
Lecture Notes on
Linear Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 23
Thursday, November 19, 2020

1 Introduction

When we make memory explicit we have to face the problem of garbage
collection, that is, freeing memory when it is no longer needed. Ideal would
be to deallocate memory at the time we read from it (the last time). One
particular interesting class of memory cells are those that have exactly one
reader or a unique reference. In that case, we can deallocate when it is read.
The usual rule (written here without persistent objects)

cell c V, proc d (case cR K) 7→ cell c V, proc d (V . K)

would then become

cell c V, proc d (case cR K) 7→ proc d (V . K)

where we model deallocation of the cell c by not repeating it on the right-
hand side of the rule.

This is not as infrequent as it might seem at first. For example, in our bit
negation pipeline from Lecture 20 all the intermediate cells have a single
reader, namely the second process in the pipeline.

Another class of examples comes from temporary cells in the translation
of functional expressions.

Je1 e2K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;
xR1 .〈x2, d〉

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/20-negatives.pdf


L23.2 Linear Types

The destination x1 will be written by the translation Je1Kx1 and is then read
by the last line. But it could not be used beyond that because it can not occur
elsewhere in the program since x1 is fresh and not passed to anywhere.

The situation is different for x2. Even though it is freshly allocated here
it is passed on to the function stored in x1 so it “escapes its lexical scope”
and we cannot deallocate it here.

Methodologically, we might now examine various constructs to see
which destinations we may be able to “deallocate” by not copying them
from the left-hand sides of transition rule to the right. But this is compli-
cated, so first we examine what would be required so that we would never
have to copy cells that are being read from (excluding mutable cells from
consideration for the moment, for simplicity). Essentially, can we delineate
a subsect of the language so that every cell will not only be written to once,
but also read from once. Of course, as you might expect in this course after
all we have been through together, this is expressed as a type system! Every
memory cell will have not only a unique provider (to write it) but also a
unique client (to read from it). We call a type system that enforces this
property linear, after Girard’s linear logic [Gir87].

2 Linear Expressions

Even though our ultimate goal is in the runtime system, we start with
functional expressions. We say a function is linear in one of its arguments if
it uses that argument exactly once. The notion of “usage” here is a dynamic
one; it doesn’t mean that the variable occurs exactly once, as we will see.

λx. x (linear)

This is linear in x and therefore the whole expression is linear.

λx. λy. x (not linear)

This expression is linear in x but not linear in y and therefore not linear.
It’s not linear in y because y is not used, but linearity requires a single use.
Related to linearity is the is the notion of affine. A function is affine in a
variable if it is used at most once. So the function above is affine but not linear.
The notion of affine has recently received a lot of attention because the Rust
programming language treats memory references as affine.

λx. 〈x, x〉 (not linear)

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



Linear Types L23.3

This expression is not linear because x is used twice and hence more than
once. Functions that use their argument at least once are called strict. The
notion of strictness is important because it is useful in the optimization of
call-by-need languages such as Haskell. If we have a function application
e1 e2 and we can tell that e1 denotes a strict function we can safely evaluate
e2 rather than waiting until e1 might need its argument.

λx. if x false x (not linear)

This function is not linear in x. It uses x the first time to decide the condition,
and then again when x is false. However, if x is false this returns x which is
false, so extensionally equal would be

λx. if x false false (linear)

which is linear. These two examples show that linearity is an intensional
property of expressions (how do they compute) and not an extensional
property (what do they compute).

λx. λy. if x y (not y) (linear)

This function is linear: x is used once as subject of the conditional. The
variable y occurs twice, but whenever this expression is executed it is used
exactly once: if y is true then in the first branch, and if y is false then in the
second branch.

