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1 Introduction

This course is about the principles of programming language design, many

of which derive from the notion of type. Nevertheless, we will start by

studying an exceedingly pure notion of computation based only on the

notion of function, that is, Church’s �-calculus [CR36]. There are several

reasons to do so.

• We will see a number of important concepts in their simplest possible

form, which means we can discuss them in full detail. We will then

reuse these notions frequently throughout the course without the same

level of detail.

• The �-calculus is of great historical and foundational significance. The

independent and nearly simultaneous development of Turing Ma-

chines [Tur36] and the �-Calculus [CR36] as universal computational

mechanisms led to the Church-Turing Thesis, which states that the ef-

fectively computable (partial) functions are exactly those that can be

implemented by Turing Machines or, equivalently, in the �-calculus.

• The notion of function is the most basic abstraction present in nearly all

programming languages. If we are to study programming languages,

we therefore must strive to understand the notion of function.

• It’s cool!
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L1.2 The Lambda Calculus

2 The �-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,

we might define

f(x) = x+ 5
g(y) = 2 ⇤ y + 7

Oddly, we never state what f or g actually are, we only state what happens

when we apply them to arbitrary arguments such as x or y. The �-calculus

starts with the simple idea that we should have notation for the function

itself, the so-called �-abstraction.

f = �x. x+ 5
g = �y. 2 ⇤ y + 7

In general, �x. e for some arbitrary expression e stands for the function

which, when applied to some e0 becomes [e0/x]e, that is, the result of substi-
tuting or plugging in e0 for occurrences of the variable x in e. For now, we

will use this notion of substitution informally—in the next lecture we will

define it formally.

We can already see that in a pure calculus of functions we will need

at least three different kinds of expressions: �-abstractions �x. e to form

function, application e1 e2 to apply a function e1 to an argument e2, and

variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e ::= �x. e | e1 e2 | x

This is not the definition of the concrete syntax of a programming language,

but a slightly more abstract form called abstract syntax. When we write down

concrete expressions there are additional conventions and notations such as

parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that

x y z is read as (x y) z

2. �x. is a prefix whose scope extends as far as possible while remain-

ing consistent with the parentheses that are present. For example,

�x. (�y. x y z)x is read as �x. ((�y. (x y) z)x).

We say �x. e binds the variable x with scope e. Variables that occur in

e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in �x. x y but not
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The Lambda Calculus L1.3

x. Bound variables can be renamed consistently in a term So �x. x + 5 =
�y. y+5 = �whatever .whatever +5. Generally, we rename variables silently
because we identify terms that differ only in the names of �-bound variables.

But, if we want to make the step explicit, we call it ↵-conversion.

�x. e =↵ �y.[y/x]e provided y not free in e

The proviso is necessary, for example, because �x.x y 6= �y.y y.

We capture the rule for function application with

(�x. e2) e1 =� [e1/x]e2

and call it �-conversion. Some care has to be taken for the substitution to be

carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that �-conversion

has a definitive direction: we apply is from left to right. We call this �-
reduction and it is the engine of computation in the �-calculus.

(�x. e2) e1 �!� [e1/x]e2

3 Simple Functions and Combinators

The simplest functions are the identity function and the constant function.

The identity function, called I, just returns its argument x.

I = �x. x

The constant function returning x could be written as

�y. x

We calculate

(�y. x) e �!� x

for any expression e since y does not occur in the expression x. This is

somewhat incomplete in the sense the expression �y. x has a free variable
which is therefore fixed. What we would like is a closed expression K (one

without free variables) such K x is the constant function, always returning

x. But that’s easy: we just abstract over x!

K = �x.�y. x

Then Kx �!� �y. x is the constant function returning x.

A combinator for us is just a closed �-expression like I or K. We will see

more interesting combinators in the next lecture.
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L1.4 The Lambda Calculus

4 Summary of �-Calculus
�-Expressions.

Variables x
Expressions e ::= �x. e | e1 e2 | x

�x. e binds x with scope e, which is as large as possible while remaining

consistent with the given parentheses. Juxtaposition e1 e2 is left-associative.

Equality.

Substitution [e1/x]e2 (capture-avoiding, see Lecture 2)
↵-conversion �x. e =↵ �y.[y/x]e provided y not free in e
�-conversion (�x. e2) e1 =� [e1/x]e2

We generally apply ↵-conversion silently, identifying terms that differ only

in the names of the bound variables.

Reduction.

�-reduction (�x. e2) e1 �!� [e1/x]e2

5 Representing Booleans

Before we can claim the �-calculus as a universal language for computation,

we need to be able to represent data. The simplest nontrivial data type

are the Booleans, a type with two elements: true and false. The general

technique is to represent the values of a given type by normal forms, that is,

expressions that cannot be reduced. Furthermore, they should be closed, that

is, not contain any free variables. We need to be able to distinguish between

two values, and in a closed expression that suggest introducing two bound

variables. We then define rather arbitrarily one to be true and the other to be

false
true = �x.�y. x
false = �x.�y. y

The next step will be to define functions on values of the type. Let’s start

with negation: we are trying to define a �-expression not such that

not true =� false
not false =� true
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We start with the obvious:

not = �b. . . .

Now there are two possibilities: we could either try to apply b to some

arguments, or we could build some �-abstractions. In lecture, we followed

both paths. Let’s first try the one where b is applied to some arguments.

not = �b. b (. . .) (. . .)

We suggest two arguments to b, because b stands for a Boolean, and Booleans

true and false both take two arguments. true = �x.�y. x will pick out the

first of these two arguments and discard the second, so since we specified

not true = false, the first argument to b should be false!

not = �b. b false (. . .)

Since false = �x.�y. y picks out the second argument and not false = true,

the second argument to b should be true.

not = �b. b false true

Now it is a simple matter to calculate that the computation of not applied to

true or false completes in three steps and obtain the correct result.

not true �!3
� false

not false �!3
� true

We write �!n
� for reduction in n steps, and �!⇤

� for reduction in an arbitrary

number of steps, including zero steps. In other words, �!⇤
� is the reflexive

and transitive closure of �!� .

