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1 Introduction

In this lecture we continue our exploration of the A-calculus and the repre-
sentation of data and functions on them. We give schematic forms to define
functions on natural numbers and give uniform ways to represent them in
the A-calculus. We begin with the schema of iteration and then proceed the
more complex schema of primitive recursion. In the next lecture we will arrive
at the fully general scheme of recursion.

2  Function Composition Revisited

The unit of composition should the identity function, as defined by I = A\z. .
Composing any other function f with I should just yield f. In other words,
we expect

BfIZfiBIf
Let’s calculate:

Bfl = (Af.Ag e .f(gx)) f1
—3 (Ag.\x. f(gx)) 1
—p5 Az.f(lx)
—;5 M. fx
= f

We see the result is not exactly f as we expected, but Az. f x. However,
these two expressions always behave the same when applied to an arbitrary

LECTURE NOTES THURSDAY, SEPTEMBER 2, 2021



L2.2 Primitive Recursion

argument so they are extensionally equal. To capture this we add one more
rule to the A-calculus:

n-conversion Az.ex =, e provided z ¢FV(e)

The proviso that  not be among the free variables of e is needed, because
Az.zx # Ax.yx. The first applies the argument to itself, the second applies
y to the given argument.

It is possible to orient this equation and investigate the notion of 37-
reduction. However, it turns out this is somewhat artificial because exten-
sionality is a reasoning principle for equality and not a priori a computa-
tional principle. Interestingly, in the setting of typed A-calculi it makes more
sense to use the equation from right to left, called n-expansion, but some
discipline has to be imposed or expansion does not terminate.

We should remember that this form of extensionality does not extend to
functions defined over specific representations. For example, we saw there
are (at least) two formulations of negation on Booleans which are not equal,
even if we throw in the rule of n-conversion.

3 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we
think about the computational power of a calculus we generally consider
the natural numbers 0,1,2,.... We would like a representation 7 such that
they are all distinct. We obtain this by thinking of the natural numbers as
generated from zero by repeated application of the successor function. Since
we want our representations to be closed we start with two abstractions: one
(z) that stands for zero, and one (s) that stands for the successor function.

0 = As.hz.z

1 = Xs.h\z.sz

2 = As.)z.s(s2)

3 = As.)z.s(s(s2))

= As. Az s(...(s 2))
N———
n times

In other words, the representation 7 iterates its first argument n times over
its second argument

nfx=[f"(z)
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Primitive Recursion L2.3

where f"(z) = f(...(f(z)))
n times

The first order of business now is to define a successor function that
satisfies succ m = n+ 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

0
An.n+1

AS. Az. 2z
A s Az.s(nsz)

zero
succ

We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead we
calculate generically (using mathmetical notation and properties)

succn
= As.Az.s(mzs)
= As.Az.s(s"(2))
= As. Az.5"(2)
= n+l

A more formal argument might use mathematical induction over n.

Using the iteration property we can now define other mathematical
functions over the natural numbers. For example, addition of n and &
iterates the successor function n times on k.

plus = An. A\k.n succ k

You are invited to verify the correctness of this definition by calculation.
Similarly:
times
exp

An. \k.n (plus k) zero
Ab. Xe. e (times b) (succ zero)

4 The Schema of Iteration

As we saw in the first lecture, a natural number n is represented by a
function 7 that iterates its first argument n times applied to the second:

ngc=g(...(g c)). Another way to specify such a function schematically is
—
n times

f0 -

fn+1) = g(fn)
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L2.4 Primitive Recursion

If a function satisfies such a schema of iteration then it can be defined in the
A-calculus on Church numerals as

f=An.ngc

which is easy to verify. The class of function definable this way is total (that
is, defined on all natural numbers if ¢ and g are), which can easily be proved
by induction on n. Returning to examples from the last lecture, let’s consider
multiplication again.

times 0 k =0
times (n+1)k = k+timesnk

This doesn’t exactly fit our schema because £ is an additional parameter.
That’s usually allowed for iteration, but to avoid generalizing our schema
the times function can just return a function by abstracting over k.

times 0 = Ak.0
times (n+1) = Mk.k+timesnk

We can read off the constant ¢ and the function g from this schema

A\k. zero
Ar Ak plus k (r k)

C

and we obtain
times = An.n (Ar. A\k.plusk (r k)) (Ak. zero)
which is more complicated than the solution we constructed by hand

plus = An.Ak.nsucck
times' = An.\k.n (plus k) zero

The difference in the latter solution is that it takes advantage of the fact that
k (the second argument to times) never changes during the iteration. We
have repeated here the definition of plus, for which there is a similar choice
between two versions as for times.

