
Lecture Notes on
Sums

15-814: Types and Programming Languages
Frank Pfenning

Lecture 9
Tuesday, September 30, 2020

1 Introduction

In this lecture we continue to build up our small functional language, isolat-
ing fundamental building blocks for constructing data and functions. We
begin with the unit type 1 with just a single value, the unit element. After
investigating some elementary properties of the unit we introduce disjoint
sums which is the second form of data aggregation after products (whose
values are pairs). With those type constructors in hand, we can represent
a variety of interesting types with a finite number of elements, but not yet
types with infinitely elements except opaquely through functional repre-
sentations. This gap will be addressed in the next lecture by introducing
recursive types.

2 The Unit Type

Even though it may not look particularly useful initially, we now introduce
the unit type 1, inhabited by exactly one value 〈 〉. It is also the nullary
version of (eager) pairs (think: a pair 〈v1, v2〉 has two components while 〈 〉
has zero).

Γ ` 〈 〉 : 1
tp/unit

〈 〉 val
val/unit

With pairs, there is a single destructor thats extracts two components, so for

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.2 Sums

the unit type there is also a single destructor that extracts zero components.

Γ ` e : 1 Γ ` e′ : τ ′

Γ ` case e (〈 〉 ⇒ e′) : τ ′
tp/caseu

In the dynamics, we only reduce the new version of the case construct, since
the unit element is already a value.

e0 7→ e′0

case e0 (〈 〉 ⇒ e1) 7→ case e′0 (〈 〉 ⇒ e1)
step/caseu0

case 〈 〉 (〈 〉 ⇒ e1) 7→ e1
step/caseu/unit

It is easy to verify that our theorems continue to hold, and that · ` e : 1 and
e val imply that e = 〈 〉 (as an extension of the canonical forms theorem).

The unit type is not as useless as it might appear. In C, the unit type
is called void and indicates that a function does not return a value. In a
functional language with effects, you will often see code such as

let val () = print(v)

to execute an effect and return the only value of type 1 (called unit in
Standard ML). We will also see that it is actually quite important in concert
with disjoint sums.

3 Type Isomorphisms

Intuitively, 1 should be the nullary product, which we might hope to express
with something like τ × 1 = τ . But “=” does not make any sense here:
these type are different because the are inhabited by different terms. Instead,
what we want to say is the the type are isomorphic, written as τ × 1 ∼= τ .
Again, intuitively speaking, two types are isomorphic if they have the same
information contents. In the general case, we say that τ ∼= σ if there are two
functions,

Forth : τ → σ and Back : σ→ τ such that they compose to the identity in
both directions. Writing it out explicitly:

Forth : τ → σ
Back : σ→ τ
Back ◦ Forth = λx. x : τ → τ
Forth ◦ Back = λy. y : σ→ σ

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.3

When comparing functions (or expressions in general) we have to decide
which form of equality to use. The simple β- or even βη-equivalence we used
before does not apply here for two reasons: (1) we have many other types
besides functions, and (2) we have decided that functions are opaque, so we
should not try to analyze their structure. The latter observation pushes us in
the direction of an extensional equality: two functions are equal if they return
equal results when applied to the same argument. This is based on the
idea that the structure of functions cannot be observed, but their behavior
on arguments can. Because we are in a call-by-value language, this means
we have to verify their behavior when applied to arbitrary values of the
correct type. On the other hand, types like (eager) products are observable,
so we can just compare their components directly. We write v ∼ v′ : τ if
two expressions are extensionally equal, presupposing that v and v′ are
closed values of type τ . For general expressions, we write e ≈ e′ : τ which
is defined by evaluating e and e′ to a value and comparing the results.

Expressions: e ≈ e′ : τ iff e 7→∗ v, e′ 7→∗ v′ with v, v′ values, and v ∼ v′ : τ ,
or neither e nor e′ evaluate to value.

As a side remark, in our current language all well-typed expressions have a
value, so the final condition is vacuous but will become relevant during the
next language. This definition means we now have to compare values. For
functions, this will refer back to the definition on expressions, but only at a
smaller type.

Functions: v ∼ v′ : τ1→ τ2 iff for all v1 : τ1 we have v v1 ≈ v′ v1 : τ2.

Pairs: v ∼ v′ : τ1 × τ2 iff v = 〈v1, v2〉, v′ = 〈v′1, v′2〉 and v1 ∼ v′1 : τ1 and
v2 ∼ v′2 : τ2.