An alternative solution hinted at above is to start with

not0 = �b.�x.�y. . . .

We pose this because the result of not b should be a Boolean, and the two

Booleans both start with two �-abstractions. Now we reuse the previous

idea, but apply b not to false and true, but to y and x.

not0 = �b.�x.�y. b y x

Again, we calculate

not0 true �!3
� false

not0 false �!3
� true
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An important observation here is that

not = �b. b (�x.�y. y) (�x.�y. x) 6= �b.�x.�y. b y x = not0

Both of these are normal forms (they cannot be reduced) and therefore repre-

sent values (the results of computation). Both correctly implement negation

on Booleans, but they are different. This is evidence that when computing

with particular data representations in the �-calculus it is not extensional:
even though the functions behave the same on all the arguments we care

about (here just true and false), the are not convertible. To actually see that

they are not convertible we need the Church-Rosser theorem which says

if e1 and e2 are ↵�-convertible then there is a common reduct e such that

e1 �!⇤
� e and e2 �!⇤

� e.

As a next exercise we try exclusive conjunction. We want to define a

�-expression and such that

and true true =� true
and true false =� false
and false true =� false
and false false =� false

Learning from the negation, we start by guessing

and = �b.�c. b (. . .) (. . .)

where we arbitrarily put b first. Looking at the equations, we see that if b is

true then the result is always c.

and = �b.�c. b c (. . .)

If b is false the result is always just false, no matter what c is.

and = �b.�c. b c false

Again, it is now a simple matter to verify the desired equations and that, in

fact, the right-hand side of these equations is obtained by reduction.

6 The LAMBDA Language

In lecture, we used a toy implementation of a the �-calculus in a language

called LAMBDA. This implementation uses a concrete syntax where � is
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written as a backslash ‘\’. A program consists of a sequence of declarations,

of which there are three forms:

defn x = e variable x stands for e
norm x = e variable x stands for the normal form of e
conv e1 = e2 verify that e1 and e2 have the same normal form

Allowing definitions is a convenience, but it does not change the expressive

power of the �-calculus, because we can replace defn x = e by (�x. . . .) e
where ‘. . .’ represents the scope of the definition. The norm and conv
declarations initiate computation and allow the programmer to examine the

normal form of an expression (if it exists).

In addition, declarations can be negated with !, for example, to check

that two expressions are not convertible.

1 % represent booleans as closed expressions in normal form
2

3 defn true = \x. \y. x
4 defn false = \x. \y. y
5

6 defn not = \b. b false true
7 defn not’ = \b. \x. \y. b y x
8

9 (* confirm that not and not’ are not convertible *)
10 !conv not = not’
11

12 % normalize "not true"
13 norm _ = not true
14

15 % test not and not’ against their specification
16 conv not true = false
17 conv not false = true
18

19 conv not’ true = false
20 conv not’ false = true

Listing 1: Booleans in LAMBDA

For more information on LAMBDA, consult the Software page for the

course.
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Exercises

Exercise 1 Define the following functions on Booleans in at least two distinct

ways.

1. Exclusive or “xor”.

2. The conditional “if” such that

if true e1 e2 =� e1
if false e1 e2 =� e2
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Lecture Notes on
Primitive Recursion

15-814: Types and Programming Languages
Frank Pfenning

Lecture 2
Thursday, September 3, 2020

1 Introduction

In this lecture we continue our exploration of the �-calculus and the repre-
sentation of data and functions on them. We give schematic forms to define
functions on natural numbers and give uniform ways to represent them in
the �-calculus. We begin with the schema of iteration and then proceed the
more complex schema of primitive recursion. In the next lecture we will arrive
at the fully general scheme of recursion.

2 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(f ○ g)(x) = f(g(x))
Having �-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

f ○ g = �x. f(g(x))
As a second step, we realize that ○ itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

○ = B = �f.�g.�x. f (g x)
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We call it B because that’s its traditional name as a combinator.
The unit of composition should the identity function, as defined by

I = �x. x. Composing any other function f with I should just yield f . In
other words, we expect

B f I
?= f ?= B I f

Let’s calculate:

B f I = (�f.�g.�x. f (g x)) f I�→� (�g.�x. f (g x)) I�→� �x. f (I x)�→� �x. f x
?= f

We see the result is not exactly f as we expected, but �x. f x. However,
these two expressions always behave the same when applied to an arbitrary
argument so they are extensionally equal. To capture this we add one more
rule to the �-calculus:

⌘-conversion �x. ex =⌘ e provided x �∈ FV(e)
The proviso that x not be among the free variables of e is needed, because
�x. xx �= �x. y x. The first applies the argument to itself, the second applies
y to the given argument.

It is possible to orient this equation and investigate the notion of �⌘-
reduction. However, it turns out this is somewhat artificial because exten-
sionality is a reasoning principle for equality and not a priori a computa-
tional principle. Interestingly, in the setting of typed �-calculi it makes more
sense to use the equation from right to left, called ⌘-expansion, but some
discipline has to be imposed or expansion does not terminate.

We should remember that this form of extensionality does not extend to
functions defined over specific representations. For example, we saw there
are (at least) two formulations of negation on Booleans which are not equal,
even if we throw in the rule of ⌘-conversion.

3 Nontermination

At this point we pause briefly to ask three natural questions:

1. Does every expression have a normal form?

2. Can we always compute a normal form if one exists?
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3. Are normal forms unique?

The answers to these questions are crucial to understanding to what extent
we might consider the �-calculus a universal model of computation.

Does every expression have a normal form?

If the �-calculus is to be equivalent in computational power to Turing ma-
chines in some way, then we would expect the answer to be “no” because
computations of Turing machines may not halt. However, it is not imme-
diate to think of some expression that doesn’t have a normal form. If you
haven’t seen something like this already, you may want to play around with
some expressions to see if you can come up with one.
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The simplest one is

⌦ = (�x. xx) (�x. xx)
Indeed, there is only one possible �-reduction and it immediately leads to
exactly the same term:

⌦ = (�x. xx) (�x. xx)�→� (�x. xx) (�x. xx)�→� (�x. xx) (�x. xx)�→� . . .

