
Lecture Notes on
Subject Reduction

15-814: Types and Programming Languages
Frank Pfenning

Lecture 5
September 15, 2020

1 Introduction

In the last lecture we laid the groundwork for a representation theorem on
Booleans, which will prove in this lecture. This provides a clear relationship
between normal forms and one particular type and is an exemplar of many
similar theorems characterizing the normal forms of given types.

In the second part of the this lecture we establish a relationship between
computation and types, complementing the relation between normal forms
and types. The essence of this is that if Γ ` e : τ and e −→ e′ then Γ ` e′ : τ .

The third part (which we already proved) is that every well-typed ex-
pression either reduces or is a normal form so there is no “loophole” in the
type system.

Together, these three parts form the basic pillars for interpreting the
meaning of types in programming languages, studied here in the setting of
the simply-typed λ-calculus which we can think of as a proto-programming-
language, and which we will find embedded in richer and more practical
languages.

2 A Representation Theorem for Booleans

Theorem 1 (Representation of Booleans, v4) If · ` e : α → (α → α) and
e normal then e = true = λx. λy. x or e = false = λx. λy. y.

We postpone the proof to first show an important lemma about neutral
terms which will be used in the proof.

LECTURE NOTES SEPTEMBER 15, 2020



L5.2 Subject Reduction

Lemma 2 (Neutrality) If x1 : α1, . . . , xn : αn ` e : τ and e neutral then e = xi
and τ = αi for some 1 ≤ i ≤ n.

Proof: The intuition behind this theorem is that a neutral term e has the
form ((x e1) . . . ek) but there is no variable x that has a function type so k = 0
and e = x. But the only variables x in the context are xi : αi.

There are essentially three different forms of induction we could apply
here (abbreviating Γ0 = x1 : α1, . . . , xn : αn)

1. Over the structure of the expression e

2. Over the derivation of Γ0 ` e : τ

3. Over the derivation of e neutral

Generally, when we have additional information about an expression such
as e, we rarely perform an induction over the structure of e, but we prefer
to directly exploit the knowledge about e. Secondly (and also a heuristic),
we can easily apply inversion to syntax-directed judgments such as typing,
and less directly so for others. Therefore, we prefer rule induction over
judgments other than typing.

More formally, we proceed by rule induction on e neutral. There are just
two cases.
Case:

x neutral
neut/var

where e = x. Then we reason

x1 : α1, . . . , xn : αn ` x : τ Assumption
x = xi and τ = αi for some 1 ≤ i ≤ n By inversion

“Inversion” here refers to the fact that there is only one typing rule for
variables, tp/var, and this rule requires x to be one of the variables in
the context and τ to be the corresponding type.

Case:

e1 neutral e2 normal

e1 e2 neutral
neut/app

where e = e1 e2. Then we reason

LECTURE NOTES SEPTEMBER 15, 2020



Subject Reduction L5.3

Γ0 ` e1 e2 : τ Assumption
Γ0 ` e1 : τ2→ τ
and Γ0 ` e2 : τ2 for some τ2 By inversion
e1 = xi and τ2→ τ = αi for some 1 ≤ i ≤ n By ind. hyp.
Contradiction Since τ2→ τ = αi is impossible

Therefore, the second case is impossible, as we already noted infor-
mally at the outset. The appeal to the induction hypothesis relies on
the derivations of e1 neutral and Γ0 ` e1 : τ2→ τ and is correct because
e1 neutral is a subderivation (in fact, the immediate premise) of the
given derivation for e = e1 e2.

�

Now we are ready to tackle the proof of the representation theorem for
normal forms.

Proof: (of Theorem 1) Let’s remind ourselves:

If · ` e : α→ (α→ α) and e normal then e = true = λx. λy. x or
e = false = λx. λy. y.

Again we have a choice: we could try induction over the structure of e
(not a good idea), rule induction over the derivation of · ` e : α→ (α→ α)
(okay), or rule induction over e normal (even better). As it turns out, we can
do a proof by cases, since the induction hypothesis is never needed! This is,
of course, a special case of induction but we would like to be precise if a
simpler proof principle suffices.

Case:
e neutral
e normal

norm/neut

We conclude that this case is impossible as follows:

· ` e : α→ (α→ α) Assumption
e neutral Premise in this case
Contradiction By Lemma 2

Case:
e1 normal

λx. e1 normal
norm/lam

where e = λx. e1. We continue:

LECTURE NOTES SEPTEMBER 15, 2020



L5.4 Subject Reduction

· ` λx. e1 : α→ (α→ α) Assumption
x : α ` e1 : α→ α By inversion
Either e1 neutral or e1 = λx. e2 for some e2 and e2 normal

By inversion on e1 normal

Here the appeal to inversion yields two cases, because the conclu-
sion e1 normal could be derived by two different rules (norm/neut or
norm/lam).