Units: v ∼ v′ : 1 iff v = 〈 〉 and v′ = 〈 〉 (which is always the case, by the
canonical forms theorem).

We will later have occasion to revisit and slightly revise this definition, but
it is adequate for now.

Returning to the specific example of τ ∼= τ × 1, let’s verify this isomor-
phism. We define

Forth : τ → (τ × 1)
Forth = λx. 〈x, 〈 〉〉

Back : (τ × 1)→ τ
Back = λp. case p (〈x, y〉 ⇒ x)

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.4 Sums

To check that Back ◦Forth ≈ λx. x : τ→ τ we apply both sides to an arbitrary
value v : τ and calculate

LHS = (Back ◦ Forth) v
7→∗ Back ((λx. 〈x, 〈 〉〉) v)
7→ Back 〈v, 〈 〉〉
= (λp. case p (〈x, y〉 ⇒ x)) 〈v, 〈 〉〉
7→ case 〈v, 〈 〉〉 (〈x, y〉 ⇒ x)
7→ v

RHS = (λx. x) v
7→ v

So the two functions are extensionally equal.
For the other direction, we exploit that, by the canonical forms theorem,

a value of type v : τ × 1 must have the form v = 〈v′, 〈 〉〉:

LHS = (Forth ◦ Back) v
7→∗ Forth (Back 〈v′, 〈 〉〉)
= Forth ((λp. case p (〈x, y〉 ⇒ x)) 〈v′, 〈 〉〉)
7→ Forth (case 〈v′, 〈 〉〉 (〈x, y〉 ⇒ x))
7→ Forth v′

= (λx. 〈x, 〈 〉〉) v′
7→ 〈v′, 〈 〉〉
= v

RHS = (λy. y) v
7→ v

Again both sides are equal, so both compositions are equal to the identity,
witnessing the isomorphism between τ and τ × 1.

4 Disjoint Sums

Type theory is an open-ended enterprise: we are always looking to capture
types of data, modes of computation, properties of programs, etc. One
important building block are type constructors that build more complicated
types out of simpler ones. The function type constructor τ1 → τ2 is one
example. Today we see another one: disjoint sums τ1 + τ2. A value of this
type is either a value of type τ1 or a value of type τ2 tagged with the information
about which side of the sum it is. This last part is critical and distinguishes it

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.5

from the union type which is not tagged and much more difficult to integrate
soundly into a programming language. We use l and r as tags or labels and
write l · e1 for the expression of type τ1 + τ2 if e1 : τ1 and, analogously, r · e2
if e2 : τ2.

Γ ` e1 : τ1

Γ ` l · e1 : τ1 + τ2
tp/left

Γ ` e2 : τ2

Γ ` r · e2 : τ1 + τ2
tp/right

These two forms of expressions allow us to form elements of the disjoint
sum. To destruct such a sum we need a case construct that discriminates
based on whether element of the sum is injected on the left or on the right.

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : σ Γ, x2 : τ2 ` e2 : σ

Γ ` case e (l · x1 ⇒ e1 | r · x2 ⇒ e2) : σ
tp/cases

Let’s talk through this rule. The subject of the case should have type τ1 + τ2
since this is what we are discriminating. If the value of this type is l · v1
then by the typing rule for the left injection, v1 must have type τ1. Since the
variable x1 stands for v1 it should have type τ1 in the first branch. Similarly,
x2 should have type τ2 in the seond branch. Since we cannot tell until the
program executes which branch will be taken, just like the conditional in
the last lecture, we require that both branches have the same type σ, which
is also the type of the whole case.

From this, we can also deduce the value and stepping judgments for the
new constructs.

e value
l · e value

val/left
e value

r · e value
val/right

e 7→ e′

l · e 7→ l · e′
step/left

e 7→ e′

r · e 7→ r · e′
step/right

e0 7→ e′0

case e0 (. . . | . . .) 7→ case e′0 (. . . | . . .)
step/cases0

v1 value

case (l · v1) (l · x1 ⇒ e1 | . . .) 7→ [v1/x1]e1
step/cases/left

v2 value

case (r · v2) (. . . | r · x2 ⇒ e2) 7→ [v2/x2]e2
step/cases/right

We have carefully constructed our rules so that the new cases in the
preservation and progress theorems should be straightforward.

