → σ
and Back : σ → τ such that Back ◦ Forth and Forth ◦ Back are both equal to the identity function.
As in lectures and homework assignments, we take here an extensional point of view, that is, two
functions are equal if applied to an arbitrary value v of the correct type they yield equal results.

We define
2 = (zero : 1) + (one : 1)
bin = ρα. (E : 1) + (B1 : α) + (B0 : α)

Task 1 (30 pts). Define functions Forth and Back witnessing the isomorphism of 2× bin + 1 ∼= bin,
using the following labels:

(lft : 2× bin) + (rgt : 1) ∼= bin

You may use general pattern matching in your definition. You do not need to prove that the
functions form an isomorphism.

Forth : (lft : 2× bin) + (rgt : 1)→ bin

Forth =

Back : bin→ (lft : 2× bin) + (rgt : 1)

Back =

4

3 Fork/Join Parallelism (50 pts)

Fork/join parallelism is the idea that we can fork the parallel evaluation of two expression and
then join these two threads when they have both finished.

We model this with a parallel pair τ1 � τ2. The new expressions are 〈e1 ‖ e2〉 to construct a
parallel pair and case e (〈x1 ‖ x2〉 ⇒ e′) to decompose it.

The typing rules are not very interesting, because they work exactly like the typing of con-
structors and destructors of ordinary eager pairs. So we do not write them out.

Regarding the dynamics, here are several examples to illustrate the desired behavior. We write
v for expressions with v val and ⊥ = fix f. f .

〈e1 ‖ ⊥〉 does not have a value
〈⊥ ‖ e2〉 does not have a value
〈v1 ‖ v2〉 is a value
〈(λxx) v1 ‖ (λx. λy. x) v2 v3〉 7→2 〈v1 ‖ v2〉

When writing down the dynamics, make sure that preservation and progress continue to hold.

Task 1 (5 pts). Give the rule(s) for the e val judgment for the new expressions.

Task 2 (20 pts). Give the rules for the e 7→ e′ judgment for the new expressions.

5

Task 3 (20 pts). Fill in the gaps in the statement and one case in the proof of preservation.

Theorem (Preservation)
If · ` e : τ and then .

Proof. By

Case: In the rule where two expressions step in parallel, we have

Task 4 (5 pts). Complete the statement of the progress theorem and the global structure of the
proof. You do not need to show any cases.

Theorem (Progress)

If then either e 7→ e′ for some e′ or e val.

Proof. By

6

4 Small-Step Determinacy (30 pts)

As noted during the midterm review session, in the proof that our language from the appendix
satisfies small-step determinacy we may need the following two lemmas. We write e 67→ if there is
no e′ such that e 7→ e′.

Task 1 (5 pts).

Lemma A If · ` e : τ and e val then e 67→.
Circle one: This lemma follows directly from the progress theorem.

YES / NO

If your answer is NO: the statement can be proved by

Task 2 (5 pts).

Lemma B If · ` e : τ and e 67→ then e val.
Circle one: This lemma follows directly from the progress theorem.

YES / NO

If your answer is NO: the statement can be proved by

7

Task 3 (15 pts). Complete the following portion of the proof of small-step determinacy.

Theorem (Small-Step Determinacy). If · ` e : τ and e 7→ e′ and e 7→ e′′ then e′ = e′′.
Proof: By rule induction on the derivation of e 7→ e′.

Case:

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

where e = 〈e1, e2〉 and e′ = 〈e′1, e2〉.

· ` e1 : τ1 for some τ1 By

We then apply inversion on and obtain subcase(s).

State and complete each subcase below.

Task 4 (5 pts). Does your set of rules in Problem 3 on fork/join parallelism satisfy small-step
determinacy? Circle one:

YES / NO

8

Appendix: Language Reference

Language

Types τ ::= α | τ1→ τ2 | τ1 × τ2 | 1 |
∑

i∈I(i : τi) | ρα. τ

Expressions e ::= x (variables)
| λx. e | e1 e2 (→)
| 〈e1, e2〉 | case e (〈x1, x2〉 ⇒ e′) (×)
| 〈 〉 | case e (〈 〉 ⇒ e′) (1)
| j · e | case e (i · xi ⇒ ei)i∈I (

∑
)

| fold e | unfold e (ρ)
| f | fix f. e (recursion)

Contexts Γ ::= x1 : τ1, . . . , xn : τn (all xi distinct)

Statics and Dynamics

Functions.

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

λx. e val
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

v2 val

(λx. e1) v2 7→ [v2/x]e1
beta

Products.

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
pair

Γ ` e : τ1 × τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ ′

Γ ` case e (〈x1, x2〉 ⇒ e′) : τ ′
case/pair

9

e1 val e2 val

〈e1, e2〉 val
val/pair

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
step/pair1

e1 val e2 7→ e′2

〈e1, e2〉 7→ 〈e1, e′2〉
step/pair2

e0 7→ e′0

case e0 (〈x1, x2〉 ⇒ e3) 7→ case e′0 (〈x1, x2〉 ⇒ e3)
step/case/pair0

v1 val v2 val

case 〈v1, v2〉 (〈x1, x2〉 ⇒ e3) 7→ [v1/x1][v2/x2]e3
step/case/pair

Unit.

Γ ` 〈 〉 : 1
unit

Γ ` e0 : 1 Γ ` e′ : τ

Γ ` case e0 (〈 〉 ⇒ e′) : τ
case/unit

〈 〉 val
val/unit

e0 7→ e′0

case e0 (〈 〉 ⇒ e1) 7→ case e′0 (〈 〉 ⇒ e1)
step/case/unit0

case 〈 〉 (〈 〉 ⇒ e1) 7→ e1
step/case/unit

Sums.

j ∈ I Γ ` e : τj

Γ ` j · e :
∑

i∈I(i : τi)
sum

Γ ` e0 :
∑

i∈I(i : τi) Γ, xi : τi ` ei : τ for all i ∈ I

Γ ` case e0 (i · xi ⇒ ei)i∈I : τ
case/sum

e val
j · e val

val/sum

e 7→ e′

j · e 7→ j · e′
step/sum

e0 7→ e′0

case e0 (i · xi ⇒ ei)i∈I 7→ case e′0 (i · xi ⇒ ei)i∈I
step/case/sum0

v val
case (j · v) (i · xi ⇒ ei)i∈I 7→ [v/xj]ej

step/case/sum

10

Recursive Types.

Γ ` e : [ρα. τ/α]τ

Γ ` fold e : ρα. τ
fold

Γ ` e : ρα. τ

Γ ` unfold e : [ρα. τ/α]τ
unfold

e val
fold e val

val/fold

e 7→ e′

fold e 7→ fold e′
step/fold

e 7→ e′

unfold e 7→ unfold e′
step/unfold0

v val
unfold (fold v) 7→ v

step/unfold

Fixed Point Expressions.

Γ, f : τ ` e : τ

Γ ` fix f. e : τ
fix

fix f. e 7→ [fix f. e/f]e
step/fix

11