λx. (λy.〈 〉)x (not linear)

It shouldn’t be suprising by now that this is not linear, since y is not linear
in 〈 〉. But, moreover, the whole expression is not linear in x, even though x
occurs exactly once. That’s because x occurs in a position where it will be
dropped. On the other hand:

λx. (λy. 〈y, 〈 〉〉)x (linear)

3 Linear Typing of Expressions

With these examples, we now work through the inference rules for expres-
sions and classify those that are linear. We use a different notation for
functions, eager pairs, sums, etc. since the connectives are subtly different
from the regular ones. Our judgment has the form

∆  e : τ

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



L23.4 Linear Types

where ∆ is a context of variables, each of which must be used once in e. We
have seen the  notation once before, in Lecture 12 where we used it to type
patterns in which no variables could be repeated. The use of ∆ instead of
Γ is just stylistic, to help remind ourselves that all the variables should be
linear. We use here the names of the inference rules derived from linear logic
where introductions rules (for constructors) use I while elimination rules
(for destructors) use E.

Linear Functions τ ( σ. A function is linear just if its parameter is used
linearly in its body.

∆, x : τ  e : σ

∆  λx. e : τ ( σ
(I

When applying a function we have to divide up the variables among those
that occur in the function (∆1) and those that occur in the argument (∆2).

∆1  e1 : τ2( τ1 ∆2  e2 : τ2

∆1,∆2  e1 e2 : τ1
(E

Our usual presupposition regarding contexts kicks in and we implicit require
the dom(∆1)∩ dom(∆2) = ∅. The ordering of the variables in ∆ is irrelevant
here. If we wanted to maintain them (say, because there are type variables
present) then we would use a merge operator between the two contexts
instead. Nevertheless, in the direction we usually read the rules it would be
a split operator.

When we look up variables, there cannot be other variables in the context
because they would not be used and therefore not be linear.

x : τ  x : τ
hyp

Eager Linear Pairs τ ⊗ σ. Eager linear pairs are written as τ ⊗ σ. The rules
are straightforwardly patterned after previous rules, keeping in mind that
for the destructor (case), the variables standing for the components of the
pair must be linear.

∆1  e1 : τ1 ∆2  e2 : τ2

∆1,∆2  〈e1, e2〉 : τ1 ⊗ τ2
⊗I

∆  e : τ1 ⊗ τ2 ∆′, x1 : τ1, x2 : τ2  e′ : τ ′

∆,∆′  case e (〈x1, x2〉 ⇒ e′) : τ ′
⊗E

The nullary version of pairs, the unit is written as 1 and the rules are the
nullary version of the binary rules above (see Section 4).

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/12-patmatch.pdf


Linear Types L23.5

Linear Sums τ ⊕ σ. Actually, we will show the labeled, variadic version
⊕i∈I(i : τi). In the constructor rule ⊕I , there is not much to consider.

∆  e : τj

∆  j · e : ⊕i∈I(i : τi)
⊕I

For the destructor (case) we need to consider the same as for the conditional
in the last section: only one branch of the case will be taken, so all branches
must be checked with the same linear context.

∆  e : ⊕i∈I(i : τi) (for all i ∈ I) ∆′, xi : τi  e′i : τ ′

∆,∆′  case e (i · xi ⇒ e′i)i∈I : τ ′
⊕E

Recursion. The remaining type constructors follow similar patterns so
we omit the details (see Section 4 for a listing). Recursion, however, is
interesting. The computation rule for fixed points is

fix f. e 7→ [fix f. e/f ]e

This already departed from the pattern of the other rules. For one, we
substitute an expression (fix f. e) for a variable f in an expression e, while
all the other rules just substitute values for variables. For another, it is not
attached to a particular type constructor and can always be applied.

There are several sources of operational “nonlinearity” in this rule. First,
even if f occurs only once in e, it is replaced by another expression (fix f. e)
containing e, thereby duplicating e. Also, when we define a recursive
function we would like to make multiple recursive calls and still consider
the function linear.