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.6 Sums

Theorem 1 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ

Proof: Before we dive into the new case, a remark on the rule. We can
see that the type of an expression l · e1 is inherently ambiguous, even if
we know that e1 : τ1. In fact, it will have the type τ1 + τ2 for every type
τ2. In the “official” rule, therefore, we should check that τ2 is a valid type
(see Section 8).

In any case, these considerations do not affect type preservation. There,
we just need to show that any type τ that e possesses will also be a type of e′

if e 7→ e′. Now, it is completely possible that e′ will have more types than e,
but that doesn’t contradict the theorem.1

The proof of preservation proceeds as usual, by rule on induction on the
step e 7→ e′, applying inversion of the typing of e. We show only the new
cases, because the cases for all other constructs remain exactly as before. We
assume that the substitution property carries over.

Case:

e1 7→ e′1

l · e1 7→ l · e′1
step/left

where e = l · e1 and e′ = l · e′1

· ` l · e1 : τ1 + τ2 Assumption
· ` e1 : τ1 By inversion
· ` e′1 : τ1 By ind.hyp.
· ` l · e′1 : τ1 + τ2 By rule step/left

Case: Rule step/right: analogous to step/left.

Case: Rule step/cases0: similar to the previous two cases.

Case:

v1 value

case (l · v1) (l · x1 ⇒ e1 | . . .) 7→ [v1/x1]e1
step/cases/left

where e = case (l · v1) (l · x1 ⇒ e1 | . . .) and e′ = [v1/x1]e1.

1It is an instructive exercise to construct a well-typed closed term e with e 7→ e′ such that
e′ has more types than e.

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.7

· ` case (l · v1) (l · x1 ⇒ e1 | r · x2 ⇒ e2) : τ Assumption
· ` l · v1 : τ1 + τ2 and
x1 : τ1 ` e1 : τ , and x2 : τ2 ` e2 : τ for some τ1 and τ2 By inversion
· ` v1 : τ1 By inversion
· ` [v1/x1]e1 : τ By the substitution property

Case: Rule step/case/sum/r: analogous to the previous case.

�

The progress theorem proceeds by induction on the typing derivation, as
usual, analyzing the possible cases. Before we do that, it is always helpful to
call out the canonical forms theorem that characterizew well-typed values.
New here is part (iv).

Theorem 2 (Canonical Forms) Assume v value.

(i) If · ` v : τ1→ τ2 then v = λx1. e2 for some e2.

(ii) If · ` v : τ1 × τ2 then v = 〈v1, v2〉 for some v1 value and v2 value.

(iii) If · ` v : 1 then v = 〈 〉.

(iv) If · ` v : τ1 + τ2 then v = l · v1 for some v1 value or v = r · v2 for some
v2 value.

Proof sketch: For each part, analyzing all the possible cases for the value
and typing judgments. �

Theorem 3 (Progress)
If · ` e : τ then either e 7→ e′ for some e′ or e value.

Proof: By rule induction on the given typing derivation.

Cases: For constructs pertaining to types τ1→ τ2, bool, τ1 × τ2, and 1 just as
before since we did not change their rules.

Case:

· ` e1 : τ1

· ` l · e1 : τ1 + τ2
tp/left

where e = l · e1.

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.8 Sums

Either e1 7→ e′1 for some e′1 or e1 value By ind.hyp.

e1 7→ e′1 Subcase
l · e1 7→ l · e′1 By rule step/left

e1 value Subcase
l · e1 value By rule val/l

Case: Rule tp/right is symmetric to previous case.

Case:

· ` e0 : τ1 + τ2 x1 : τ1 ` e1 : τ x2 : τ2 ` e2 : τ

· ` case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2) : τ
tp/cases

where e = case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2).

Either e0 7→ e′0 for some e′0 or e0 value By ind.hyp.

e0 7→ e′0 Subcase
e = case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2)
7→ case e′0 (l · x1 ⇒ e1 | r · x2 ⇒ e2) By rule step/cases0

e0 value Subcase
e0 = l · e′0 for some e′0 value
or e0 = r · e′0 for some e′0 value By canonical forms (Theorem 2)

e0 = l · e′0 and e′0 value Sub2case
e = case (l · e′0) (l · x1 ⇒ e1 | . . .) 7→ [e′0/x1]e1

By rule step/cases/left

e0 = r · e′0 and e′0 value Sub2case
e = case (r · e′0) (. . . | r · x2 ⇒ e2) 7→ [e′0/x2]e2

By rule step/cases/right

�

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.9

5 Examples of Sums

Once we have sums and the unit type from the previous lecture, we can
now define the Boolean type.

bool , 1 + 1

true , l · 〈 〉
false , r · 〈 〉

if e0 e1 e2 , case e0 (l · x1 ⇒ e1 | r · x2 ⇒ e2)
(provided x1 6∈ FV(e1) and x2 6∈ FV(e2))

The provisos on the last definition are important because we don’t want to
accidentally capture a free variable in e1 or e2 during the translation.

