
Lecture Notes on
Parametricity

15-814: Types and Programming Languages
Frank Pfenning

Lecture 16
Tuesday, October 27, 2020

1 Introduction

Disclaimer: The material in this lecture is a redux of presenta-
tions by Reynolds [Rey83], Wadler [Wad89], and Harper [Har16,
Chapter 48]. The quoted theorems have not been checked against
the details of our presentation of the inference rules and opera-
tional semantics.

As discussed in the previous lecture, parametric polymorphism is the
idea that a function of type ∀α. τ will “behave the same” on all types σ that
might be used for α. This has far-reaching consequences, in particular for
modularity and data abstraction. As we will see in the next lecture, if a client
to a library that hides an implementation type is parametric in this type, then
the library implementer or maintainer has the opportunity to replace the
implementation with a different one without risk of breaking the client code.

The informal idea that a function behaves parametrically in a type vari-
able α is surprisingly difficult to capture technically. Reynolds [Rey83] real-
ized that it must be done relationally. For example, a function f : ∀α. α→ α
is parametric if for any two types τ and σ, and any relation between values
of type τ and σ, if we pass f related arguments it will return related results.
As an example, let’s consider some (unknown) function

· ` f : ∀α. α→ α→ α

and assume it parametric in its type argument. We have

f [bool] : bool→ bool→ bool
f [nat] : nat→ nat→ nat

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

L16.2 Parametricity

Now consider a relation R such that false R 0 and true R n for n > 0. If

f [bool] false true 7→∗ false

then it must also be the case that, for example,

f [nat] 0 17 7→∗ 0

On the other hand, from the indicated behavior and relation we cannot
immediately make a statement about

f [nat] 42 0

But we can pick a different relation! Let false S 42 and true S 0 (and no other
values are related). From the relation S and parametricity we conclude

f [nat] 42 0 7→∗ 42

We can see that parametricity is quite powerful, since we can tell a lot about
the behavior of f without knowing its definition

What Reynolds showed is that in a polymorphic λ-calculus with prod-
ucts and Booleans, all expressions are parametric in this sense.

We begin by recalling extensional equality and then a new form of
equality based on the idea of parametricity called logical equality.

2 Extensional Equality

In Lecture 8 we defined an extensional equality between expressions. We
repeat it here, with a few additional cases. First, expressions are simply
evaluated to values that are then compared with a more specialized relation.

Expressions: e ≈ e′ : τ iff e 7→∗ v, e′ 7→∗ v′ with v, v′ values, and v ∼ v′ : τ
or both e and e′ diverge.

For positive types (eager pairs, sums, unit) we compare the structure of
the values (which are observable), while for negative types (functions, lazy
pairs) we apply the destructor and then compare the results.

Functions: v ∼ v′ : τ1→ τ2 iff for all v1 : τ1 we have v v1 ≈ v′ v1 : τ2.

Pairs: v ∼ v′ : τ1 × τ2 iff v = 〈v1, v2〉, v′ = 〈v′1, v′2〉 and v1 ∼ v′1 : τ1 and
v2 ∼ v′2 : τ2.

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/09-sums.pdf

Parametricity L16.3

Units: v ∼ v′ : 1 iff v = 〈 〉 and v′ = 〈 〉 (which is always the case, by the
canonical forms theorem).

Sums: v ∼ v′ :
∑

i∈I(i : τi) iff v = k · vk and v′ = k · v′k and vk ∼ v′k : τk for
some k ∈ I .

Lazy Pair: v ∼ v′ : τ1 N τ2 iff fst v ≈ fst v′ : τ1 and snd v ≈ snd v′ : τ2

We didn’t state this explicitly, but these can be extended to polymorphic and
recursive types, since of recursive types as positive and universal quantifica-
tion as negative.

Universal Quantification: v ∼ v′ : ∀α. τ iff for all closed σ we have v [σ] ≈
v′[σ] : [σ/α]τ .

Recursion: v ∼ v′ : ρα. τ iff v = fold v1 and v′ = fold v′1 and v1 ∼ v′1 :
[ρα. τ/α]τ .

These last two cases are different from the earlier ones in that the types do
not get smaller, something that will occupy us shortly. Also, it seems at least
possible we may get into a chain of reasoning

v ∼ v′ : ∀α. τ → τ iff . . . iff v ∼ v′ : ∀α. τ → τ

so the equality may somehow not be well-defined.