For example, the function that takes a bit string (usually considered just
a binary number) and flips every bit should be linear: each bit of the input
string is read and a corresponding bit written to the output.

bits = ρbits. (b0 : bits)⊕ (b1 : bits)⊕ (e : 1)

flip : bits( bit

flip = λx. case (unfold x) ( b0 · y ⇒ fold (b1 · flip y)
| b1 · y ⇒ fold (b0 · flip y)
| e · y ⇒ fold (e · y) )

Note that there is no recursive call to flip in the third branch and yet we
should consider the function linear. In order to formally represent this,

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



L23.6 Linear Types

we have to nonlinear variables to the context, which can be propagated to
multiple premises of a rule and may be left over in rules with no premises.
Moreover, since the body of the recursively defined expression is duplicated
when it is unwound, it may not depend on any linear variables.

ΓU, fU : τ  e : τ

ΓU  fix f. e : τ
rec

Here, the subscript U means the variable is unrestricted (that is, non necessar-
ily linear), and ΓU stands for a context where all variables are unrestricted.
The rules for variables, for example, then would become

ΓU, x : τ  x : τ
hyp

ΓU, xU : τ  x : τ
hypU

With these rules (and the straightforward ones for fold and unfold) the flip
function can indeed be checked as linear.

This example is also remarkable because a tiny change in the last branch
of the conditional

flip : bits( bit

flip = λx. case (unfold x) ( b0 · y ⇒ fold (b1 · flip y)
| b1 · y ⇒ fold (b0 · flip y)
| e · y ⇒ fold (e · 〈 〉) ) % bug here!

makes this function now nonlinear: y is not used. Besides the code shown
earlier, we can also fix the problem by using y : 1.

flip : bits( bit

flip = λx. case (unfold x) ( b0 · y ⇒ fold (b1 · flip y)
| b1 · y ⇒ fold (b0 · flip y)
| e · y ⇒ case y (〈 〉 ⇒ fold (e · 〈 〉)) )

4 Linear Rule Summary

The syntax for the language of expression does not change, but the language
of types is new.

Linear types τ ::= τ1( τ2 | τ1 ⊗ τ2 | 1 | ⊕i∈I(i : τi) | ρα. τ | α

The definition of values and the rules for evaluation remain the same as for
our nonlinear functional language.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



Linear Types L23.7

We name the propositional rules I (for introduction, representing a
constructor for a type) and E (for elimination, representing a destructor for
a type). Missing here are the unrestricted variables that would be needed
for recursion.

x : τ  x : τ
hyp

∆, x : τ  e : σ

∆  λx. e : τ ( σ
(I

∆1  e1 : τ2( τ1 ∆2  e2 : τ2

∆1,∆2  e1 e2 : τ1
(E

∆1  e1 : τ1 ∆2  e2 : τ2

∆1,∆2  〈e1, e2〉 : τ1 ⊗ τ2
⊗I

∆  e : τ1 ⊗ τ2 ∆′, x1 : τ1, x2 : τ2  e′ : τ ′

∆,∆′  case e (〈x1, x2〉 ⇒ e′) : τ ′
⊗E

·  〈 〉 : 1
1I

∆  e : 1 ∆′  e′ : τ ′

∆,∆′  case e (〈 〉 ⇒ e′) : τ ′
1E

(j ∈ I) ∆  e : τj

∆  j · e : ⊕i∈I(i : τi)
⊕I

∆  e : ⊕i∈I(i : τi) (for all i ∈ I) ∆′, xi : τi  e′i : τ ′

∆,∆′  case e (i · xi ⇒ e′i)i∈I : τ ′
⊕E

∆  ei : τi (for all i ∈ I)

∆  〈|i⇒ ei|〉i∈I : Ni∈I(i : τi)
NI

∆  e : Ni∈I(i : τi) (j ∈ I)

∆  e.j : τj
NE

∆  e : [ρα. τ/α]τ

∆  fold e : ρα. τ
ρI

∆  e : ρα. τ

∆  unfold e : [ρα. τ/α]τ
ρE

5 Linear Typing of Processes

We didn’t prove preservation and progress for linear types. While they
are still satisfied, they are not satisfying: we haven’t changed any of the
dynamics of programs! Linear types, so far, “don’t buy us anything”.

