Lecture Notes on
The Lambda Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 1
Tuesday, September 1, 2020

1 Introduction

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s A-calculus [CR36]. There are several
reasons to do so.

e We will see a number of important concepts in their simplest possible
form, which means we can discuss them in full detail. We will then
reuse these notions frequently throughout the course without the same
level of detail.

e The A-calculus is of great historical and foundational significance. The
independent and nearly simultaneous development of Turing Ma-
chines [Tur36] and the A-Calculus [CR36] as universal computational
mechanisms led to the Church-Turing Thesis, which states that the ef-
fectively computable (partial) functions are exactly those that can be
implemented by Turing Machines or, equivalently, in the A-calculus.

e The notion of function is the most basic abstraction present in nearly all
programming languages. If we are to study programming languages,

we therefore must strive to understand the notion of function.

e It’s cool!

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

L1.2 The Lambda Calculus

2 The \-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,
we might define

fz)=x+5

gy) =2x%y+7

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The A-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called A-abstraction.

f=Xx.x+5
g=Ay.2xy+7

In general, A\z. e for some arbitrary expression e stands for the function
which, when applied to some ¢’ becomes [¢’/x]e, that is, the result of substi-
tuting or plugging in €’ for occurrences of the variable z in e. For now, we
will use this notion of substitution informally—in the next lecture we will
define it formally.

We can already see that in a pure calculus of functions we will need
at least three different kinds of expressions: A-abstractions Az.e to form
function, application ey ez to apply a function e; to an argument ey, and
variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e = Az.e|ejex|x

This is not the definition of the concrete syntax of a programming language,
but a slightly more abstract form called abstract syntax. When we write down
concrete expressions there are additional conventions and notations such as
parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
ryzisread as (zy) z

2. Az. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
Ax. (Ay.zyz)zisread as Ax. ((A\y. (zy) 2) x).

We say Az. e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in Az. x y but not

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

The Lambda Calculus L1.3

x. Bound variables can be renamed consistently in a term So Az.xz 4+ 5 =
Y.y + 5 = Awhatever. whatever + 5. Generally, we rename variables silently
because we identify terms that differ only in the names of A-bound variables.
But, if we want to make the step explicit, we call it a-conversion.

Ax.e =q A\y.ly/z]e provided y not free in e

The proviso is necessary, for example, because Az.xy # A\y.y y.
We capture the rule for function application with
(Az.e2) er =g [e1/x]ea

and call it S-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that S-conversion
has a definitive direction: we apply is from left to right. We call this 3-
reduction and it is the engine of computation in the A-calculus.

(Az.ez2) er — 3 [e1/x]er

3 Simple Functions and Combinators

The simplest functions are the identity function and the constant function.
The identity function, called I, just returns its argument x.

I=X\z.x
The constant function returning = could be written as
Ay.x
We calculate
(M\y.x)e —px

for any expression e since y does not occur in the expression x. This is
somewhat incomplete in the sense the expression \y.x has a free variable
which is therefore fixed. What we would like is a closed expression K (one
without free variables) such K z is the constant function, always returning
x. But that’s easy: we just abstract over z!

K=MX\x.\y.x

Then Kz — 3 Ay. z is the constant function returning x.
A combinator for us is just a closed A-expression like I or K. We will see
more interesting combinators in the next lecture.

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

L1.4 The Lambda Calculus

4 Summary of \-Calculus
A-Expressions.

Variables x
Expressions e = Ar.e|ejex|x

Az. e binds x with scope e, which is as large as possible while remaining
consistent with the given parentheses. Juxtaposition e; e is left-associative.

Equality.
Substitution [e1/z]ey (capture-avoiding, see Lecture 2)
a-conversion Ax.e =, Ay.ly/z]e provided y not free in e

p-conversion (A\z.ez)er =g [e1/x]ex

We generally apply a-conversion silently, identifying terms that differ only
in the names of the bound variables.

Reduction.

p-reduction (Az.ex)er —g [e1/z]es

5 Representing Booleans

Before we can claim the A-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type
are the Booleans, a type with two elements: true and false. The general
technique is to represent the values of a given type by normal forms, that is,
expressions that cannot be reduced. Furthermore, they should be closed, that
is, not contain any free variables. We need to be able to distinguish between
two values, and in a closed expression that suggest introducing two bound
variables. We then define rather arbitrarily one to be true and the other to be
false

true = Ax.)\y.x

false = Alx.)\y.y

The next step will be to define functions on values of the type. Let’s start
with negation: we are trying to define a A-expression not such that

not true =g false
not false =g true

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

The Lambda Calculus L1.5

We start with the obvious:
not = M\b. ...