5 The Schema of Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the
exponential function, or the “stack” function iterating the exponential.

exp = Ab.)e.e (times b) (succ zero)
stack = Ab.An.n (exp b) (succ zero)
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Primitive Recursion L2.5

Everything appears to be going swimmingly until we think of a very simple
function, namely the predecessor function defined by

pred 0 =0
pred (n+1)

n

You may try for a while to see if you can define the predecessor function,
but it is difficult. The problem is that we have to go from As. Az.s(...(s2))
to X\s. A\z.s(...z), thatis, we have to remove an s rather than add an s as was
required for the successor. One possible way out is to change representation
and define 7 differently so that predecessor becomes easy (see Exercise 3).
We run the risk that other functions then become more difficult to define, or
that the representation is larger than the already inefficient unary represen-
tation already is. We follow a different path, keeping the representation the
same and defining the function directly.

We can start by assessing why the schema of iteration does not immedi-
ately apply. The problem is that in

fo = ¢
fn+1) = g(fn)

the function ¢ only has access to the result of the recursive call of f on n, but
not to the number n itself. What we would need is the schema of primitive
recursion:

fo =

f(n+1)

where n is passed to h. For example, for the predecessor function we have
c=0and h = Az. \y. z (we do not need the result of the recursive call, just n
which is the first argument to h).

hn(fn)

5.1 Defining the Predecessor Function

Instead of trying to solve the general problem of how to implement primitive
recursion, let’s define the predecessor directly. Mathematically, we write
n = 1 for the predecessor (thatis, 0 =1 =0and n+ 1 =1 = n). The key idea
is to gain access to n in the schema of primitive recursion by rebuilding it
during the iteration. This requires pairs, a representation of which we will
construct shortly.

Our specification then is

predyn = (n,n 1)
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L2.6 Primitive Recursion

and the key step in its implementation in the A-calculus is to express the
definition by a schema of iteration rather than primitive recursion. The start is
easy:

pred, 0 = (0,0)

For n + 1 we need to use the value of pred, n. For this purpose we assume
we have a function letpair where

letpuir <€1, 62> k=k [ANED)

In other words, letpair passes the elements of the pair to a “continuation” .
Using letpair we start as

pred, (n + 1) = letpair (pred,n) (Ax. Ay. ...)

If pred,, satisfies it specification then reduction will substitute n for z and
n = 1 for y. From these we need to construct the pair (n + 1, n) which we can
do, for example, with (x + 1, z). This gives us

pred, 0 = (0,0)
predy (n+1) = letpair (pred,n) (Az. \y.(x +1,x))
predn = letpair (predyn) (Ax. Ay.y)

5.2 Defining Pairs

The next question is how to define pairs and letpair. The idea is to simply
abstract over the continuation itself! Then letpair isn’t really needed because
the functional representation of the pair itself will apply its argument to
the two components of the pair, but if want to write it out it would be the
identity.

(z,y) = Mk.kxy
pair = Ar. ANy Ak kxy
letpair = Ap.p

5.3 Proving the Correctness of the Predecessor Function

Summarizing the above and expanding the definition of letpair we obtain

predy, = An.n (Ap. p (Ax. \y. pair (succ x) x)) (pair zero zero)
pred = An.predyn (Az. Ay.y)
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Primitive Recursion L2.7

Let’s do a rigorous proof of correctness of pred.! For the representation of
natural numbers, it is convenient to assume its correctness in the form

690 =g C
n+lgce =g g(ngc)

Lemma 1 pred,n =3 (n,n=1)
Proof: By mathematical induction on n.
Base: n = 0. Then

pred,0 =5 0(...) (pairzerozero)

=g pair zero zero By repn. of 0
=3 (0,0) = (0,0~ 1) By repn. of 0 and pairs

Step: n=m+ 1. Then

predym +1 =g m+1(Ap.p (Ax. Ay. pair (succx) x)) (pair zero zero)
=3 (Ap.p (Az. Xy.pair (succz) x)) (M (Ap. ...) (...)) Byrepn.of m+1

=3 (Ap.p (Ax. \y. pair (succx) x)) (pred, m) By defn. of pred,

=5 (Ap.p (Az. Ay. pair (succz) x)) (m,m = 1) By ind. hyp. on m

=g (m,m = 1) (A\z. \y. pair (succx) )

=g pair (succm)m By repn. of pairs

=g (m+1,m) By repn. of successor and pairs

=(m+1,(m+1)=1) By defn. of -
o

Theorem 2 predn=gn+1
Proof: Direct, from Lemma 1.

predn = (An.predyn (Ax. \y.y))n
=g predynt (Az. Ay. y)