In this lecture we assign linear types to processes, so that the translation
of a linearly typed functional expression becomes a linearly typed process.
Then we show that executing a linearly typed process does not require a
garbage collector since we can eagerly deallocate cells when they are read.
In other words, the right level of abstraction to benefit from linear typing is
at a level where memory is made explicit.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



L23.8 Linear Types

Linear typing, though, is too restrictive so what we actually want is a
language that combines linear with nonlinear typing. In this combination,
linearly typed cells are ephemeral, while other cells remain persistent as in
our original semantics for processes. We probably will not have time to cover
such a language in this course, but refer you to a recent draft paper [PP20].
Here, we just present purely linear typing.

Our judgment is
∆  P :: (z : σ)

where ∆ contains linear variables. The destination z in the succedent is
written to exactly once (as before), but it will also be read exactly once.
Therefore, the rule for spawn/allocate is

∆  P :: (x : τ) ∆, x : τ  Q :: (z : σ)

∆,∆′  x← P ; Q :: (z : σ)
spawn

In the computation rule, we just create a fresh cell as before.

proc d (x← P ; Q) 7→ proc c ([c/x]P ), proc d ([c/x]Q) (c fresh)

The rule for variables: one that reads from an ephemeral (linear) cell and
deallocates it.

y : τ  xW ← yR :: (x : τ)
move

Computationally, this first rule moves while the second one copies.

cell c W, proc d (d← c) 7→ cell d W (move)

Eager Linear Pairs. As an example for linear typing, we use pairs. In
general, we write linear typing rules as left rules (if the type constructor
appears in the antecedent) and right rules (if the type constructor appears in
the succedent). Note that left rules always read from memory, while right
rules always write to memory.

x1 : τ1, x2 : τ2  zW .〈x1, x2〉 :: (z : τ1 ⊗ τ2)
⊗R0

∆, x1 : τ1, x2 : τ2  P :: (z : σ)

∆, x : τ1 ⊗ τ2  case xR (〈x1, x2〉 ⇒ P ) :: (z : σ)
⊗L

Operationally, the case rule reads from memory and passes it to the continu-
ation. These rules are general for all positive types. The only difference from
before is that the cell that is read is ephemeral and therefore “deallocated”.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



Linear Types L23.9

proc d (dW .V ) 7→ cell d V (write/pos)
cell c V, proc d (case cR K) 7→ proc d (V . K) (read/pos)

where
Values V ::= 〈d1, d2〉 | . . .
Conts K ::= (〈x1, x2〉 ⇒ P ) | . . .

with
〈d1, d2〉 . (〈x1, x2〉 ⇒ P ) = [d1/x1, d2/x2]P

Linear Sums. They follow the pattern of the eager pairs, since they are a
positive type.

j ∈ I

y : τj  xW .(j · y) :: (x : ⊕i∈I(i : τi))
⊕R0

(for all i ∈ I) ∆, yi : τi  Pi :: (z : σ)

∆, x : ⊕i∈I(i : τi)  case xR (i · yi ⇒ Pi)i∈I :: (z : σ)
⊕L

where
j · d . (i · yi ⇒ Pi)i∈I = [d/yj ]Pj

Linear functions. Since functions are a negative type, the case constructs
writes a continuation to memory.