So ⌦ reduces in one step to itself and only to itself.

Can we always compute a normal form if one exists?

The answer here is “yes”, although it is not easy to prove that this is the case.
Let’s consider an example (recall that K = �x.�y. x):

K I ⌦�→� (�y. I)⌦�→� I

So the expression K I ⌦ does have a normal form, even though ⌦ does not.
This is because the constant function K I ignores its argument. On the other
hand we also have

K I ⌦�→� K I ⌦�→� K I ⌦�→� �
because we have the ⌦�→� ⌦ and reduction can be applied anywhere in an
expression.

Fortunately, there is a strategy which turns out to be complete in the
sense that if an expression has a normal form, this strategy will find it. It
is called leftmost-outermost or normal-order reduction. This strategy scans
through the expression from left to right and when it find a redex (that
is, an expression of the form (�x. e) e′) it applies �-reduction and then
returns to the beginning of the result expression. In particular, it does
not consider any redex in e or e′, only the “outermost” one. Also, in an
expression ((�x. e1) e2) e3 it does not consider any potential redex in e3, only
the leftmost one.

This strategy works in our example: the redex in ⌦ would not be consid-
ered, only the redex K I and then the redex (�y. I)⌦.

The implementation of LAMBDA uses a straightforward function for
leftmost-outermost reduction, complicated very slightly by the fact that

LECTURE NOTES THURSDAY, SEPTEMBER 3, 2020



Primitive Recursion L2.5

names such as K or I which in the notes are only abbreviations at the
mathematical level of discourse, are actual language-level definitions in
the implementation. So we have to expand the definition of K, for exam-
ple, before applying �-reduction, but we do not officially count this as a
substitution.

The notion of leftmost-outermost reduction is closely related to the
notion of call-by-name evaluation in programming languages (and, with
a little more distance, to call-by-need which is employed in Haskell). In
contrast, call-by-value would reduce the argument of a function before
applying the �-reduction, which is not complete, as our example shows.
The analogy is not exact, however, since in programming languages such
as ML or Haskell we also do not reduce under �-abstractions, a fact that
represents a sharp dividing line between foundational calculi such as the �-
calculus and actual programming languages. We will justify and understand
these decisions in a few lectures.

Are normal forms unique?

The outcome of a computation starting from e is its normal form. At any
point during a computation there may be many redices. Ideally, the out-
come would be independent of the reduction strategy we choose as long
as we reach a normal form. Otherwise, the meaning of an expression (as
represented by its normal form) may be ambiguous. Therefore, Church
and Rosser [?] spend considerable effort in proving the uniqueness of nor-
mal forms. The key technical device is a property called confluence (also
referred to as the Church-Rosser property). It is often depicted in the following
diagram:

e

e1 e2

e′

∗ ∗

∗ ∗

In words: if we can reduce e to e1 and also e to e2 then there exists an e′
such that e1 and e2 both reduce to e′. The solid lines are given reduction
sequences while the reduction sequences represented by dashed lines have
to be shown to exist. Reduction here is in multiple steps (indicated by the
star “∗”). For the �-calculus (and the original Church-Rosser Theorem), this
reduction would usually be �-reduction. Very roughly, the proof shows how
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to simulate the steps from e to e2 when starting from e1 and (symmetrically)
simulate the steps from e to e1 when starting from e2.

Confluence implies the uniqueness of normal forms. Suppose e1 and e2
in the diagram are normal forms. Because they cannot be reduced further,
the sequence of reductions to e′ must consist of zero steps, so e1 = e′ = e2.

Confluence implies that even though we might embark on an unfortu-
nate path (for example, keep reducing ⌦ in K I ⌦) we can still recover if
indeed there is a normal form. In this example, we might eventually decide
to reduce K I and then the redex (�y. I)⌦.

4 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we
think about the computational power of a calculus we generally consider
the natural numbers 0,1,2, . . .. We would like a representation n such that
they are all distinct. We obtain this by thinking of the natural numbers as
generated from zero by repeated application of the successor function. Since
we want our representations to be closed we start with two abstractions: one
(z) that stands for zero, and one (s) that stands for the successor function.

0 = �s.�z. z
1 = �s.�z. s z
2 = �s.�z. s (s z)
3 = �s.�z. s (s (s z))
. . .
n = �s.�z. s (. . . (s��������������������������

n times

z))

In other words, the representation n iterates its first argument n times over
its second argument

nf x = fn(x)
where fn(x) = f(. . . (f�������������������������

n times

(x)))
The first order of business now is to define a successor function that

satisfies succ n = n + 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

zero = 0 = �s.�z. z
succ = �n.n + 1 = �n.�s.�z. s (nsz)
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We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead we
calculate generically (using mathmetical notation and properties)

succ n= �s.�z. s (nz s)= �s.�z. s (sn(z))= �s.�z. sn+1(z)= n + 1
A more formal argument might use mathematical induction over n.

Using the iteration property we can now define other mathematical
functions over the natural numbers. For example, addition of n and k
iterates the successor function n times on k.

plus = �n.�k.n succ k

You are invited to verify the correctness of this definition by calculation.
Similarly:

times = �n.�k.n (plus k) zero

exp = �b.�e. e (times b) (succ zero)
5 The Schema of Iteration

As we saw in the first lecture, a natural number n is represented by a
function n that iterates its first argument n times applied to the second:
ng c = g (. . . (g�������������������������

n times

c)). Another way to specify such a function schematically is

f 0 = c
f (n + 1) = g (f n)

If a function satisfies such a schema of iteration then it can be defined in the
�-calculus on Church numerals as

f = �n.ng c
which is easy to verify. The class of function definable this way is total (that
is, defined on all natural numbers if c and g are), which can easily be proved
by induction on n. Returning to examples from the last lecture, let’s consider
multiplication again.

times 0k = 0
times (n + 1)k = k + timesnk
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This doesn’t exactly fit our schema because k is an additional parameter.
That’s usually allowed for iteration, but to avoid generalizing our schema
the times function can just return a function by abstracting over k.

times 0 = �k.0
times (n + 1) = �k. k + timesnk

We can read off the constant c and the function g from this schema

c = �k. zero

g = �r.�k.plusk (r k)
and we obtain

times = �n.n (�r.�k.plusk (r k)) (�k. zero)
which is more complicated than the solution we constructed by hand

plus = �n.�k.n succ k
times

′ = �n.�k.n (plus k) zero

The difference in the latter solution is that it takes advantage of the fact that
k (the second argument to times) never changes during the iteration. We
have repeated here the definition of plus, for which there is a similar choice
between two versions as for times.

