
Lecture Notes on
Exceptions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 13
Tuesday, October 13, 2020

1 Introduction

In the previous lecture we introduced general pattern matching, which
naturally led to considering an exception if no branch matched. In this
lecture we continue our investigation of exceptions. As always, we consider
statics and dynamics and the important theorems showing that they cohere.

2 Preservation for Exceptions

Recall the typing of case-expressions and branches for general pattern match-
ing from the last lecture:

Γ ` e : τ Γ ` τ . bs : σ

Γ ` case e (bs) : σ
case

Γ′ p : τ Γ,Γ′ ` e : σ Γ ` τ . bs : σ

Γ ` τ . (p⇒ e | bs) : σ
tp/bs/alt

Γ ` τ . (·) : σ
tp/bs/none

A key observation here is that when we reach the empty list of branches
(rule tp/bs/none) the type σ can be anything—usually, it is determined from
the other branches.

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

L13.2 Exceptions

Now recall the dynamics of pattern matching from the last lecture.

e0 7→ e′0

case e0 (bs) 7→ case e′0 (bs)
step/case0

v value v = [η]p

case v (p⇒ e | bs) 7→ [η]e
step/case/match

v value there is no η with v = [η]p case v (bs) 7→ e′

case v (p⇒ e | B) 7→ e′
step/case/nomatch

v value
case v (·) 7→ raise Match

step/case/none

Here we imagine that we extended the syntax of expressions

Expressions e ::= . . . | case e (bs) | raise E
Exceptions E ::= Match | . . .

where there may be other (for now unspecified) exceptions such as DivByZero.
In order to obtain type preservation, we need raise E to have all possible

types, because the expression on the left-hand side of the step/case/none
rule (namely case v (·)) can have any type.

Γ ` raise Match : τ
tp/raise

Type preservation then obviously holds for the only rule so far that involves
raising an exception. We just need to make sure that as we explore the
dynamics of raising an exceptions preservation continues to hold.

3 Progress for Exceptions

We are aiming at the following version of the progress theorem.

Theorem 1 (Progress with Exceptions, v1) If · ` e : τ then

(i) either e 7→ e′ for some e′,

(ii) or e val,

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

Exceptions L13.3

(iii) or e = raise E for an exception E.

Trying to prove this will uncover the fact that, currently, this theorem
is false for our language. Consider, as a simple example, 〈raise Match, 〈 〉〉.
This has type τ × 1 for any τ , and yet it is stuck: it can not transition, it is not
a value, and it is not of the form raise E. To remedy this shortcoming, we
need to add rules to the dynamics to propagate an exception to the top level.
This is awkward, because we need to do it for every kind of expression we
already have! This is a shortcoming of this particular style of defining the
dynamics of our language, compounded by the fact that exceptions are a
control construct, in some sense unrelated to our type structure.

We only show the rules related to pairs.

〈raise E, e〉 7→ raise E
step/pair/raise1

v value
〈v, raise E〉 7→ raise E

step/pair/raise2

case (raise E) B 7→ raise E
step/case/raise

It is insignificant here whether we have general pattern matching, or pattern
matching specialized to pairs as in earlier versions of our language.

Now we can prove the progress theorem as usual.

Proof: (Progress with Exceptions, Theorem 1) By rule on induction on the
derivation of · ` e : τ . In comparison with earlier proofs, when we apply
the induction hypothesis we obtain three cases to distinguish. In case a
subexpression raises an exception, the expression does as well (as long as it
is not a value) because we have added enough rules to propagate exception
to the top level. �

4 Catching Exceptions

Most languages allow programs not only to raise exceptions but also to catch
them. Let’s consider the simplest such construct, try e1 e2. The intention is
for it to evaluate e1 and return its value if that is successful. If it raises an
exception, evaluate e2 instead. This time, we begin with the dynamics.

e1 7→ e′1

try e1 e2 7→ try e′1 e2
step/try0

v1 value
try v1 e2 7→ v1

step/try/value

try (raise E) e2 7→ e2
step/try/raise

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

L13.4 Exceptions

What type do we need to assign to try e1 e2 in order to guarantee type
preservation. We start with what we know:

Γ ` e1 : Γ ` e2 :

Γ ` try e1 e2 :
tp/try

We should be able to “try” an expression of arbitrary type τ , so

Γ ` e1 : τ Γ ` e2 :

Γ ` try e1 e2 :
tp/try

Because of the rule step/try/value, the type of the overall expression needs
to be equal to τ as well.

Γ ` e1 : τ Γ ` e2 :

Γ ` try e1 e2 : τ
tp/try

Finally, in case e1 fails we step to e2, so we also must have e2 : τ .

Γ ` e1 : τ Γ ` e2 : τ

Γ ` try e1 e2 : τ
tp/try

One issue here is that in e2 we cannot tell which exception may have been
raised, even if we may want to take different actions for different exceptions.
That is, we would like to be able to match against different exceptions. The
generalizations do not introduce any new ideas, so we leave it to Exercise 1
to work out the details.

Exceptions in this lecture and Exercise 1 are not first class, which means
that exceptions are not values. This in turn means that functions cannot
take exceptions as arguments or return them. If we want exceptions to carry
values (for example, error messages) then either exceptions and expression
will be mutually recursive syntactic classes, or we lift exceptions and make
them first class. The merits of this approach are debatable, but its formaliza-
tion is not much more difficult than what we have already done (see [Har16,
Chapter 29]).

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

Exceptions L13.5

Exercises

Exercise 1 We would like to generalize the try construct to so it can branch
on the exception that may have been raised. So we have

Expressions e ::= . . . | raise E | try e (ms)
Exceptions E ::= Match | DivByZero | . . .
Exception Handlers ms ::= · | (E ⇒ e | ms)

Note that exception handlers are not already covered by regular pattern
matching, because exceptions are neither values nor patterns.

1. Write out typing rules for the generalized try construct and exception
handlers.

2. Write out the dynamics for the new constructs. Exception handlers
should be tried in order.

You do not have to prove preservation or progress, but you should make sure
your rules posses these properties (when taken together with the language
we have developed in the course so far).

Exercise 2 We would like to generalize exceptions further so they can be
returned by functions, passed as arguments, and dynamically created. For
this purpose we create a new type exn. We think of the type exn as a disjoint
sum

exn = (Match : 1) + (DivByZero : 1) + · · ·
except that we can add new alternatives to the sum with a declaration

exn = exn + (i : τ)

For example, in the absence of strings in the language, we could number dif-
ferent error exceptions instead of relying on the general Match by including

exn = exn + (Error : nat)

and then let the programmer raise Error k to indicate error number k.
A key property to keep in mind that e : exn is an ordinary expression

(and its value can be passed around) and raise e requires e to be an exception
that can be raised, changing the control flow. Generalized pattern matching
should now work to match against exceptions, as they are ordinary values.

Formally develop such a language extension, including the abstract
syntax of the new constructs, statics, dynamics, precise statement and key
cases in the proofs of preservation and progress.

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

L13.6 Exceptions

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES TUESDAY, OCTOBER 13, 2020

	Introduction
	Preservation for Exceptions
	Progress for Exceptions
	Catching Exceptions

