
Lecture Notes on
Negative Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 20
Tuesday, November 10, 2020

1 Introduction

We continue the investigation of shared memory concurrency by adding
negative types. In our language so far they are functions τ → σ, lazy pairs
τ N σ, and universal types ∀α. τ .

2 Review of Positives

We review the types so far, with a twist: we annotate every address that
we write to with a superscriptW and every address we read from with a
superscriptR.

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .(j · y) | case xR (i · y ⇒ Pi)i∈I (+)
| xW .fold y | case xR (fold y ⇒ P) (ρ)

Small Values V ::= 〈 〉 | 〈a1, a2〉 | j · a | fold a

Configurations C ::= · | C1, C2 | proc d P | !cell c V

The configurations are unordered and we think of “,” as an associative and
commutative operator with unit “.”. Since we have changed our notation a
few times, we summarize the translation and the transition rules.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

L20.2 Negative Types

JxK d = dW ← xR

J〈 〉K d = dW .〈 〉
Jcase e (〈 〉 ⇒ e′)K d = x← JeKx ;

case xR (〈 〉 ⇒ Je′K d)

J〈e1, e2〉K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;
dW .〈x1, x2〉

Jcase e (〈x1, x2〉 ⇒ e′)K d = x← JeKx ;
case xR (〈x1, x2〉 ⇒ Je′K d)

Jj · eK d = x← JeKx ;
dW .(j · x)

Jcase e (i · x⇒ ei)i∈IK d = x← JeKx ;
case xR (i · x⇒ JeiK d)i∈I

Jfold eK d = x← JeKx ;
dW .(fold x)

Jcase e (fold y ⇒ e′)K d = x← JeKx ;
case xR (fold y ⇒ Je′K d)

To show the computation rules for configurations we refactor the specifi-
cations, separating out continuations K.

Continuations K ::= (〈 〉 ⇒ P) | (〈x1, x2〉 ⇒ P) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P)
Processes P ::= x← P ; Q (allocate/spawn)

| c← d (copy)
| dW .V (write)
| case cR K (read/match)

We only have four transition rules for configurations, in addition to explain-
ing how values are matched against continuations.

proc d (x← P ; Q) 7→ proc c ([c/x]P), proc d ([c/x]Q) (c fresh)
!cell c V, proc d (d← c) 7→ !cell d V

proc d (d.V) 7→ !cell d V
!cell c V, proc d (case c K) 7→ proc d (V . K)

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

Negative Types L20.3

〈 〉 . (〈 〉 ⇒ P) = P
〈c1, c2〉 . (〈x1, x2〉 ⇒ P) = [c1/x1, c2/x2]P
k · c . (i · xi ⇒ Pi)i∈I = [c/xk]Pk

fold c . (fold x⇒ P) = [c/x]P

3 Functions

As the first negative type we consider function τ → σ. How do we translate
an abstraction λx. e? The translation must actually take two arguments: one
is the original argument x, the other is the destination where the result of
the functional call should be written to. And the process Jλx. eK d must write
the translation of the function to destination d.

Before we settle on the syntax for this, consider how to translate function
application.

Je1 e2K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;

How should we complete this translation?
We know that after Je1Kx1 has completed the cell x1 will contain a func-

tion of two arguments. The first argument is the original argument, which we
find in x2 after Je2Kx2 has completed. The second argument is the destination
for the result of the function application, which is d. So we get:

Je1 e2K d = x1 ← Je1Kx1 ;
x2 ← Je2Kx2 ;
xR1 .〈x2, d〉

This looks just like eager pairs, except that we read from x1 instead of writing
to it. To retain the analogy, we write the translation of a function using case,
but writing the (single) branch of the case expression to memory.

Jλx. eK d = case dW (〈x, y〉 ⇒ JeK y)

The transition rules for these new constructs just formalize the explanation.

proc d (case dW (〈x, y〉 ⇒ P)) 7→ !cell d (〈x, y〉 ⇒ P) (→R)
!cell c (〈x, y〉 ⇒ P), proc d (cR.〈c1, d〉) 7→ proc d ([c1/x, d/y]P) (→L0)

As an example, we consider the expression (λx. x) 〈 〉.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

L20.4 Negative Types

J(λx. x) 〈 〉K d0 = x1 ← Jλx. xKx1 ;
x2 ← J〈 〉Kx2 ;
xR1 .〈x2, d0〉

= x1 ← case xW1 (〈x, y〉 ⇒ JxK y) ;
x2 ← xW2 .〈 〉 ;
xR1 .〈x2, d0〉

= x1 ← case xW1 (〈x, y〉 ⇒ yW ← xR) ;
x2 ← xW2 .〈 〉 ;
xR1 .〈x2, d0〉

Let’s execute the final process from with the initial destination d0.

proc d0 (x1 ← case xW1 (. . .) ; x2 ← xW2 .〈 〉 ; . . .)