3 Logical Equality

The notion of extensional equality (and the underlying Kleene equality) are
almost sufficient, but it is insufficient when we come to parametricity. The
problem is that we want to compare expressions not at the same, but at
related types. This means, for example, that in comparing e and e′ and type
∀α. τ we cannot apply e and e′ to the exact same type σ. Instead, we must
apply them to related types. This in turn means that the two expressions we
are comparing may not have the same type but related types. The notion
of equality we derive from this is called logical equality because it is based
on logical relations [Sta85], one of the many connections between logic and
computation. We write

e ≈ e′ ∈ JτK

if the expressions e and e′ stand in the relation designated by τ . This is a
slight abuse of notation because, as we will see, τ can be more than just a

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

L16.4 Parametricity

type. Also, we no longer require that e and e′ should have type τ . For the
reason explained above, they may not have the same type. Furthermore,
they may not even be well-typed anymore which allows a richer set of
applications for logical equality. We also have a second relation, designated
by [τ] that applies only to values. We write v ∼ v′ ∈ [τ] if the values v and v′

are related by [τ]. We define

Expressions: e ≈ e′ ∈ JτK iff e 7→∗ v and e′ 7→∗ v′ and v ∼ v′ ∈ [τ].

We assume here, to keep the development simple, that all expressions termi-
nate. In fact, logical relations can be used to prove exactly that. The clauses
for the positive types remain essentially the same as for extensional equality,
where we restrict recursive types to be purely positive.

Pairs: v ∼ v′ ∈ [τ1 × τ2] iff v = 〈v1, v2〉 and v′ = 〈v′1, v′2〉 for some v1, v2, v′1,
v′2 and v1 = v′1 ∈ [τ1] and v2 = v′2 ∈ [τ2].

Unit: v ∼ v′ ∈ [1] iff v = 〈 〉 = v′.

Sums: v ∼ v′ ∈ [
∑

i∈I(i : τi)] iff v = k · vk and v′ = k · v′k for some k, vk and
v′k with vk = v′k ∈ [τk].

Recursion: v ∼ v′ ∈ [ρα+. τ+] iff v = fold v1 and v′ = fold v′1 and v1 = v′1 ∈
[[ρα+. τ+/α+]τ+].

To be explicit, we define the purely positive types as

τ+ ::= τ+1 × τ
+
2 | 1 |

∑
i∈I

(i : τ+i) | ρα+. τ+ | α+

Even though the type becomes larger in the last clause, the definition is not
circular because the values we are comparing get smaller. In fact, we can
prove that v ∼ v′ ∈ [τ+] iff v = v′. So the clauses for positive types are
mostly useful if negative types are embedded in them.

The case for lazy pairs mirrors what we had before, using the destructors.

Lazy Pairs: v ∼ v′ ∈ [τ1Nτ2] iff fst v ≈ fst v′ ∈ Jτ1K and snd v ≈ snd v′ ∈ Jτ2K

In some circumstances we can use an equivalent formulation where we
require v and v′ to be a lazy pairs of two related expressions.

The definition becomes different when we come to universal quantifica-
tion, where we need to be careful to (a) avoid circularity in the definition,
and (b) capture the idea behind parametricity. We write R : σ ↔ σ′ for a
relation between values v : σ and v′ : σ′, and v R v′ if R relates v and v′. In

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

Parametricity L16.5

some situations when we would like to reason about parametricity using
logical relations, we may need to put some conditions on R, but here we
think of it as an arbitrary relation on values. We then define

Universal Quantification: v ∼ v′ ∈ [∀α. τ] iff for all closed types σ and σ′

and relations R : σ ↔ σ′ we have v[σ] ≈ v′[σ′] ∈ J[R/α]τK

(R) v ∼ v′ ∈ [R] iff v R v′.

The second clause here is a new base case in the definition of [τ], in addition
to the type 1. It is needed because we substitute an arbitrary relation R for
the type variable α in the clause for universal quantification. So when we
encounter R we just use it to compare v and v′.

We have taken a big conceptual step, because what we write as type τ
actually now contains relations instead of type variables, as well as ordinary
type constructors.

For functions, we apply them to related arguments and check that their
results are again related.