6 The Schema of Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the
exponential function, or the “stack” function iterating the exponential.

exp = �b.�e. e (times b) (succ zero)
stack = �b.�n.n (exp b) (succ zero)

Everything appears to be going swimmingly until we think of a very simple
function, namely the predecessor function defined by

pred 0 = 0
pred (n + 1) = n

You may try for a while to see if you can define the predecessor function,
but it is difficult. The problem is that we have to go from �s.�z. s (. . . (s z))
LECTURE NOTES THURSDAY, SEPTEMBER 3, 2020
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to �s.�z. s (. . . z), that is, we have to remove an s rather than add an s as was
required for the successor. One possible way out is to change representation
and define n differently so that predecessor becomes easy (see Exercise ??).
We run the risk that other functions then become more difficult to define, or
that the representation is larger than the already inefficient unary represen-
tation already is. We follow a different path, keeping the representation the
same and defining the function directly.

We can start by assessing why the schema of iteration does not immedi-
ately apply. The problem is that in

f 0 = c
f (n + 1) = g (f n)

the function g only has access to the result of the recursive call of f on n, but
not to the number n itself. What we would need is the schema of primitive

recursion:
f 0 = c
f (n + 1) = h n (f n)

where n is passed to h. For example, for the predecessor function we have
c = 0 and h = �x.�y. x (we do not need the result of the recursive call, just n
which is the first argument to h).

6.1 Defining the Predecessor Function

Instead of trying to solve the general problem of how to implement primitive
recursion, let’s define the predecessor directly. Mathematically, we write
n � 1 for the predecessor (that is, 0 � 1 = 0 and n + 1 � 1 = n). The key idea
is to gain access to n in the schema of primitive recursion by rebuilding it

during the iteration. This requires pairs, a representation of which we will
construct shortly.

Our specification then is

pred2 n = �n,n � 1�
and the key step in its implementation in the �-calculus is to express the
definition by a schema of iteration rather than primitive recursion. The start is
easy:

pred2 0 = �0,0�
For n + 1 we need to use the value of pred2 n. For this purpose we assume
we have a function letpair where

letpair �e1, e2�k = k e1 e2
LECTURE NOTES THURSDAY, SEPTEMBER 3, 2020
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In other words, letpair passes the elements of the pair to a “continuation” k.
Using letpair we start as

pred2 (n + 1) = letpair (pred2 n) (�x.�y. . . .)
If pred2 satisfies it specification then reduction will substitute n for x and
n � 1 for y. From these we need to construct the pair �n + 1, n� which we can
do, for example, with �x + 1, x�. This gives us

pred2 0 = �0,0�
pred2 (n + 1) = letpair (pred2 n) (�x.�y. �x + 1, x�)
predn = letpair (pred2 n) (�x.�y. y)

6.2 Defining Pairs

The next question is how to define pairs and letpair. The idea is to simply
abstract over the continuation itself! Then letpair isn’t really needed because
the functional representation of the pair itself will apply its argument to
the two components of the pair, but if want to write it out it would be the
identity.

�x, y� = �k. k xy
pair = �x.�y.�k. k xy
letpair = �p. p

6.3 Proving the Correctness of the Predecessor Function

Summarizing the above and expanding the definition of letpair we obtain

pred2 = �n.n (�p. p (�x.�y.pair (succx)x)) (pair zero zero)
pred = �n.pred2 n (�x.�y. y)

Let’s do a rigorous proof of correctness of pred, especially since we got it
wrong when we worked in a hurry during lecture. For the representation of
natural numbers, it is convenient to assume its correctness in the form

0 g c =� c
n + 1 g c =� g (ng c)

Lemma 1 pred2 n =� �n,n � 1�
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Proof: By mathematical induction on n.

Base: n = 0. Then

pred2 0 =� 0 (. . .) (pair zero zero)=� pair zero zero By repn. of 0=� �0,0� = �0,0 � 1� By repn. of 0 and pairs

Step: n =m + 1. Then

pred2m + 1 =� m + 1 (�p. p (�x.�y.pair (succx)x)) (pair zero zero)=� (�p. p (�x.�y.pair (succx)x)) (m (�p. . . .) (. . .)) By repn. of m + 1=� (�p. p (�x.�y.pair (succx)x)) (pred2m) By defn. of pred2=� (�p. p (�x.�y.pair (succx)x)) �m,m � 1� By ind. hyp. on m=� �m,m � 1� (�x.�y.pair (succx)x)=� pair (succm)m By repn. of pairs=� �m + 1,m� By repn. of successor and pairs= �m + 1, (m + 1) � 1� By defn. of �
�

Theorem 2 predn =� n � 1
Proof: Direct, from Lemma ??.

predn = (�n.pred2 n (�x.�y. y))n=� pred2n (�x.�y. y)=� �n,n � 1� (�x.�y. y) By Lemma ??=� (�k. k n,n � 1) (�x.�y. y) By repn. of pairs=� n � 1
�

An interesting consequence of the Church-Rosser Theorem is that if
e =� e′ where e′ is in normal form, then e�→∗� e′.

6.4 General Primitive Recursion

The general case of primitive recursion follows by a similar argument. Recall

f 0 = c
f (n + 1) = h n (f n)
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We begin by defining a function f2 specified with

f2 n = �n, f n�
We can define f2 using the schema of iteration.

f2 0 = �0, c�
f2 (n + 1) = letpair (f2 n) (�x.�y. �x + 1, hx y�)
f n = letpair (f2 n) (�x.�y. x)

To put this all together, we implement a function specified with

f 0 = c
f (n + 1) = h n (f n)

with the following definition in terms of c and h:

pair = �x.�y.�g. g x y

f2 = �n.n (�r. r (�x.�y.pair (succ x) (h x y))) (pair zero c)
f = �n. f2 n (�x.�y. y)

Recall that for the concrete case of the predecessor function we have c = 0
and h = �x.�y. x.

