
Midterm Exam

15-814 Types and Programming Languages
Frank Pfenning

October 18, 2018

Name: Andrew ID:

Instructions

• This exam is closed-book, closed-notes.

• You have 80 minutes to complete the exam.

• There are 4 problems.

• For reference, on pages 10–12 there is an appendix with sections on the syntax, statics, and
dynamics.

Type

Combinators Isomorphisms Suspensions Subtyping

Prob 1 Prob 2 Prob 3 Prob 4 Total

Score

Max 30 30 55 35 150

1

1 Combinators (30 pts)

Instead of explicit λ-expressions we can base computation entirely on so-called combinators and
combinatory reduction. We explore here the simply-typed version of combinators. The language of
combinators is given by

Types τ ::= α | τ1→ τ2
Terms t ::= x | c | t1 t2

where x are variables, c are constant combinators, and t1 t2 is application. Each constant combinator
c has a type and a reduction rule.

It is important to remember that application is left associative, so for example S x y z stands for
(((S x) y) z).

As an example, consider the combinator I . In the λ-calculus it is defined by I = λx. x. In the
combinatory calculus we instead define it by its reduction behavior.

Type I : α→ α
Reduction I x 7→ x

The type of combinators are schematic in their type variables. This means, for example, that I is
also typed by all instances τ → τ of α→ α.

Task 1 (15 pts). Fill in the following table. When there are multiple possible types, for full credit
provide the most general one using type variables α, β, and γ.

Type K : α→ (β→ α)

Reduction K xy 7→

Type K∗ :

Reduction K∗ x y 7→ y

Type S :

Reduction S x y z 7→ (x z) (y z)

A remarkable property of the combinatory calculus is that all functions of the λ-calculus can be
expressed with just two combinators, S and K in an operationally correct way. This is true for the
untyped as well as the simply-typed version. In Tasks 2 and 3 we are not concerned with typing.

Task 2 (5 pts). Show that I can be defined as S K K by showing each step in a computation
S K K x 7→∗ x.

2

Task 3 (5 pts). Show how to define K∗ as a combinatory term using K, I , and S as needed (and not
as a λ-expression).

Definition K∗ =

Task 4 (5 pts). Verify that your definition in Task 3 is correct by showing a step-by-step reduction
of t x y 7→∗ y assuming you defined K∗ = t.

3

2 Type Isomorphism (30 pts)

Recall that two types τ and σ are isomorphic if we can supply a pair of functions f : τ → σ and
g : σ→τ such that f ◦g and g ◦f are both equal to the identity function. We take here an extensional
point of view, that is, two functions are equal if applied to an arbitrary value v of the correct type
yield equal results, and two lazy pairs are equal if their first and second projections are equal.

In each of the following cases, provide the bodies of functions going in both directions and
state whether they form an isomorphism for arbitrary types τ , σ, and ρ. You do not need to prove
isomorphisms nor provide counterexamples. For ease of writing, we have already decomposed the
outermost λ-abstraction in the two functions in each case.

Task 1 (10 pts). τ & σ ∼= σ & τ?

p : τ & σ ` : σ & τ

q : σ & τ ` : τ & σ

Do these form an isomorphism? YES / NO

Task 2 (10 pts). τ & τ ∼= τ?

p : τ & τ ` : τ

x : τ ` : τ & τ

Do these form an isomorphism? YES / NO

Task 3 (10 pts). τ → (σ & ρ) ∼= (τ → σ) & (τ → ρ)?

f : τ → (σ & ρ) ` : (τ → σ) & (τ → ρ)

p : (τ → σ) & (τ → ρ) ` : τ → (σ & ρ)

These form an isomorphism? YES / NO

4

3 Suspensions (55 pts)

In this problem with start from our call-by-value functional language with simple types and add
a new type constructor ↑τ representing the suspension of an expression of type τ . We add a
constructor freeze(e) and a destructor thaw(e) for this new type. freeze(e) is intended to suspend
evaluation of e until it is liberated with thaw.

Task 1 (10 pts). Give the typing rules for freeze(e) and thaw(e).

Task 2 (15 pts). Provide the rules for the judgments e 7→ e′ and e val pertaining to the new
constructs.

5

Task 3 (10 pts). Fill in the gaps and one case in the proof of preservation.

Theorem (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By

Case: When the destructor meets the constructor we have

�

Task 4 (5 pts). State the case in the canonical forms theorem for the type ↑τ . You do not need to
prove it.

Theorem (Canonical Forms)
If · ` v : ↑τ and v val then

6

Task 5 (10 pts). Fill in the gaps and one case in the proof of progress.

Theorem (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e val.

Proof: By

Case: For the destructor we have

�

Task 6 (5 pts). Show how the type ↑τ may be encoded in the language already by giving an
appropriate translation for the type, constructors, and destructors. You do not need to prove its
correctness.

↑τ =

freeze(e) =

thaw(e) =

7

4 Subtyping (35 pts)

In this problem we explore subtyping. We define τ ≤ σ to mean that every value of type τ also has
type σ. Using n-ary labeled sum (including the case for n = 1), we define

nat = ρα. (z : 1) + (s : α)
pos = ρβ. (s : nat)
zro = ργ. (z : 1)

Task 1 (5 pts). Complete the following typing derivation of fold(s · fold(z · 〈 〉)) : pos.

` 〈 〉 :

` z · 〈 〉 :

` fold(z · 〈 〉) :

` s · fold(z · 〈 〉) :

` fold(s · fold(z · 〈 〉)) : pos

Task 2 (10 pts). Prove that pos ≤ nat, that is, for every v :: pos we also have v :: nat. The rules for
closed value typing are provided in Appendix C for reference.