Functions: v ∼ v′ ∈ [τ1→ τ2] iff for all v1 ∼ v′1 ∈ [τ1] we have v v1 ≈ v′ v′1 ∈
Jτ2K

The quantification structure should make it clear that logical equality in
general is difficult to establish. It requires a lot: for two arbitrary types and
an arbitrary relation between values, we have to establish properties of e
and e′. It is an instructive exercise to check that

Λα. λx. x ∼ Λα. λx. x ∈ [∀α. α→ α]

To check: Λα. λx. x ∼ Λα. λx. x ∈ [∀α. α→ α]
This holds if (Λα. λx. x) [σ] ≈ (Λα. λx. x)σ′ ∈ JR→RK

for arbitrary σ, σ′ and R : σ ↔ σ′

This holds if λx. x ∼ λx. x ∈ [R→R]
This holds if (λx. x) v1 ≈ (λx. x) v′1 ∈ JRK for arbitrary v1 ∼ v′1 ∈ [R]
This holds if v1 ∼ v′1 ∈ [R], which is true by assumption

There is nothing wrong with this proof, but let’s turn this reasoning around
and present it in the “forward” direction, just to see it in a different form.

Let σ, σ′, R : σ ↔ σ′ be arbitrary Assumption
v1 R v′1 for some arbitrary v1 and v′1 Assumption
v1 ∼ v′1 ∈ [R] By defn. of ∼ at [R]
(λx. x) v1 ≈ (λx. x) v′1 ∈ JRK By defn. of ≈ at JRK

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

L16.6 Parametricity

λx. x ∼ λx. x ∈ [R→R] By defn. of ∼ at [R→R]
since v1 and v′1 were arbitrary

(Λα. λx. x) [σ] ≈ (Λα. λx. x) [σ′] ∈ JR→RK By defn. of ≈ at JR→RK
Λα. λx. x ∼ Λα. λx. x By defn. of ∼ at [∀α. α→ α]

since σ, σ′, and R were arbitrary

Conversely, we can imagine that knowing that two expressions are para-
metrically equal is very powerful, because we can instantiate this with
arbitrary types σ and σ′ and relations between them. The parametricity theo-
rem now states that all well-typed expressions are related to themselves. This
property holds in a language without general recursive types and general
fixed point expressions.

Theorem 1 (Parametricity [Rey83]) If · ; · ` e : τ then e ≈ e ∈ JτK

We will not go into the proof of this theorem, but just explore its con-
sequences. Besides the original paper, there are a number of proofs in the
literature including in the textbook [Har16, Chapter 48] in a language and
formalization that’s quite similar to ours. We do not go into detail under
which conditions it might be restored in the presence of recursive types and
fixed point expressions (see, for example, Ahmed [Ahm06]).

4 Some Useful Properties

In a couple of places we may use the following properties, which follow
directly from small-step determinism (sequentiality) and the definition of
JτK.

(Closure under Expansion) If e ≈ e′ ∈ JτK and e0 7→∗ e and e′0 7→∗ e′ then
e0 ≈ e′0 ∈ JτK.

(Closure under Reduction) If e ≈ e′ ∈ JτK and e 7→∗ e0 and e′ 7→∗ e′0 then
e0 ≈ e′0 ∈ JτK.

Also, the call-by-value strategy entails the following properties for reasoning
about logical equality.

(Closure under Application) If e1 ≈ e′1 ∈ Jτ2→ τ1K and e2 ≈ e′2 ∈ Jτ2K then
e1 e2 ≈ e′1 e′2 ∈ Jτ1K.

(Closure under Type Application) If e ≈ e′ ∈ J∀α. τK and R : σ ↔ σ′ then
e[σ] ≈ e′[σ′] ∈ J[R/α]τK.

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

Parametricity L16.7

5 Exploiting Parametricity

Parametricity allows us to deduce information about functions knowing
only their (polymorphic) types. For example, with only terminating func-
tions, the type

f : ∀α. α→ α

implies that f behaves like the identity function! We express this first by
proving

f [σ0] v0 7→∗ v0 for all types σ0 and values v0 : σ0

Later, we prove this property in a second form, namely that f is logically
equivalent to the polymorphic identity.

For simplicity, assume f is a value. By the parametricity theorem, we
have

f ≈ f ∈ J∀α. α→ αK

By definition of J−K and the fact that f is a value, we obtain

f ∼ f ∈ [∀α. α→ α]

By definition of [∀α.−], this entails that

f [τ] ≈ f [τ ′] ∈ JR→RK

for any τ , τ ′, and R : τ ↔ τ ′. In view of the property we want to show, we
pick τ = τ ′ = σ0 and R0 such that v0 R0 v0. That is, R0 : σ0 ↔ σ0 relates
only v0 to itself and not any other values. This mean we have

f [σ0] ≈ f [σ0] ∈ JR0→R0K

Next, by definition of J−K we find f [σ0] 7→∗ fσ0 for some value fσ0 and

fσ0 ∼ fσ0 ∈ [R0→R0]