Using 1 we can define other types. For example

option τ = τ + 1

represents an optional value of type τ . Its values are l · v for v : τ (we have a
value) or r · 〈 〉 (we have not value of type τ).

A more interesting example would be the natural numbers:

nat = 1 + (1 + (1 + · · ·))
0 = l · 〈 〉
1 = r · (l · 〈 〉)
2 = r · (r · (l · 〈 〉))
succ = λn. r · n

Unfortunately, “· · ·” is not really permitted in the definition of types. We
could define it recursively as

nat = 1 + nat

but supporting this style of recursive type definition is not straightforward.
So natural numbers, if we want to build them up from simpler components
rather than as a primitive, require a unit type, sums, and recursive types.

6 The Empty Type

We have the singleton type 1, a type with two elements, 1 + 1, so can we
also have a type with no elements? Yes! We’ll call it 0 because it will satisfy

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.10 Sums

that 0 + τ ∼= τ . There are no constructors and no values of this type, so the
e value judgment is not extended.

If we think of 0 as a nullary sum, we expect there still to be a destructor.
But instead of two branches it has zero branches!

Γ ` e0 : 0 Γ ` τ type

Γ ` case e0 () : τ
tp/casez

Computation also makes some sense with a congruence rule reducing the
subject, but the case can never be reduced.

e0 7→ e′0

case e0 () 7→ case e′0 ()
step/casez0

Progress and preservation extend somewhat easily, and the canonical forms
property is extended with

(v) If · ` v : 0 then we have a contradiction.

The empty type has somewhat limited uses precisely because there is no
value of this type. However, there may still be expression e such that · ` e : 0
if we have explicitly nonterminating expressions. Such terms can appear
the subject of a case where they reduce forever by the only rule. We can also
ask, for example, what would be functions from 0→ 0. We find:

λx. x : 0→ 0
λx. case x () : 0→ 0
λx.⊥ : 0→ 0

where ⊥ is introduced in Exercise L8.3.

7 More Isomorphisms

The next example illustrates and important technique and therefore has
a name: Currying, after the logician Haskell Curry. Instead of a function
taking a pair as an argument we can take the two arguments in succession.
And vice versa! We express this with the following type isomorphism:2

(τ × σ)→ ρ ∼= τ → (σ→ ρ)

2In lecture, we only discussed the existence of this isomorphism without providing or
checking the function witnessing it.

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.11

We program the Forth and Back functions in a type-directed manner. We
show the process only once, but we recommend thinking about coding in
this general style. We have

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))

We see this function takes three arguments in succession: first a function of
type (τ × σ)→ ρ, then a value of type τ followed by a value of type σ. So
we start the code with three λ-abstractions, followed by an as yet unknown
body.

Forth = λf. λx. λy.

where
f : (τ × σ)→ ρ
x : τ
y : σ

: ρ

We can see that only f produces a result of type ρ, and it requires a pair of
type τ × σ as an argument. Fortunately, we have x and y available to form
the two components of the pair. Filling everything in:

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))
Forth = λf. λx. λy. f 〈x, y〉

Programming the other direction in a similar manner yields

Back : (τ → (σ→ ρ))→ ((τ × σ)→ ρ)
Back = λg. λp. case p (〈x, y〉 ⇒ g x y)

Let’s see if we can verify that Forth and Back compose to the identity, picking
an arbitrary direction first.

Back ◦ Forth = λf.Back (Forth f)
?
= λf. f : ((τ × σ)→ ρ)→ ((τ × σ)→ ρ)

To compare these two functions we apply them to an arbitrary value v :
(τ × σ)→ ρ and compare the result. We reason:

(λf.Back (Forth f)) v
7→ Back (Forth v)
= Back ((λf. λx. λy. f 〈x, y〉) v)
7→ Back (λx. λy.v 〈x, y〉)
= (λg. λp. case p (〈x, y〉 ⇒ g x y)) (λx. λy. v 〈x, y〉)
7→ λp. case p (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)
?
= v : (τ × σ)→ ρ