7 The Significance of Primitive Recursion

We have used primitive recursion here only as an aid to see how we can
define functions in the pure �-calculus. However, when computing over nat-
ural numbers we can restrict the functions that can be formed in schematic
ways to obtain a language in which all functions terminate. Primitive recur-
sion plays a central role in this because if c and g are terminating then so is
f formed from them by primitive recursion. This is easy to see by induction
on n.

In this ways we obtain a very rich set of functions but we couldn’t use
them to fully simulate Turing machines, for example.

Furthermore, if we give a so-called constructive proof of a statement in
certain formulations of arithmetic with mathematical induction, we can
extract a function that is defined by primitive recursion. We will probably
not have an opportunity to discuss this observation further in this course,
but it is an important topic in the course 15-317/15-657 Constructive Logic.
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8 A Few Somewhat More Rigorous Definitions

We write out some definitions for notions from the first two lectures a little
more rigorously.

�-Expressions. First, the abstract syntax.

Variables x
Expressions e ∶∶= �x. e � e1 e2 � x

�x. e binds x with scope e. In the concrete syntax, the scope of a binder �x is
as large as possible while remaining consistent with the given parentheses
so y (�x. xx) stands for y (�x. (xx)). Juxtaposition e1 e2 is left-associative
so e1 e2 e3 stands for (e1 e2) e3.

We define FV(e), the free variables of e with

FV(x) = {x}
FV(�x. e) = FV(e)�{x}
FV(e1 e2) = FV(e1) ∪ FV(e2)

Renaming. Proper treatment of names in the �-calculus is notoriously
difficult to get right, and even more difficult when one reasons about the
�-calculus. A key convention is that “variable names do not matter”, that is, we
actually identify expressions that differ only in the names of their bound variables.
So, for example, �x.�y. x z = �y.�x. y z = �u.�w.uz. The textbook defines
fresh renamings [?, pp. 8–9] as bijections between sequences of variables
and then ↵-conversion based on fresh renamings. Let’s take this notion for
granted right now and write e =↵ e′ if e and e′ differ only in the choice of
names for their bound variables and this observation is important. From
now on we identify e and e′ if they differ only in the names of their bound
variables, which means that other operations such as substitution and �-
conversion are defined on ↵-equivalence classes of expressions.

Substitution. We can now define substitution of e′ for x in e, written [e′�x]e,
following the structure of e.

[e′�x]x = e′[e′�x]y = y for y �= x[e′�x](�y. e) = �y.[e′�x]e provided y �∈ FV(e′)[e′�x](e1 e2) = ([e′�x]e1) ([e′�x]e2)
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This looks like a partial operation, but since we identify terms up to ↵-
conversion we can always rename the bound variable y in [e′�x](�y. e) to
another variable that is not free in e′ or e. Therefore, substitution is a total

function on ↵-equivalence classes of expressions.
Now that we have substitution, we also characterize ↵-conversion as

�x. e =↵ �y. [y�x]e provided y �∈ FV(e) but as a definition it would be circular
because we already required renaming to define substitution.

Equality. We can now define �- and ⌘-conversion. We understand these
conversion rules as defining a congruence, that is, we can apply an equation
anywhere in an expression that matches the left-hand side of the equality.
Moreover, we extend them to be reflexive, symmetric, and transitive so
we can write e =� e′ if we can go between e and e′ by multiple steps of
�-conversion.

�-conversion (�x. e) e′ =� [e′�x]e
⌘-conversion �x. ex =⌘ e provided x �∈ FV(e)

Reduction. Computation is based on reduction, which applies �-conversion
in the left-to-right direction. In the pure calculus we also treat it as a congru-
ence, that is, it can be applied anywhere in an expression.

�-reduction (�x. e) e′ �→� [e′�x]e
Sometimes we like to keep track of length of reduction sequences so we
write e �→n

� e′ if we can go from e to e′ with n steps of �-reduction, and
e�→∗� e′ for an arbitrary n (including 0).

Confluence. The Church-Rosser property (also called confluence) guaran-
tees that the normal form of a �-expression is unique, if it exists.

Theorem 3 (Church-Rosser [?]) If e�→∗� e1 and e�→∗� e2 then there exists an

e′ such that e1 �→∗� e′ and e2 �→∗� e′.

Exercises

Exercise 1 Analyze whether B I f
?= f and, if so, whether it requires only

�-conversion or �⌘-conversion.
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Exercise 2 Once we can define each individual instance of the schemas of iteration

and primitive recursion, we can also define them explicitly as combinators.

Define combinators iter and primrec such that

(i) The function iter g c satisfies the schema of iteration

(ii) The function primrec h c satisfies the schema of primitive recursion

You do not need to prove the correctness of your definitions.

Exercise 3 One approach to representing functions defined by the schema
of primitive recursion is to change the representation so that n is not an
iterator but a primitive recursor.

0 = �s.�z. z
n + 1 = �s.�z. sn (nsz)

1. Define the successor function succ (if possible) and show its correct-
ness.

2. Define the predecessor function pred (if possible) and show its correct-
ness.

3. Explore if it is possible to directly represent any function f specified
by a schema of primitive recursion, ideally without constructing and
destructing pairs.
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 3
Tuesday, September 8, 2020

1 Introduction

In this lecture we first complete our development of recursion: from iteration
through primitive recursion to full recursion. Then we will introduce simple
types to sort out our data representations.

2 General Recursion

Recall the schemas of iteration and primitive recursion:

f 0 = c
f (n+ 1) = g (f n)

f 0 = c
f (n+ 1) = g n (f n)

We have already seen how functions defined by iteration and primitive
recursion can be represented in the �-calculus. We can also see that functions
defined in this manner are terminating as long as c and g are.