∆, y : τ  P :: (z : σ)

∆  case xW (〈y, z〉 ⇒ P ) :: (x : τ ( σ)
(R

x : τ ( σ, y : τ  xR.〈y, z〉 :: (z : σ)
(L0

This time, we have to provide a second set of rules since the roles of values
and continuations are flipped.

proc d (case dW K) 7→ cell d K (write/neg)
cell c K, proc d (dR.V ) 7→ proc d (V . K) (read/neg)

where the reduction 〈d1, d2〉 . (〈y, z〉 ⇒ P ) has already been defined.
The summary of all the rules for linear processes can be found in the

linear rule sheet.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/23-linearity-rules.pdf


L23.10 Linear Types

Recursion. We assume all functions can be mutually recursive and are
defined at the top level and have no other free variables. Then we translate
each definition

func = λx. e

as

!cell func (〈x, z〉 ⇒ JeK z)

where

JfuncK d = (dW ← funcR)

Slightly more generally, if we want to allow mutually recursive definitions
for arbitrary negative types constructed at the top level, we would translate
each definition

f = e

to

!cell f K for JeK d0 = case d0 K

Under this view, functions become like constants that are visible throughout
the program, similarly to the specific treatment we have given fixed points.

6 Example: Bit Flipping Revisited

With the treatment of recursion from the end of the previous section, the
(linear) bit flipping program becomes (eliding uses of fold):

flipK = (〈x, y〉 ⇒ case xR (b0 · x′ ⇒ y′ ← flipR.〈x′, y′〉
yW .(b1 · y′)

| b1 · x′ ⇒ y′ ← flipR.〈x′, y′〉
yW .(b0 · y′)

| e · u⇒ zW .(e · u) ) )

where the initial state of running the program contains

!cell flip flipK

This is now entirely linearly typed, except for the references to flip.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



Linear Types L23.11

7 Look Ma, No Garbage!

With linear typing, cells are deallocated as they are used. For example, the
flip program started with a state such as

!cell flip flipK ,
cell c4 〈 〉, cell c3 (e · c4), cell c2 (fold c3),
cell c1 (b0 · c2), cell c0 (fold c1),

proc d0 (flipR.〈c0, d0〉)

will end with a state

!cell flip flipK ,
cell c4 〈 〉, cell d3 (e · c4), cell d2 (fold d3),
cell d1 (b1 · d2), cell d0 (fold d1)

We have executed here the version that does not explicitly copy the unit
element to a new cell. Note that all cells, except for flip, are reachable from
d0, the initial destination of the call.

In general, if we started with an empty configuration (again, excepting
only the recursive functions), as would be the case for the translation of

Jflip (fold (b0 · (fold (e · 〈 〉))))K d0

all cells in the resulting state would be reachable from d0 as shown in this
example.

In order to prove such a result we need to make the typing of config-
urations explicit and then examine the change in configurations during
computation. We have:

Configurations C ::= · | C1, C2 | proc d P | cell c W

where we omit the persistent cells for closed, top-level functions. We imagine
they are defined in a global context. The linear typing judgment then has
the form

∆  C :: ∆′

for a configuration that writes to ∆′ and reads from ∆. As before, any
addresses in ∆ not read by a process in C are passed on to ∆′ to be read by a

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



L23.12 Linear Types

process further on the right.

∆  (·) :: ∆
tp/empty

∆  P :: (d : τ)

∆′,∆  proc d P :: (∆′, d : τ)
tp/proc

∆  cW .V :: (c : τ)

∆′,∆  cell c V :: (∆′, c : τ)
tp/cell/val

∆  case cW K :: (c : τ)

∆′,∆  cell c K :: (∆′, c : τ)
tp/cell/cont

∆  C1 :: ∆1 ∆1  C2 :: ∆2

∆  (C1, C2) :: ∆2

tp/join

8 Progress and Preservation

Progress is essentially unchanged from before.

Theorem 1 If ·  C :: ∆ then either C is final (consists only of cells) or C 7→ C′
for some C′.

The preservation theorem is the interesting one. In case of linearly typed
processes, the cells defined (or promised to be defined by a process) does
not change throughout the computation!

Theorem 2 If ∆  C :: ∆′ and C 7→ C′ then ∆  C :: ∆′.