Subcase: e1 neutral. Again, this case is impossible by neutrality.

x : α ` e1 : α→ α From above
e1 neutral This case
Contradiction By Lemma 2

Subcase: e1 = λy. e2 for some e2 and e2 normal. Then

x : α ` λy. e2 : α→ α From above with e1 = λy. e2
x : α, y : α ` e2 : α By inversion
e2 normal This subcase
e2 = λz. e3 for some e3 normal
or e2 neutral By inversion on e2 normal

We now distinguish the reasoning in these two subcases.
Sub2case: e2 = λz. e3 for some e3 with e3 normal. Now it is this

case that is impossible:
x : α, y : α ` λz. e3 : α From above with e2 = λx e3
Contradiction By inversion

(no typing rule matches this conclusion)
Sub2case: e2 neutral. Then

x : α, y : α ` e2 : α From above
e2 neutral This case
e2 = x or e2 = y By neutrality (Lemma 2)
e = λx. e1 = λx. λy. e2 = λx. λy. x
or e = λx. e1 = λx. λy. e2 = λx. λy. y

By form of e, e1, and e2 in this case

�

3 Subject Reduction

Let’s put the representation theorem into the bigger picture. We had previ-
ously conjectured:

LECTURE NOTES SEPTEMBER 15, 2020



Subject Reduction L5.5

Conjecture 3 (L3.4, Representation of Booleans, v2)
If · ` e : α→ (α→ α) then e =β true or e =β false.

But we want to relate this to computation. Fortunately, by the Church-
Rosser Theorem, e =β e

′ for a normal form e′ if and only if e −→∗ e′ (where
−→∗ is the reflexive and transitive closure of single-step reduction we have
been mostly working with). So we recast this one more time, relating typing
to computation and representation.

Conjecture 4 (Computation of Booleans)
If · ` e : α→ (α→ α) then e −→∗ true or e −→∗ false.

Since every well-typed expression has a normal form (which we did not
prove), the missing link in our reasoning chain is that typing is preserved
under reduction: if we start with an expression e of type τ and we reduce it
all the way to a normal form e′, then e′ will still have type τ . For the special
case where τ = α→ (α→ α) which means that any expression e of type τ
that has a normal form represents a Boolean.

Now we return to the main topic of this lecture, namely subject reduction.
Recall our characterization of reduction:

e −→ e′

λx. e −→ λx. e′
red/lam

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

e2 −→ e′2

e1 e2 −→ e1 e
′
2

red/app2

(λx. e1) e2 −→ [e2/x]e1
beta

And, for reference, here are the typing rules.

Γ, x1 : τ1 ` e2 : τ2

Γ ` λx1. e2 : τ1→ τ2
lam

x : τ ∈ Γ

Γ ` x : τ
var

Γ ` e1 : τ2→ τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
app

Theorem 5 (Subject Reduction)
If Γ ` e : τ and e −→ e′ then Γ ` e′ : τ .

Proof: In this theorem statement we are given derivations for two judg-
ments: Γ ` e : τ and e −→ e′. Most likely, the proof will proceed by rule

LECTURE NOTES SEPTEMBER 15, 2020



L5.6 Subject Reduction

induction on one of these and by inversion on the other. The typing judg-
ment is syntax-directed and therefore amenable to reasoning by inversion,
so we try rule induction over the reduction judgment.

By rule induction on the derivation of e −→ e′.

Case:

e1 −→ e′1

λx. e1 −→ λx. e′1
red/lam

where e = λx. e′1.

Γ ` λx. e1 : τ Assumption
Γ, x : τ2 ` e1 : τ1 and τ = τ2→ τ1 for some τ1 and τ2 By inversion
Γ, x : τ2 ` e′1 : τ1 By induction hypothesis
Γ ` λx. e′1 : τ2→ τ1 By rule lam

Case:

e1 −→ e′1

e1 e2 −→ e′1 e2
red/app1

where e = e1 e2. We start again by restating what we know in this case
and then apply inversion.

Γ ` e1 e2 : τ Assumption
Γ ` e1 : τ2→ τ and
Γ ` e2 : τ2 for some τ2 By inversion

At this point we have a type for e1 and a reduction for e1, so we can
apply the induction hypothesis.

Γ ` e′1 : τ2→ τ By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e1 e2 we have replaced e1 by e′1, which is okay since e′1
has the type of e1.

Γ ` e′1 e2 : τ By rule lam

LECTURE NOTES SEPTEMBER 15, 2020



Subject Reduction L5.7

Case:

e2 −→ e′2

e1 e2 −→ e′1 e2
red/app2

where e = e1 e2. This proceeds completely analogous to the previous
case.

Case:

(λx. e1) e2 −→ [e2/x]e1
β

where e = (λx. e1) e2. In this case we apply inversion twice, since the
structure of e is two levels deep.