But there are many functions that do not fit such of schema, for two
reasons: (1) their natural presentation differs from the rigid schema (even if
there actually is one that fits it), and (2) they simply fall out of the class of
functions. An example of (1) is below; an example of (2) would be a function
simulating a Turning machine. Since setting up a representation of Turing
machines is tedious, we just show simple examples of (1).

Let’s consider the subtraction-based specification of a gcd function for
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the greatest common divisor of strictly positive natural numbers a, b > 0.

gcd a a = a
gcd a b = gcd (a� b) b if a > b
gcd a b = gcd a (b� a) if b > a

Why is this correct? First, the result of gcd a b is a divisor of both a and b.
This is clearly true in the first clause. For the second clause, assume c is a
common divisor of a and b. Then there are n and k such that a = n⇥ c and
b = k ⇥ c. Then a � b = (n � k) ⇥ c (defined because a > b and therefore
n > k) so c still divides both a� b and b. In the last clause the argument is
symmetric. It remains to show that the function terminates, but this holds
because the sum of the arguments to gcd becomes strictly smaller in each
recursive call because a, b > 0.

While this function looks simple and elegant, it does not fit the schema
of iteration or primitive recursion. The problem is that the recursive calls
are not just on the immediate predecessor of an argument, but on the results
of subtraction. So it might look like

f n = hn (f (g n))

but that doesn’t fit exactly, either, because the recursive calls to gcd are on
different functions in the second and third clauses.

So, let’s be bold! The most general schema we might think of is

f = h f

which means that in the right-hand side we can make arbitrary recursive
calls to f . For the gcd, the function h might look something like this:

h = �g.�a.�b. if (a = b) a
(if (a > b) (g (a� b) b)

(g (b� a) b))

Here, we assume functions for testing x = y and x > y on natural numbers,
for subtraction x � y (assuming x > y) and for conditionals (see Exercise
L1.4).

The interesting question now is if we can in fact define an f explicitly
when given h so that it satisfies f = h f . We say that f is a fixed point of h,
because when we apply h to f we get f back. Since our solution should
be in the �-calculus, it would be f =� h f . A function f satisfying such an
equation may not be uniquely determined. For example, the equation f = f
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(so, h = �x.x) is satisfied by every function f . On the other hand, if h is a
constant function such as �x.I then f =� (�x. I) f =� I has a simple unique
solution. For the purpose of this lecture, any function that satisfies the given
equation is acceptable.

If we believe in the Church-Turing thesis, then any partial recursive
function should be representable on Church numerals in the �-calculus, so
there is reason to hope there are explicit representations for such f . The
answer is given by the so-called Y combinator.1 Before we write it out, let’s
reflect on which laws Y should satisfy? We want that if f = Y h and we
specified that f = h f , so we get Y h = h (Y h). We can iterate this reasoning
indefinitely:

Y h = h (Y h) = h (h (Y h)) = h (h (h (Y h))) = . . .

In other words, Y must iterate its argument arbitrarily many times.
The ingenious solution deposits one copy of h and the replicates Y h.

Y = �h. (�x. h (xx)) (�x. h (xx))

Here, the application xx takes care of replicating Y h, and the outer applica-
tion of h in h (xx) leaves a copy of h behind. Formally, we calculate

Y h =� (�x. h (xx)) (�x. h (xx))
=� h ((�x. h (xx)) (�x. h (xx)))
=� h (Y h)

In the first step, we just unwrap the definition of Y . In the second step we
perform a �-reduction, substituting [(�x. h (xx))/x]h (xx). In the third step
we recognize that this substitution recreated a copy of Y h.

You might wonder how we could ever get an answer since

Y h =� h (Y h) =� h (h (Y h)) =� h (h (h (Y h))) = . . .

Well, we sometimes don’t! Actually, this is important if we are to represent
partial recursive functions which include functions that are undefined (have
no normal form) on some arguments. Reconsider the specification f = f as
a recursion schema. Then h = �g. g and

Y h = Y (�g. g) =� (�x. (�g. g) (xx)) (�x. (�g. g) (xx)) =� (�x. x x) (�x. x x)

The term on the right-hand side here (called ⌦) has the remarkable property
that it only reduces to itself! It therefore does not have a normal form. In

1For our purposes, a combinator is simply a �-expression without any free variables.
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other words, the function f = Y (�g. g) = ⌦ solves the equation f = f by
giving us a result which always diverges.

We do, however, sometimes get an answer. Consider, for example, a
case where f does not call itself recursively at all: f = �n. succ n. Then
h0 = �g.�n. succ n. And we calculate further

Y h0 = Y (�g.�n. succ n)
=� (�x. (�g.�n. succ n) (xx)) (�x. (�g.�n. succ n) (xx))
=� (�x. (�n. succ n)) (�x. (�n. succ n))
=� �n. succ n

So, fortunately, we obtain just the successor function if we apply �-reduction
from the outside in. It is however also the case that there is an infinite reduction
sequence starting at Y h0. By the Church-Rosser Theorem (Theorem L2.3)
this means that at any point during such an infinite reduction sequence we
could still also reduce to �n. succ n. A remarkable and nontrivial theorem
about the �-calculus is that if we always reduce the left-most/outer-most
redex (which is the first expression of the form (�x. e1) e2 we come to when
reading an expression from left to right) then we will definitely arrive at a
normal form when one exists. And by the Church-Rosser theorem such a
normal form is unique (up to renaming of bound variables, as usual).