Similarly (you do not have to show this), we also have zro ≤ nat.

8

Task 3 (10 pts). Fill in the following table of functions with their types. When there are multiple
different types, provide the most informative. For example, we have zero : nat, but zero : zro is more
informative since zro ≤ nat.

zero : zro
zero =

succ :

succ =

pred : pos→ nat
pred =

Task 4 (10 pts). Give a definition even of the even numbers in unary form such that even ≤ nat. You
do not need to prove this proposition.

even =

9

Appendix: Some Inference Rules

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over finite index sets.
We present disjoint sums in their n-ary form and lazy pairs in their binary form, because it is these
forms we use in this exam.

τ ::= α | τ1 → τ2 | τ1 ⊗ τ2 | 1 |
∑

i∈I(i : τi) | τ1 & τ2 | ρ(α.τ)

e ::= x (variables)
| λx. e | e1 e2 (→)
| i · e | case e {i · xi ⇒ ei}i∈I (+)
| 〈e1, e2〉 | case e0 {〈x1, x2〉 ⇒ e′} (⊗)
| 〈 〉 | case e0 {〈 〉 ⇒ e′} (1)
| 〈|e1, e2|〉 | e · l | e · r (&)
| fold(e) | unfold(e) (ρ)
| fix(x.e) (recursion)

10

B Statics, Expressions: Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ
(VAR)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(I-→)

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′
(E-→)

Γ ` e : τj (j ∈ I)

Γ ` j · e :
∑

i∈I(i : τi)
(I-+)

Γ ` e :
∑

i∈I(i : τi) Γ, xi : τi ` ei : τ (∀i ∈ I)

Γ ` case e {i · xi ⇒ ei}i∈I : τ
(E-+)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 ⊗ τ2
(I-⊗)

Γ ` e0 : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ` e′ : τ

Γ ` case e0 {〈x1, x2〉 ⇒ e′} : τ
(E-⊗)

Γ ` 〈 〉 : 1
(I-1)

Γ ` e0 : 1 Γ ` e′ : τ
Γ ` case e0 {〈 〉 ⇒ e′} : τ

(E-1)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈|e1, e2|〉 : τ1 & τ2
(I-&)

Γ ` e : τ1 & τ2

Γ ` e · l : τ1
(E-&l)

Γ ` e : τ1 & τ2

Γ ` e · r : τ2
(E-&r)

Γ ` e : [ρ(α.τ)/α]τ

Γ ` fold(e) : ρ(α.τ)
(I-ρ)

Γ ` e : ρ(α.τ)

Γ ` unfold(e) : [ρ(α.τ)/α]τ
(E-ρ)

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ
(FIX)

C Statics, Closed Values: v :: τ

x : τ ` e : τ ′

λx.e :: τ → τ ′
(IV-→)

v :: τj (j ∈ I)

j · v ::
∑

i∈I(i : τi)
(IV-+)

v1 :: τ1 v2 :: τ2

〈v1, v2〉 :: τ1 ⊗ τ2
(IV-⊗)

〈 〉 :: 1
(IV-1)

· ` e1 : τ1 · ` e2 : τ2

〈|e1, e2|〉 :: τ1 & τ2
(IV-&)

v :: [ρ(α.τ)/α]τ

fold(v) :: ρ(α.τ)
(IV-ρ)

11

D Dynamics: e 7→ e′ and v val

λx.e val
(V-→)

v2 val

(λx. e1) v2 7→ [v2/x]e1
(R-→)

e1 7→ e′1

e1 e2 7→ e′1 e2
(CE-→1)

v1 val e2 7→ e′2

v1 e2 7→ e1 e
′
2

(CE-→2)

v val
i · v val

(V-+)
e 7→ e′

i · e 7→ i · e′
(CI-+)

e 7→ e′

case e {i · xi ⇒ ei}i∈I 7→ case e′ {i · xi ⇒ ei}i∈I
(CE-+)

vj val

case (j · vj) {i · xi ⇒ ei}i∈I 7→ [vj/xj]ej
(R-+)

v1 val v2 val

〈v1, v2〉 val
(V-⊗)

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
(CI-⊗1)

v1 val e2 7→ e′2

〈v1, e2〉 7→ 〈v1, e′2〉
(CI-⊗2)

e0 7→ e′0

case e0 {〈x1, x2〉 ⇒ e′} 7→ case e′0 {〈x1, x2〉 ⇒ e′}
(CE-⊗)

v1 val v2 val

case 〈v1, v2〉 {〈x1, x2〉 ⇒ e′} 7→ [v1/x1, v2/x2]e
′

(R-⊗)

〈 〉 val
(V-1)

e0 7→ e′0

case e0 {〈 〉 ⇒ e′} 7→ case e′0 {〈 〉 ⇒ e′}
(CE-1)

case 〈 〉 {〈 〉 ⇒ e′} 7→ e′
(R-1)

〈|e1, e2|〉 val
(V-&)

e 7→ e′

e · l 7→ e′ · l
(CI-&l)

e 7→ e′

e · r 7→ e′ · r
(CI-&)r

〈|e1, e2|〉 · l 7→ e1
(R-&l)

〈|e1, e2|〉 · r 7→ e2
(R-&r)

v val
fold(v) val

(V-ρ)
e 7→ e′

fold(e) 7→ fold(e′)
(CI-ρ)

e 7→ e′

unfold(e) 7→ unfold(e′)
(CE-ρ)

v val
unfold(fold(v)) 7→ v

(R-ρ)

fix(x.e) 7→ [fix(x.e)/x]e
(R-FIX)

12