By definition of [_ → _] this means that for any value v such that v ∼ v ∈
[R0] we have fσ0 v ≈ fσ0 v ∈ [R0]. We pick v = v0 because v0 R0 v0 and
consequently also

v0 ∼ v0 ∈ [R0]

Therefore we conclude

fσ0 v0 ≈ fσ0 v0 ∈ JR0K

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

L16.8 Parametricity

Again, by definition of J−K we know that fσ0 v0 7→∗ w for some w with

w ∼ w ∈ [R0]

which in turn is the case if and only if

w R0 w

by the definition of [R0]. But R0 was chosen so it relates only v0 to v0, so we
conclude that

w = v0

Unwinding the chain of evaluations under our call-by-value strategy we
find

f [σ0] v0 7→∗ fσ0 v0 7→∗ w = v0

and our theorem is proved.
Out next goal is to show that any value f : ∀α. α → α is (logically)

equivalent to the identity function

f ∼ Λα. λx. x ∈ [∀α. α→ α]

Let’s prove this. Unfortunately, the first few steps are the “difficult” direction
of the parametricity.

By definition, this means to show that

For every pair of types σ and σ′ and relation R : σ ↔ σ′, we have
f [σ] ≈ (Λα. λx. x) [σ′] ∈ JR→RK

Now fix arbitrary σ, σ′ and R. Because (Λα. λx. x) [σ′] 7→ λx. x, our desired
conclusion holds if f [σ] 7→∗ fσ for some value fσ and

fσ ∼ λx. x ∈ [R→R]

Applying the definition of [_ → _], this is true if

For all v ∼ v′ ∈ [R] we have fσ v ≈ (λx. x) v′ ∈ JRK

So assume v ∼ v′ ∈ [R]. It remains to show that

fσ v 7→∗ w for some w with w ∼ v′ ∈ [R].

By the previous argument (starting from the parametricity of f) we know
that fσ v 7→∗ v, so determinism gives us w = v. Then w R v′ follows from
v R v′ and w = v.

Let’s summarize the reasoning.

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

Parametricity L16.9

To show: f ∼ Λα. λx. x ∈ [∀α. α→ α]
True, if f [σ] ≈ (Λα. λx. x) [σ′] ∈ JR→RK for arbitrary σ, σ′, R : σ ↔ σ′

True, if fσ ∼ λx. x ∈ [R→R] for f [σ] 7→∗ fσ
True, if fσ v ≈ (λx. x) v′ ∈ JR→RK for arbitrary v ∼ v′ ∈ [R]
True, if w ∼ v′ ∈ [R] for fσ v 7→∗ w
Holds, since fσ v 7→∗ v (by prior theorem) and determinism imply w = v

Similar proofs show, for example, that f : ∀α. α→ α→ α must be equal
to the first or second projection function. It is instructive to reason through
the details of such arguments. At the beginning of the next lecture we
explore additional consequences of parametricity, so-called “theorems for
free” [Wad89].

Exercises

Exercise 1 Prove that ∀α. α→ α ∼= 1. You may use the results of Section 3
and Section 5.

Exercise 2 Prove, using parametricity, that there cannot be a closed value
f : ∀α. α.

Exercise 3 Prove, using parametricity, that if we have f : ∀α. α→α→α for a
value f then either f ∼ Λα. λx. λy. x ∈ [∀α. α→α→α] or f ∼ Λα. λx. λy. y ∈
[∀α. α→ α→ α].

Exercise 4 Prove, using parametricity, that ∀α. α→ α→ α ∼= 2.

References

[Ahm06] Amal J. Ahmed. Step-indexed syntactic logical relations for re-
cursive and quantified types. In P. Sestoft, editor, 15th European
Symposium on Programming (ESOP 2006), pages 69–83, Vienna,
Austria, March 2006. Springer LNCS 3924.

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymor-
phism. In R.E.A. Mason, editor, Information Processing 83, pages
513–523. Elsevier, September 1983.

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

L16.10 Parametricity

[Sta85] Richard Statman. Logical relations and the typed λ-calculus. In-
formation and Control, 65:85–97, 1985.

[Wad89] Philip Wadler. Theorems for free! In J. Stoy, editor, Proceed-
ings of the 4th International Conference on Functional Programming
Languages and Computer Architecture (FPCA’89), pages 347–359,
London, UK, September 1989. ACM.

LECTURE NOTES TUESDAY, OCTOBER 27, 2020

	Introduction
	Extensional Equality
	Logical Equality
	Some Useful Properties
	Exploiting Parametricity