3 Defining Functions by Recursion

As a simpler example than gcd, consider the factorial function, which we
deliberately write using general recursion rather than primitive recursion.

fact n = if n = 0 then 1 else n ⇤ fact(n� 1)

To write this in the �-calculus we first define a zero test if0 satisfying

if0 0 c d = c
if0 n+ 1 c d = d

which is a special case of if iteration and can be written, for example, as

if0 = �n.�c.�d. n (K d) c

Eliminating the mathematical notation from the recursive definition of fact
get the equation

fact = �n. if0 n (succ zero) (times n (fact (predn)))
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where we have already defined succ, zero, times, and pred. Of course, this is
not directly allowed in the �-calculus since the right-hand side mentions
fact which we are just trying to define. The function hfact which will be the
argument to the Y combinator is then

hfact = �f.�n. if0 n (succ zero) (times n (f (predn)))

and

fact = Y hfact

We can write and execute this now in LAMBDA notation (see file nat.lam)

1 defn I = \x. x
2 defn K = \x. \y. x
3 defn Y = \h. (\x. h (x x)) (\x. h (x x))
4

5 defn if0 = \n. \c. \d. n (K d) c
6

7 defn h_fact = \f. \n. if0 n (succ zero) (times n (f (pred n)))
8 defn fact = Y h_fact
9

10 norm _120 = fact _5
11 norm _720 = fact (succ _5)

Listing 1: Recursive factorial in LAMBDA label

4 Introduction to Types

We have experienced the expressive power of the �-calculus in multiple
ways. We followed the slogan of data as functions and represented types
such as Booleans and natural numbers. On the natural numbers, we were
able to express the same set of partial functions as with Turing machines,
which gave rise to the Church-Turing thesis that these are all the effectively
computable functions.

On the other hand, Church’s original purpose of the pure calculus of
functions was a new foundations of mathematics distinct from set the-
ory [Chu32, Chu33]. Unfortunately, this foundation suffered from similar
paradoxes as early attempts at set theory and was shown to be inconsistent,
that is, every proposition has a proof. Church’s reaction was to return to the
ideas by Russell and Whitehead [WR13] and introduce types. The resulting
calculus, called Church’s Simple Theory of Types [Chu40] is much simpler than
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Russell and Whitehead’s Ramified Theory of Types and, indeed, serves well as
a foundation for (classical) mathematics.

We will follow Church and introduce simple types as a means to classify
�-expressions. An important consequence is that we can recognize the
representation of Booleans, natural numbers, and other data types and
distinguish them from other forms of �-expressions. We also explore how
typing interacts with computation.

5 Simple Types, Intuitively

Since our language of expression consists only of �-abstraction to form
functions, juxtaposition to apply functions, and variables, we would expect
our language of types ⌧ to just contain ⌧ ::= ⌧1 ! ⌧2. This type might be
considered “empty” since there is no base case, so we add type variables ↵,
�, �, etc.

Type variables ↵
Types ⌧ ::= ⌧1 ! ⌧2 | ↵

We follow the convention that the function type constructor “!” is right-
associative, that is, ⌧1 ! ⌧2 ! ⌧3 = ⌧1 ! (⌧2 ! ⌧3).

We write e : ⌧ if expression e has type ⌧ . For example, the identity
function takes an argument of arbitrary type ↵ and returns a result of the
same type ↵. But the type is not unique. For example, the following two
hold:

�x. x : ↵! ↵
�x. x : (↵! �)! (↵! �)

What about the Booleans? true = �x.�y. x is a function that takes an argu-
ment of some arbitrary type ↵, a second argument y of a potentially different
type � and returns a result of type ↵. We can similarly analyze false:

true = �x.�y. x : ↵! (� ! ↵)
false = �x.�y. y : ↵! (� ! �)

This looks like bad news: how can we capture the Booleans by their type
if true and false have a different type? We have to realize that types are not
unique and we can indeed find a type that is shared by true and false:

true = �x.�y. x : ↵! (↵! ↵)
false = �x.�y. y : ↵! (↵! ↵)
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The type ↵! (↵! ↵) then becomes our candidate as a type of Booleans in
the �-calculus. Before we get there, we formalize the type system so we can
rigorously prove the right properties.

6 The Typing Judgment

We like to formalize various judgments about expressions and types in the
form of inference rules. For example, we might say

e1 : ⌧2 ! ⌧1 e2 : ⌧2
e1 e2 : ⌧1

We usually read such rules from the conclusion to the premises, pronouncing
the horizontal line as “if ”:

The application e1 e2 has type ⌧1 if e1 maps arguments of type ⌧2 to
results of type ⌧1 and e2 has type ⌧2.

When we arrive at functions, we might attempt
x1 : ⌧1 e2 : ⌧2

�x1. e2 : ⌧1 ! ⌧2
?

This is (more or less) Church’s approach. It requires that each variable x
intrinsically has a type that we can check, so probably we should write x⌧ .
In modern programming languages this can be bit awkward because we
might substitute for type variables or apply other operations on types, so
instead we record the types of variable in a typing context.

Typing context � ::= x1 : ⌧1, . . . , xn : ⌧n

Critically, we always assume:

All variables declared in a context are distinct.

This avoids any ambiguity when we try to determine the type of a variable.
The typing judgment now becomes

� ` e : ⌧

where the context � contains declarations for the free variables in e. It is
defined by the following three rules

�, x1 : ⌧1 ` e2 : ⌧2

� ` �x1. e2 : ⌧1 ! ⌧2
lam

x : ⌧ 2 �

� ` x : ⌧
var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
app
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As a simple example, let’s type-check true. Note that we always construct
such derivations bottom-up, starting with the final conclusion, deciding on
rules, writing premises, and continuing.

x : ↵, y : ↵ ` x : ↵
var

x : ↵ ` �y. x : ↵! ↵
lam

· ` �x.�y. x : ↵! (↵! ↵)
lam

In this construction we exploit that the rules for typing are syntax-directed:
for every form of expression there is exactly one rule we can use to infer its
type.

How about the expression �x.�x. x? This is ↵-equivalent to �x.�y. y
and therefore should check (among other types) as having type ↵! (�!�).
It appears we get stuck:

??
x : ↵ ` �x. x : � ! �

lam??

· ` �x.�x. x : ↵! (� ! �)
lam

The worry is that applying the rule lam would violate our presupposition
that no variable is declared more than once and x : ↵, x : � ` x : � would be
ambiguous. But we said we can “silently” apply ↵-conversion, so we do it
here, renaming x to x0. We can then apply the rule:

x : ↵, x0 : � ` x0 : �
var

x : ↵ ` �x. x : � ! �
lam

· ` �x.�x. x : ↵! (� ! �)
lam

A final observation here about type variables: if · ` e : ↵ ! (� ! �) then
also · ` e : ⌧1 ! (⌧2 ! ⌧2) for any types ⌧1 and ⌧2. In other words, we can
substitute arbitrary types for type variables in a typing judgment � ` e : ⌧
and still get a valid judgment. In particular, the expressions true and false
have infinitely many types.