7→ proc d1 (case dW1 (〈x, y〉 ⇒ yW ← xR)),

proc d0 (x2 ← xW2 .〈 〉 ; dR1 .〈x2, d0〉)

7→2 !cell d1 (〈x, y〉 ⇒ yW ← xR),
proc d2 (dW2 .〈 〉),
proc d0 (dR1 .〈d2, d0〉)

7→2 !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉,
proc d0 (dW0 ← dR2) (from [d2/x, d0/y](yW ← xR))

7→ !cell d1 (〈x, y〉 ⇒ yW ← xR),
!cell d2 〈 〉
!cell d0 〈 〉

In the final configuration we have cell d0 holding the final result 〈 〉, which
is indeed the result of evaluating (λx. x) 〈 〉. We also have some newly
allocated intermediate destinations d1 and d2 that are preserved, but could
be garbage collected if we only retain the cells that are reachable from the
initial destination d0 which now holds the final value.

4 Store Revisited

In our table of process expression, two things stand out. One is that functions
are exactly like pairs, except that the role of reads and writes are reversed.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

Negative Types L20.5

The other is that a cell may now contain something of the form (〈y, z〉 ⇒ P).

Processes P ::= x← P ; Q allocate/spawn
| xW ← yR copy
| xW .〈 〉 | case xR (〈 〉 ⇒ P) (1)
| xW .〈y, z〉 | case xR (〈y, z〉 ⇒ P) (×)
| xW .(j · y) | case xR (i · y ⇒ Pi)i∈I (+)
| xW .fold(y) | case xR (fold(y)⇒ P) (ρ)

| xR.〈y, z〉 | case xW (〈y, z〉 ⇒ P) (→)

We can refactor this into a more uniform presentation, even though not
all of the syntactically legal forms have corresponding types in the current
language.

Processes P ::= x← P ; Q allocate/spawn
| xw ← yR copy
| xW .V | case xR K (1,×,+, ρ)
| xR.V | case xW K (→)

Small values V ::= 〈 〉 | 〈a1, a2〉 | i · a | fold a
Continuations K ::= (〈 〉 ⇒ P) | (〈x1, x2〉 ⇒ P) | (i · xi ⇒ Pi)i∈I | (fold x⇒ P)

Cell contents W ::= V | K

Configurations C ::= · | C1, C2 | proc d P | !cell c W

There is now a legitimate concern that the contents of cells in memory is
no longer “small”, because a program P could be of arbitrary size. At a
lower level of abstraction, continuations would probably be implemented
as closures, that is, a pairs consisting of an environment and the address of
code to be executed. The translation to get us to this form is called closure
conversion, which we might discuss in a future lecture. For now, we are
content with the observation that, yes, we are violating a basic principle of
fixed-size storage and that it can be mitigated (but is not completely solved)
through the introduction of closures.

In our example of (λx. x) 〈 〉 the continuation has the form (〈x, y〉 ⇒
yW ← xR) which is a closed process. This can be directly compiled to a
function that takes two addresses x and y and writes the contents of x into
y. So at least in this special case the contents of the cell d1 could simply be
the address of this piece of code.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

L20.6 Negative Types

The symmetry between eager pairs (positive) and functions (negative)
stems from the property that in logic we have A ` B ⊃ C if and only if
A×B ` C (where × is a particular form of conjunction). Or, we can chalk it
up to the isomorphism τ → (σ→ ρ) ∼= (τ × σ)→ ρ: an arrow on the right
behaves like a product on the left.

One can ask if similarly symmetric constructors exists for 1, +, and ρ
and the answer is yes. It turns out that lazy records are symmetric to sums
and there is a type ⊥ that is symmetric to 1 (see Exercises 1 and 2). There
may even be a lazy analogue of recursive types that exhibits the same kind
of symmetry and maybe useful to model so-called corecursive types (see
Exercise 3).

We postpone discussion on the typing of process expression, cells, and
configurations until the next lecture when we consider analogues of the
progress and preservation theorems.

5 Typing

Before writing an example, it may be helpful to revisit the typing in its fac-
tored form. We separate out the positives, since the typing for the negatives
is not quite as uniform as one might expect.

To type the contents of cells directly, we have the judgment Γ ` V : τ for
positive τ .

Γ ` 〈 〉 : 1
val/unit

y : τ ∈ Γ z : σ ∈ Γ

Γ ` 〈y, z〉 : τ × σ
val/prod

(j ∈ I) y : τj ∈ Γ

Γ ` j · y :
∑

i∈I(i : τi)
val/sum

y : [ρα. τ/α]τ ∈ Γ

Γ ` fold y : ρα. τ
val/fold

Process typing for the positives is now unified, but we still separate out
the negative with some special-purpose rules. For positive types τ we also
have a judgment to verify that a value V : τ is matched against a suitable
continuation, Γ ` τ . K :: (z : σ).