Γ ` (λx. e1) e2 : τ Assumption
Γ ` λx. e1 : τ2→ τ
and Γ ` e2 : τ2 for some τ2 By inversion
Γ, x : τ2 ` e1 : τ By inversion

At this point we are truly stuck, because there is no obvious way to
complete the proof.

To Show: Γ ` [e2/x]e1 : τ

Fortunately, the gap that presents itself is exactly the content of the
substitution property, stated below. The forward reference here is ac-
ceptable, since the proof of the substitution property does not depend
on subject reduction.

Γ ` [e2/x]e1 : τ By the substitution property (Theorem 6)

�

Theorem 6 (Substitution Property)
If Γ ` e : τ and Γ, x : τ ` e′ : τ ′ then Γ ` [e/x]e′ : τ ′

Proof sketch: By rule induction on the deduction of Γ, x : τ ` e′ : τ ′.
Intuitively, in this deduction we can use x : τ only at the leaves, and there
to conclude x : τ . Now we replace this leaf with the given derivation of

LECTURE NOTES SEPTEMBER 15, 2020



L5.8 Subject Reduction

Γ ` e : τ which concludes e : τ . Luckily, [e/x]x = e, so this is the correct
judgment.

There is only a small hiccup: when we introduce a different variable
x1 : τ1 into the context in the lam rule, the contexts of the two assumptions
no longer match. But we can apply weakening, that is, adjoin the unused
hypothesis x1 : τ1 to every judgment in the deduction of Γ ` e : τ . After
that, we can apply the induction hypothesis. �

We recommend you write out the cases of the substitution property in
the style of our other proofs, just to make sure you understand the details.

The substitution property is so critical that we may elevate it to an
intrinsic property of the turnstile (`). Whenever we write Γ ` J for any
judgment J we imply that a substitution property for the judgments in Γ
must hold. This is an example of a hypothetical and generic judgment [ML83].
We may return to this point in a future lecture, especially if the property
appears to be in jeopardy at some point. It is worth remembering that,
while we may not want to prove an explicit substitution property, we still
need to make sure that the judgments we define are hypothetical/generic
judgments.

4 Taking Stock

Where do we stand at this point in our quest for a representation theorems
for Booleans? We have the following:

Reduction and Normal Forms

(i) For all e, either e −→ or e normal.

(ii) There is no e such that e −→ and e normal

Representation of Booleans in Normal Form (L5.1)
If · ` e : α → (α → α) and e normal then either e = true = λx. λy. x or
e = false = λx. λy. y.

Subject Reduction (L5.5)
If Γ ` e : τ and e −→ e′ we have Γ ` e′ : τ .

We did not prove normalization (also called termination) or confluence
(also called the Church-Rosser property).

LECTURE NOTES SEPTEMBER 15, 2020



Subject Reduction L5.9

Normalization
If Γ ` e : τ then e −→∗ e′ for some e′ with e′ normal.

Confluence
If e −→∗ e1 and e −→∗ e2 then there exists an e′ such that e1 −→∗ e′ and
e2 −→ e′.

We could replay the whole development for the representation of natural
numbers instead of Booleans, with some additional complications, but we
will forego this in favor of tackling more realistic programming languages.

Exercises

Exercise 1 Define multi-step reduction e −→∗ e′ by the following rules:

e −→∗ e
red∗/refl

e −→ e′ e′ −→∗ e′′

e −→∗ e′′
red∗/step

Prove by rule induction that if Γ ` e : τ and e −→∗ e′ then Γ ` e′ : τ

Exercise 2 Define a new single-step relation e 7→ e′ which means that e re-
duces to e′ by leftmost-outermost reduction, using a collection of inference rules.
Recall that I claimed this strategy is sound (it only performs β-reductions)
and complete for normalization (if e has a normal form, we can reach it by
performing only leftmost-outermost reductions). Prove the following state-
ments about your reduction judgment:

(i) If e 7→ e′ then e −→ e′.

(ii) 7→ is small-step deterministic, that is, if e 7→ e1 and e 7→ e2 then e1 = e2.

You should interpret = as α-equality, that is, the two terms differ only in
the names of their bound variables (which we always take for granted). For
each of the following statements, either indicate that they are true (without
proof) or provide a counterexample.

(iii) For all e, either e 7→ e′ for some e′ or e normal.

(iv) There does not exist an e such that e 7→ e′ for some e′ and e normal.

(v) If e −→ e′ then e 7→ e′.

(vi) −→ is small-step deterministic.

LECTURE NOTES SEPTEMBER 15, 2020



L5.10 Subject Reduction

(vii) −→ is big-step deterministic, that is, if e −→∗ e1 and e −→∗ e2 where
e1 normal and e2 normal, then e1 = e2.

(viii) For arbitrary e and normal e′, e −→∗ e′ iff e 7→∗ e′.

References

[ML83] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-
60, 1996, April 1983.

LECTURE NOTES SEPTEMBER 15, 2020


	Introduction
	A Representation Theorem for Booleans
	Subject Reduction
	Taking Stock