=5 (n,n=1) (Az. \y.y) By Lemma 1
=3 (Ak.km,n=1)(Az. \y.y) By repn. of pairs
=gn=1

O

An interesting consequence of the Church-Rosser Theorem is that if
e =g €' where ¢’ is in normal form, then e —>E e

'We did not carry out this proof in lecture relying on intuition and testing instead.
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L2.8 Primitive Recursion

5.4 General Primitive Recursion

The general case of primitive recursion follows by a similar argument. Recall

fo = ¢
f(n+l) = hn(fn)
We begin by defining a function f; specified with
f2 n= (nv f n)
We can define f> using the schema of iteration.
f20 = (0,c)
fa(n+1) = letpair (fan) (Az. Ay.(x+1,hzy))
fn = letpair (fan) (A\z. \y. )
To put this all together, we implement a function specified with
fo = ¢
f(n+1) = hn(fn)

with the following definition in terms of c and h:

pair = Ax.Ay.Ag.gzy

f2
f

Recall that for the concrete case of the predecessor function we have ¢ =0
and h = A\z. \y. x.

An.n (Ar.r (Ax. \y. pair (succ x) (h x y))) (pair zero c)
An. fan (Az. Ay.y)

6 The Significance of Primitive Recursion

We have used primitive recursion here only as an aid to see how we can
define functions in the pure A-calculus. However, when computing over nat-
ural numbers we can restrict the functions that can be formed in schematic
ways to obtain a language in which all functions terminate. Primitive recur-
sion plays a central role in this because if c and g are terminating then so is
f formed from them by primitive recursion. This is easy to see by induction
on n.

In this ways we obtain a very rich set of functions but we couldn’t use
them to fully simulate Turing machines, for example.
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Primitive Recursion L2.9

Furthermore, if we give a so-called constructive proof of a statement in
certain formulations of arithmetic with mathematical induction, we can
extract a function that is defined by primitive recursion. We will probably
not have an opportunity to discuss this observation further in this course,
but it is an important topic in the course 15-317/15-657 Constructive Logic.

7 A Few Somewhat More Rigorous Definitions

We write out some definitions for notions from the first two lectures a little
more rigorously.

A-Expressions. First, the abstract syntax.

Variables T
Expressions e = Az.el|ejex|x

Az. e binds x with scope e. In the concrete syntax, the scope of a binder Az is
as large as possible while remaining consistent with the given parentheses
so y (Az.z x) stands for y (Az. (z x)). Juxtaposition e; e; is left-associative
SO e ey e3 stands for (e e2) es.

We define FV(e), the free variables of e with

FV(x) = {z}
FV(Az.e) = FV(e)\{z}
FV(€1 62) = FV(€1) @] FV(eg)

Renaming. Proper treatment of names in the A-calculus is notoriously
difficult to get right, and even more difficult when one reasons about the
A-calculus. A key convention is that “variable names do not matter”, that
is, we actually identify expressions that differ only in the names of their bound
variables. So, for example, Az. \y. x z = A\y. Ax. y z = Au. Aw. u z. The textbook
defines fresh renamings [Har16, pp. 8-9] as bijections between sequences of
variables and then a-conversion based on fresh renamings. Let’s take this
notion for granted right now and write e =, €’ if e and e’ differ only in the
choice of names for their bound variables and this observation is important.
From now on we identify e and €’ if they differ only in the names of their
bound variables, which means that other operations such as substitution
and -conversion are defined on a-equivalence classes of expressions.
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L2.10 Primitive Recursion

Substitution. We can now define substitution of €’ for x in e, written [e'/x]e,
following the structure of e.

[¢//z]x = ¢

[e/x]y =y fory # =
[e'/z](Ny.e) = My.[e'[z]e provided y ¢ FV(e')
[e'/z](e1e2) = ([€'/z]er) ([€'/x]e2)

This looks like a partial operation, but since we identify terms up to a-
conversion we can always rename the bound variable y in [e’/z](Ay.e€) to
another variable that is not free in e’ or e. Therefore, substitution is a total
function on a-equivalence classes of expressions.

Now that we have substitution, we also characterize a-conversion as
Az.e =4 \y.[y/x]e provided y ¢ FV(e) but as a definition it would be circular
because we already required renaming to define substitution.