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

L9.12 Sums

In the last step we renamed some variable to avoid confusion.
Again, we are comparing two functions, this time on an argument of

type τ × σ. These two functions are the same if the return the same result if
we apply them to the pair 〈v1, v2〉 of two values v1 : τ and v2 : τ2. We use
values here because the type τ × σ is observable, and a value of this type is
a pair of two values. Then we find:

(λp. case p (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)) 〈v1, v2〉
7→ case 〈v1, v2〉 (〈x, y〉 ⇒ (λx′. λy′. v 〈x′, y′〉)x y)
7→ (λx′. λy′. v 〈x′, y′〉) v1 v2
7→2 v 〈v1, v2〉
= v 〈v1, v2〉

The final equality is the one we wanted to check. Checking the other direc-
tion is left to Exercise 3.

For the purpose of reasoning about type isomorphisms we extend our
notion of extensional equality by adding a case for sums.

Sums: v ∼ v′ : τ1 + τ2 iff either v = l · v1, v′ = l · v′1 and v1 ∼ v′1 : τ1 or
v = r · v2, v′ = r · v′2 and v2 ∼ v′2 : τ2

One of the properties that is easy to check is that τ + σ ∼= σ + τ . We
can speculate some other isomorphism, based on an kind of arithmetic
interpretation of the types. For example, ×might distribute over +:

τ × (σ + ρ)
?∼= (τ × σ) + (τ × ρ)

Some strange ones pop up if we think of σ→ τ as τσ. The reason to even
conjecture this is because we have already checked that ρ→ (σ → τ) ∼=
(ρ× σ)→ τ which could be written as (τσ)ρ ∼= τσ×ρ.

2→ τ
?∼= τ × τ

1→ τ
?∼= τ

0→ τ
?∼= 1

While odd, these are not ridiculous. Consider the first one, and recall that
1 + 1 ∼= bool. In one direction, we can apply the given function to true and
false to obtain two values, in other direction we can set the given values
as result of the function on true and false, respectively. Do these functions
constitute an ismorphism?

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

Sums L9.13

An example of types that are not isomorphic in general would be

τ 6∼= τ × τ

In order to show, that they are not always isomorphic it suffices to provide
a counterexample where the cardinality of the set of values do not match.
(Recall that isomorphism implies equal cardinality, but also that the func-
tions Forth and Back are expressible in our language.) In this example, if we
pick τ = 2 then v : τ for two values (l · 〈 〉 and r · 〈 〉, to be precise) while the
right-hand side contains four values. On the other hand, the isomorphism
does hold for τ = 1 since both sides have exactly one value (〈 〉 for the
left-hand side and 〈 〈 〉, 〈 〉 〉 for the right-hand side).

8 Summary

See 09-sums-rules.pdf for a summary of the rules.

Exercises

Exercise 1 Exhibit the functions Forth and Back witnessing the following
isomorphisms. You do not need to prove that they constitute an ismorphism,
just show the functions. We remain here in the pure language of Section 8
where every function is terminating.

(i) τ × (σ + ρ) ∼= (τ × σ) + (τ × ρ)

(ii) 2→ τ ∼= τ × τ

(iii) 1→ τ ∼= τ

(iv) 0→ τ ∼= 1

(v) (σ + ρ)→ τ ∼= (σ→ τ)× (ρ→ τ)

Exercise 2 Many of the type isomorphisms follow arithmetic equalities,
interpreting τ + σ as addition, τ × σ as multiplication, and τ → σ as expo-
nentiation στ (see Exercise 1).

But there are also differences. In arithmetic, we have an additive in-
verse −a such that a + (−a) = 0. Prove that there can be no general type
constructor −τ such that τ + (−τ) ∼= 0.

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/09-sums-rules.pdf

L9.14 Sums

Exercise 3 Verify that the composition Forth ◦ Back ≈ λg. g where Forth and
Back coerce from a curried function to its tupled counterpart.

Forth : ((τ × σ)→ ρ)→ (τ → (σ→ ρ))
Forth = λf. λx. λy. f 〈x, y〉

Back : (τ → (σ→ ρ))→ ((τ × σ)→ ρ)
Back = λg. λp. case p (〈x, y〉 ⇒ g x y)

LECTURE NOTES TUESDAY, SEPTEMBER 30, 2020

	Introduction
	The Unit Type
	Type Isomorphisms
	Disjoint Sums
	Examples of Sums
	The Empty Type
	More Isomorphisms
	Summary