Γ ` V : τ

Γ ` xW .V :: (x : τ)
write/pos

x : τ ∈ Γ Γ ` τ . K :: (z : σ)

Γ ` case xR K :: (z : σ)
read/pos

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

Negative Types L20.7

Γ ` P :: (z : σ)

Γ ` 1 . (〈 〉 ⇒ P) :: (z : σ)
m/unit

Γ, x1 : τ1, x2 : τ2 ` P :: (z : σ)

Γ ` τ1 × τ2 . (〈x1, x2〉 ⇒ P) : (z : σ)
m/prod

(for all i ∈ I) Γ, y : τi ` Pi :: (z : σ)

Γ `
∑

i∈I(i : τi) . (i(y)⇒ Pi) :: (z : σ)
m/sum

Γ, y : [ρα. τ/α]τ ` P :: (z : σ)

Γ ` ρα. τ . (fold(y)⇒ P) :: (z : σ)
m/rho

For the negative types (here only functions), we have somewhat more
specific rules. They arise, because for the type τ → σ the types τ and σ are
on different sides of the turnstile.

x : τ → σ ∈ Γ y : τ ∈ Γ

Γ ` xR.〈y, z〉 :: (z : σ)
read/arrow

Γ, y : τ ` P :: (z : σ)

Γ ` case xW (〈y, z〉 ⇒ P) :: (x : τ → σ)
write/arrow

6 Example: A Pipeline

As a simple example for concurrency in this language we consider setting
up a (very small) pipeline. We consider a sequence of bits

bits = ρα. (b0 : α) + (b1 : α) + (e : 1)

(which also happen to be isomorphic to binary numbers). We assume there
is a process flip : bits→ bits that just flips every bit. We will write this during
the next lecture; for this lecture the goal is to compose two such processes in
a pipeline.

Assume there is a cell

!cell flip Kflip : bits→ bits

This means that Kflip = (〈x, y〉 ⇒ P) where x : bits is address of the argu-
ment and y : bits is the destination for the result.

Then we can compose two of these as

Kflip2 = 〈x, z〉 ⇒
y ← flipR.〈x, y〉
flipR.〈y, z〉

In the picture below we see the two flip processes running, after the code for
kflip2 has executed but neither of these has taken any action yet. The process
on the left reads from x and writes to y while the process on the right reads
from y and writes to z. The destinations y and z have been allocated but

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

L20.8 Negative Types

have not yet been written to. Cell x contains the sample input, which is the
memory representation of fold (b0 · fold (e · 〈 〉)).

The left process now reads along x and allocates and writes along y. After it
runs for a few steps, we might reach the following situation:

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

Negative Types L20.9

The green part here is the new part compared to the previous configuration.
It should be clear how each of the two processes translates into a proc
object, while each filled cell corresponds to a cell object. The empty cells are
addresses that have been allocated, but not yet written to, so they are not
explicit in the configuration.

The two processes also run in parallel, which is how they form a pipeline.
For example, after a few more steps we might reach the configuration (with
the purple part being new):

The right process here lags behind the left one, which is possible since the
semantics here is not synchronous. A cell can be read as soon as it is filled,
but it may not be read immediately while other computations take place.

If we knew that the left process was the only reader along x (and any
cells reachable from it) we could “garbage-collect” the cells that are no
longer accessible and the situation would look as follows (assuming here

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

L20.10 Negative Types

some process not shown could read the output z).

In the next lecture we will write the code for flip that can exhibit the shown
behavior. In a future lecture we will consider a type system that tracks if
cells have unique readers which will allow the eager deallocation of cells
that have been read.

Exercises

Exercise 1 For lazy records (as a generalization of lazy pairs) we introduce
the following syntax in our language of expressions:

Types ::= . . . | Ni∈I(i : τi)
Expressions ::= . . . | 〈|i⇒ ei|〉i∈I | e · j

1. Give the typing rules and the dynamics (stepping rules) for the new
constructs.

2. Extend the translation JeK d to encompass the new constructs. Your
process syntax should expose the duality between eager sums and
lazy records.

3. Extend the transition rules of the store-based dynamics to the new
constructs. The translated form may permit more parallelism than the

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

Negative Types L20.11

original expression evaluation, but when scheduled sequentially they
should have the same behavior (which you do not need to prove).

4. Show the typing rules for the new process constructs.

Exercise 2 Explore what the rules and meaning of ⊥ as the formal dual of
1 in the process language should be, including whichever of the following
you find make sense. If something does not make sense somehow, please
explain.

1. Write out the new forms of process expressions.

2. Provide the store-based dynamics for the new process expressions.

3. Show the typing rules for the new process expressions.

4. Reverse-engineer new functional expressions in our original language
so they translate to your new process expression. Show the rules for
typing and stepping the new constructs.

5. Summarize and discuss what you found.

Exercise 3 In our expression language the fold e constructor for elements
of recursive type is eager. Explore a new lazy ravel e constructor which has
type δα. τ , providing:

1. Typing rules for ravel and a corresponding destructor (presumably an
unravel or case construct).

2. Stepping rules for the new forms of expressions.

3. A translation from the new forms of expressions to processes, extend-
ing the language of processes as needed

4. Typing rules for the new forms of processes.

5. Transition rules for the new forms of processes.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020

	Introduction
	Review of Positives
	Functions
	Store Revisited
	Typing
	Example: A Pipeline