Equality. We can now define - and 7-conversion. We understand these
conversion rules as defining a congruence, that is, we can apply an equation
anywhere in an expression that matches the left-hand side of the equality.
Moreover, we extend them to be reflexive, symmetric, and transitive so
we can write e =g ¢’ if we can go between e and ¢’ by multiple steps of
B-conversion.

p-conversion (Az.e)e’ =g [€'[x]e

n-conversion Az.ex = e provided x ¢ FV(e)

Reduction. Computation is based on reduction, which applies 3-conversion
in the left-to-right direction. In the pure calculus we also treat it as a congru-
ence, that is, it can be applied anywhere in an expression.

p-reduction (Az.e)e’ —p [€'/x]e

Sometimes we like to keep track of length of reduction sequences so we
write e —>g e’ if we can go from e to ¢’ with n steps of S-reduction, and
e — ¢’ for an arbitrary n (including 0).

Confluence. The Church-Rosser property (also called confluence) guaran-
tees that the normal form of a A-expression is unique, if it exists.

Theorem 3 (Church-Rosser [CR36]) If e —>[§ e1 and e —>;; ey then there
exists an e’ such that ey —>; e’ and eqy —>;§ e
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Primitive Recursion L2.11

Exercises

Exercise 1 Analyze whether B I f z f and, if so, whether it requires only
[B-conversion or n-conversion.

Exercise 2 Once we can define each individual instance of the schemas of iteration
and primitive recursion, we can also define them explicitly as combinators.
Define combinators iter and primrec such that

(i) The function iter g c satisfies the schema of iteration
(ii) The function primrec h c satisfies the schema of primitive recursion

You do not need to prove the correctness of your definitions.

Exercise 3 One approach to representing functions defined by the schema
of primitive recursion is to change the representation so that n is not an
iterator but a primitive recursor.
0
n+1

AS. Az 2
As. Az.sm (s z)

1. Define the successor function succ (if possible) and show its correct-
ness.

2. Define the predecessor function pred (if possible) and show its correct-
ness.

3. Explore if it is possible to directly represent any function f specified
by a schema of primitive recursion, ideally without constructing and
destructing pairs.

Exercise 4 The unary representation of natural numbers requires tedious
and error-prone counting to check whether your functions (such a factorial,
Fibonacci, or greatest common divisor in the exercises below) behave cor-
rectly on some inputs with large answers. Fortunately, you can exploit that
the LAMBDA implementation counts the number or reduction steps for you
and prints it in decimal form!

(i) We have
T SUCC Zero —>§ n

because 7 iterates the successor function n times on 0. Run some
experiments in LAMBDA and conjecture how many leftmost-outermost
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L2.12 Primitive Recursion

reduction steps are required as a function of n. Note that only (-
reductions are counted, and not replacing a definition (for example,
zero by As. \z. z). We justify this because we think of the definitions as
taking place at the metalevel, in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be
helpful to use the mathematical notation f*c to describe a A-expression
generated by f’c = ¢ and ¥ le = f(f*¢) where f and ¢ are \-
expressions. For example, 7o = As. \z. s" z or succ® zero = succ (succ (succ zero)).

Exercise 5 Define the following functions in the A-calculus using the LAMBDA
implementation. Here we take “=" to mean =g, that is, -conversion.

You may use all the functions in nat.lam as helper functions. Your
functions should evidently reflect iteration, primitive recursion and pairs.
In particular, you should avoid the use of the Y combinator which will be
introduced in Lecture 3.

Provide at least 3 test cases for each function.

(i) if0 (definition by cases) satisfying the specification

if00zy =
if0Ok+lxy = y
(ii) even satisfying the specification
even 2k = true
even2k+1 = false
(iii) half satisfying the specification
half 2k = k
half 2k+1 = k

Exercise 6 The Lucas function (a variant on the Fibonacci function) is de-
fined mathematically by

lucas 0 = 2
lucas 1 =1
lucas (n+2) = lucasn +lucas (n+1)

Give an implementation of the Lucas function in the A-calculus via the
LAMBDA implementation.
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You may use the functions from nat.lam as helper functions, as well
as those from Exercise 5. Your functions should evidently reflect iteration,
primitive recursion and pairs. In particular, you should avoid the use of the
Y combinator which will be introduced in Lecture 3.

Test your implementation on inputs 0, 1, 9, and 11, expecting results 2,
1,76, and 199. Include these tests in your code submission, and record the
number of S-reductions used by your function.

Exercise 7 We can define binomial coefficients bin n k by the following
recurrence:

bin 0 &
bin(n+1)0
bin (n+1) (k+1)

1
1
binn k+binn (k+1)

Give an implementation of the bin function in the A-calculus via the LAMBDA
implementation.

You may use the functions from nat.lam as helper functions, as well
as those from Exercise 5. Your functions should evidently reflect iteration,
primitive recursion and pairs. In particular, you should avoid the use of the
Y combinator which will be introduced in Lecture 3.

Provide at least 5 test cases.
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