Contrast this with the previous statement of preservation where the
output context may grow when a new cell is allocated.

The form of the preservation theorem now means that if we start, for
example, with ·  C :: (d0 : 1) then any resulting final configuration C 7→∗ F
still has the same type. Since there are only ephemeral cells in F , it must
be of the form F ′, cell d0 W for some F ′ and W . Since d0 : 1, it follows by
inversion that W = 〈 〉. Moreover, ·  F ′ :: (·). Again by inversion we find
F ′ = (·), so the whole configuration consists of just cell d0 〈 〉.

Looking at the typing rules we can see that in general the context ∆ acts
like a frontier for an algorithm to traverse a tree with root d0, the initial
destination. It must eventually be empty which shows that every ephemeral
cell is reachable and no garbage is created.

Exercises

Exercise 1 Write a linear increment function on natural numbers in binary
representation.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



Linear Types L23.13

Exercise 2 Recall the definition of a purely positive type, updated to reflect
the notation for linear types.

τ+ ::= 1 | τ+1 ⊗ τ
+
2 | ⊕i∈I(i : τ+i ) | ρα+. τ+ | α+

Even in the purely linear language, it is possible to copy a value of purely
linear type. Define a family of functions

copyτ+ : τ+( (τ+ ⊗ τ+)

such that copyτ+ v 7→
∗ 〈v, v〉 for every v : τ+. You do not need to prove this

property, just give the definitions of the copy functions. Your definitions may
be mutually recursive.

Exercise 3 A type isomorphism is linear if the functions Forth and Back are
both linear. For each of the following pairs of types provide linear functions
witnessing an isomorphism if they exist, or indicate no linear isomorphism
exists. You may assume all functions terminate and use either extensional
or logical equality as the basis for your judgment.

1. τ ( (σ( ρ) and σ( (τ ( ρ)

2. τ ( (σ( ρ) and (τ ⊗ σ)( ρ

3. τ ( (σ ⊗ ρ) and (τ ( σ)⊗ (τ ( ρ)

4. (τ ⊕ σ)( ρ and (τ ( ρ)⊗ (σ( ρ)

5. (1⊕ 1)( τ and τ ⊗ τ

Exercise 4 Write out the following theorems, updated to the purely linear
language (where only recursively defined variables are nonlinear). We
change neither the definition of value nor the rules for stepping from our
previous language that does not employ linearity.

1. Canonical forms for types(, ⊗, 1, ⊕, and ρ. No proofs are needed.

2. The substitution properties, in a form sufficient needed for preserva-
tion. No proofs are needed.

3. The preservation property for evaluation of closed linear expressions.
Show the proof cases for linear functions.

4. The progress property for closed linear expressions. Show the proof
cases for linear functions.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020



L23.14 Linear Types

5. Where do these properties and their proofs differ when compared to
our language that does not enforce linearity?

Exercise 5 Prove that ∆  e : τ implies ∆  JeK d :: (d : τ). You only need
to show the cases relevant for functions (λx. e, e1 e2 and variables x).

Exercise 6 Write a linear function inc on the binary representation of natural
numbers.

1. Provide the code as a functional expression.

2. Following the conventions of this lecture, show the result of the trans-
lation into a process expression. You may use the optimization we
presented here. Concretely, define incK and inc so that the program
representation as a configuration would be !cell inc incK .

3. Show the initial and final configuration of computation for increment-
ing the number 1 represented as fold (b1 · (fold (e · 〈 〉))).

References

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[PP20] Klaas Pruiksma and Frank Pfenning. Back to futures. CoRR,
abs/2002.04607, February 2020.

LECTURE NOTES THURSDAY, NOVEMBER 19, 2020


	Introduction
	Linear Expressions
	Linear Typing of Expressions
	Linear Rule Summary
	Linear Typing of Processes
	Example: Bit Flipping Revisited
	Look Ma, No Garbage!
	Progress and Preservation

