
Assignment 6
Parametricity and Data Abstraction

15-814: Types and Programming Languages
Frank Pfenning

Due Tuesday, November 17, 2020

You should hand in two files

• hw06.pdf with your written solutions to the questions. You may exclude those questions
whose answer is just code, but please leave a pointer to the code.

• hw06.cbv with the code, where the solutions to the questions are clearly marked and
auxiliary code (either from lecture or your own) is included so it passes the LAMBDA imple-
mentation.

1 Programs as Proofs

Task 1 (L15.1, 15 points) One proposition is more general than another if we can instantiate the
propositional variables in the first to obtain the second. For example, A⊃ (B ⊃A) is more general
than A⊃ (⊥⊃ A) (with [⊥/B]), (C ∧D)⊃ (B ⊃ (C ∧D)) (with [C ∧D/A], but not more general
than C ⊃ (D ⊃ E).

For each of the following proof terms, give the most general proposition proved by it. (We
are justified in saying “the most general” because the most general proposition is unique up to the
names of the propositional variables.)

1. λu. λw. λk.w (u k)

2. λw. 〈|(λu.w (l · u)), (λk.w (r · k))|〉

3. λx. (fstx) (sndx) (sndx)

4. λx. λy. λz. (x z) (y z)

Partially verify your answer by providing code

1 decl p_i = % your answer as a polymorphic type
2 defn p_i = % the term in Lambda syntax

in hw06.cbv for each each question. In the absence of lazy pairs in LAMBDA, you may use eager
pairs and define suitable polymorphic functions fst and snd.

ASSIGNMENT 6 DUE TUESDAY, NOVEMBER 17, 2020

Parametricity and Data Abstraction HW6.2

Task 2 (L14.2, 15 points) Write out a proof term for each of the following propositions. As you
know from lecture, this is the same as writing a program of the translated type in our program
language without the use of fixed points.

1. (A ∧ (A⊃⊥))⊃B

2. (A ∨ (A⊃⊥))⊃ (((A⊃⊥)⊃⊥)⊃A)

Verify your answer by providing code

1 decl q_i = % the proposition as a polymorphic type
2 defn q_i = % your answer in Lambda syntax

in hw06.cbv for each question.

2 Parametricity

Task 3 (L16.1, 15 points) Prove that ∀α. α→ α ∼= 1.

Task 4 (L16.3, 15 points) Prove, using parametricity, that if we have f : ∀α. α→ α→ α for a value
f then either f ∼ Λα. λx. λy. x ∈ [∀α. α→ α→ α] or f ∼ Λα. λx. λy. y ∈ [∀α. α→ α→ α].

3 Representation Independence

Task 5 (L18.1, 15 points) We can represent integers a as pairs 〈x, y〉 of natural numbers where
a = x− y. We call this the difference representation and call the representation type diff.

nat = ρα. (zero : 1) + (succ : α)
diff = nat× nat

If you need auxiliary functions on natural numbers, you should define them. Your answers should
be included in the file hw06.cbv together with several test cases.

1. Define a function nat2diff : nat→ diff that, when given a representation of the natural number
n returns an integer representing n.

2. Define a constant d zero : diff representing the integer 0 as well as functions d plus : diff→
diff→ diff and d minus : diff→ diff→ diff representing addition and subtraction on integers,
respectively.

3. Consider the type
ord = (lt : 1) + (eq : 1) + (gt : 1)

that represents the outcome of a comparison (lt = “less than”, eq = “equal”, gt = “greater
than”). Define a function dcompare : diff→ diff→ ord to compare the two integer arguments.
Again, you may use lt, eq and gt as constructors.

ASSIGNMENT 6 DUE TUESDAY, NOVEMBER 17, 2020

Parametricity and Data Abstraction HW6.3

Task 6 (L18.2, 15 points) We consider an alternative signed representation of integers where

sign = (pos : nat) + (neg : nat)

where pos · x represents the integer x and neg · x represents the integer −x. In your answers
below you may use pos and neg as data constructors, to construct elements of type sign. Define the
following functions in analogy with Task 5:

1. nat2sign : nat→ sign

2. s zero : sign

3. s plus : sign→ sign→ sign

4. s minus : sign→ sign→ sign

5. s compare : sign→ sign→ ord

Your answers should be included in the file hw06.cbv together with several test cases.

Task 7 (L18.3, 30 points) In this task we pursue two different implementations of an integer
counter, which can become negative (unlike the natural number counter in this lecture). The
functions are simpler than the ones in Tasks 5 and 6 so that the logical equality argument is more
manageable. We specify a signature

INTCTR = {
type ictr
new : ictr
inc : ictr→ ictr
dec : ictr→ ictr
is0 : ictr→ bool
}

where new, inc, dec and is0 have their obvious specification with respect to integers, generalizing
the CTR type defined in the last lecture and used in this one.

1. Write out the definition of INTCTR as an existential type.

2. Define the constants and functions d zero, d inc, d dec and d is0 for the implementation where
type ictr = diff from Task 5.

3. Define the constants and functions szero, s inc, s dec and s is0 for the implementation where
type ictr = sign from Task 6.

Definitions from questions 1–3 should be included in the file hw06.cbv. Now consider the two
definitions

DiffCtr : INTCTR = 〈diff, 〈d zero, d inc, d dec, d is0〉〉
SignCtr : INTCTR = 〈sign, 〈s zero, s inc, s dec, s is0〉〉

4. Prove that DiffCtr ∼ SignCtr ∈ [INTCTR] by defining a suitable relation R : diff ↔ sign and
proving that

〈d zero, d inc, d dec, d is0〉 ∼ 〈s zero, s inc, s dec, s is0〉
∈ [R× (R→R)× (R→R)× (R→ bool)]

ASSIGNMENT 6 DUE TUESDAY, NOVEMBER 17, 2020

	Programs as Proofs
	Parametricity
	Representation Independence