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some A-abstractions. In lecture, we followed
both paths. Let’s first try the one where b is applied to some arguments.

not =Ab.b(...)(...)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = Az. \y. x will pick out the
tirst of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not = A\b. b false (. ..)

Since false = Az. \y.y picks out the second argument and not false = true,
the second argument to b should be true.

not = Ab. b false true

Now it is a simple matter to calculate that the computation of not applied to
true or false completes in three steps and obtain the correct result.

not true —% false
not false —% true

We write —>g for reduction in n steps, and —>’[3 for reduction in an arbitrary
number of steps, including zero steps. In other words, —7 is the reflexive
and transitive closure of — 3.

An alternative solution hinted at above is to start with

not' = \b. \x. \y. ...

We pose this because the result of not b should be a Boolean, and the two
Booleans both start with two A-abstractions. Now we reuse the previous
idea, but apply b not to false and true, but to y and =.

not' = \b. \z. \y.byx

Again, we calculate
not' true —% false
not' false —% true

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

L1.6 The Lambda Calculus

An important observation here is that
not = Ab.b (Az. \y.y) (Az. \y. z) # Ab. \x. \y. by x = not’

Both of these are normal forms (they cannot be reduced) and therefore repre-
sent values (the results of computation). Both correctly implement negation
on Booleans, but they are different. This is evidence that when computing
with particular data representations in the A-calculus it is not extensional:
even though the functions behave the same on all the arguments we care
about (here just true and false), the are not convertible. To actually see that
they are not convertible we need the Church-Rosser theorem which says
if e; and ey are af5-convertible then there is a common reduct e such that
e1 —>}§ e and ey —>g e.

As a next exercise we try exclusive conjunction. We want to define a
A-expression and such that

and true true =g true
and true false =g false
and false true =g false
and false false =g false

Learning from the negation, we start by guessing
and = \b. Xe.b(...)(...)

where we arbitrarily put b first. Looking at the equations, we see that if b is
true then the result is always c.

and = \b. Xe.be(...)
If b is false the result is always just false, no matter what c is.
and = \b. Xc. bcfalse

Again, it is now a simple matter to verify the desired equations and that, in
fact, the right-hand side of these equations is obtained by reduction.

6 The LAMBDA Language

In lecture, we used a toy implementation of a the A-calculus in a language
called LAMBDA. This implementation uses a concrete syntax where \ is

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

O ® N U R W N =

T S S e Y
S © ® N o @G ke W N = O

The Lambda Calculus L1.7

written as a backslash “\’". A program consists of a sequence of declarations,
of which there are three forms:

defnz =c¢ variable x stands for e
norm x = e variable x stands for the normal form of e
conv e; = ey verify that e; and es have the same normal form

Allowing definitions is a convenience, but it does not change the expressive
power of the A-calculus, because we can replace defn z = e by (Az. ...)e
where “..." represents the scope of the definition. The norm and conv
declarations initiate computation and allow the programmer to examine the
normal form of an expression (if it exists).

In addition, declarations can be negated with !, for example, to check
that two expressions are not convertible.

Q

% represent booleans as closed expressions in normal form

defn true = \x. \y. x
defn false = \x. \y. y

defn not = \b. b false true
defn not’ = \b. \x. \y. by x

(# confirm that not and not’ are not convertible x)
!conv not = not’

% normalize "not true"
norm _ = not true

Q

% test not and not’ against their specification
conv not true = false
conv not false = true

conv not’ true = false
conv not’ false = true

Listing 1: Booleans in LAMBDA

For more information on LAMBDA, consult the Software page for the
course.

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/software.html

L1.8 The Lambda Calculus

Exercises

Exercise 1 Define the following functions on Booleans in at least two distinct
ways.

1. Exclusive or “xor”.

2. The conditional “if” such that
iftTLlE €1 ey =g €1

if false ey e2 =g e

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472-482, May
1936.

[Tur36] Alan Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230-265, 1936. Published 1937.

LECTURE NOTES TUESDAY, SEPTEMBER 1, 2020

	Introduction
	The -Calculus
	Simple Functions and Combinators
	Summary of -Calculus
	Representing Booleans
	The Lambda Language