7 Type Inference

An important property of the typing rules we have so far is that they are
syntax-directed, that is, for every form of expression there is exactly one
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typing rule that can be applied. We then perform type inference by construct-
ing the skeleton of the typing derivation, filling it with unknown types, and
reading off a set of equations that have be satisfied between the unknowns.
Fortunately, these equations are relatively straightforward to solve with an
algorithm called unification. This is the core of what is used in the imple-
mentation of modern functional languages such as Standard ML, OCaml, or
Haskell.

We sketch how this process work, but only for a specific example; we
might return to the general algorithm form in a future lecture. Consider the
representation of 2:

�s.�z. s (s z)

We know it must have type ?⌧1 ! (?⌧2 ! ?⌧3) for some unknown types ?⌧1,
?⌧2, and ?⌧3 where

s : ?⌧1, z : ?⌧2 ` s (s z) : ?⌧3

Now, s z applies s to z, so ?⌧1 = ?⌧2 ! ?⌧4 for some new ?⌧4. Next, the s
is applied to the result of s z, so ?⌧4 = ?⌧2. Also, the right-hand side is the
same as the result type of s, so ?⌧3 = ?⌧4 = ?⌧2. Substituting everything out,
we obtain

s : ?⌧2 ! ?⌧2, z : ?⌧2 ` s (s z) : ?⌧2

It is straightforward to write down the typing derivation for this judgment.
Also, because we did not need to commit to what ?⌧2 actually is, we obtain

�s.�z. s (s z) : (⌧2 ! ⌧2)! (⌧2 ! ⌧2) for any type ⌧2

We can express this by using a type variable instead, writing

�s.�z. s (s z) : (↵! ↵)! (↵! ↵) for any type ↵

because if the the type of an expression contains type variables we can alway
substitute arbitrary types for them and still obtain a valid type.

We find that
` n : (↵! ↵)! (↵! ↵)

even though some of the representations (such as 0 = zero) also have other
types. So our current hypothesis is that this type is a good candidate as a
characterization of Church numerals, just as ↵!(↵!↵) is a characterization
of the Booleans.
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Exercises

Exercise 1 The unary representation of natural numbers requires tedious
and error-prone counting to check whether your functions (such a factorial,
Fibonacci, or greatest common divisor in the exercises below) behave cor-
rectly on some inputs with large answers. Fortunately, you can exploit that
the LAMBDA implementation counts the number or reduction steps for you
and prints it in decimal form!

(i) We have
n succ zero �!⇤

� n

because n iterates the successor function n times on 0. Run some
experiments in LAMBDA and conjecture how many leftmost-outermost
reduction steps are required as a function of n. Note that only �-
reductions are counted, and not replacing a definition (for example,
zero by �s.�z. z). We justify this because we think of the definitions as
taking place at the metalevel, in our mathematical domain of discourse.

(ii) Prove your conjecture from part (i), using induction on n. It may be
helpful to use the mathematical notation fkc to describe a �-expression
generated by f0 c = c and fk+1 c = f (fk c) where f and c are �-
expressions. For example, n = �s.�z. sn z or succ3 zero = succ (succ (succ zero)).

Exercise 2 Give an implementation of the factorial function in the �-calculus
as it arises from the schema of primitive recursion. How many �-reduction
steps are required for factorial of 0, 1, 2, 3, 4, 5 in each of the two implemen-
tations?

Exercise 3 The Fibonacci function is defined by

fib 0 = 0
fib 1 = 1
fib (n+ 2) = fib n+ fib (n+ 1)

Give two implementations of the Fibonacci function in the �-calculus (us-
ing the LAMBDA implementation). You may use the functions in (see file
nat.lam).

(i) Exploit the idea behind the encoding of primitive recursion using pairs
to give a direct implementation of fib without using the Y combinator.

(ii) Give an implementation of fib using the Y combinator.
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Test your implementation on inputs 0, 1, 9, and 11, expecting results 0, 1,
34, and 89. Which of the two is more “efficient” (in the sense of number of
�-reductions)?

Exercise 4 Recall the specification of the greatest common divisor (gcd) from
this lecture for natural numbers a, b > 0:

gcd a a = a
gcd a b = gcd (a� b) b if a > b
gcd a b = gcd a (b� a) if b > a

We don’t care how the function behaves if a = 0 or b = 0.
Define gcd as a closed expression in the �-calculus over Church numerals.

You may use the Y combinator we defined, and any other functions like
succ, pred, and you should define other functions you may need such as
subtraction or arithmetic comparisons.

Also analyze how your function behaves when one or both of the argu-
ments a and b are 0.
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Lecture Notes on
Representation Theorems

15-814: Types and Programming Languages
Frank Pfenning

Lecture 4
September 10, 2020

1 The Limits of Simple Types

We have proposed types as a way to classify functions, fixing their domain
and their codomain, and making sure that functions are applied to argu-
ments of the correct type. We also started to observe some patterns, such
as true : ↵ ! (↵ ! ↵) and false : ↵ ! (↵ ! ↵), possibly using this type to
characterize Booleans.

But what do we give up? Are there expressions that cannot be typed?
From the historical perspective, this should definitely be the case, because
types were introduced exactly to rule out certain “paradoxical” terms such
as ⌦, which does not have a normal form.

One term that is no longer typeable is self-application ! = �x. x x. As a
result, we also can type neither ⌦ = ! ! nor Y , which can be seen as achiev-
ing a goal from the logical perspective, but it does give up computational
expressiveness. How do we prove that ! cannot be typed? We begin by
creating the skeleton of a typing derivation, which is unique due to the
syntax-directed nature of the rules (that is, for each language construct there
is exactly one typing rule). We highlight in red rules whose constraints on
types have not yet been considered. When all the rules are black, we know
that every solution to the accumulated constraints leads to a valid typing
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derivation (and therefore a valid type in the conclusion).

x : ` x :
tp/var

x : ` x :
tp/var

x : ` xx :
tp/app

· ` �x. x x :
tp/lam

The type in the final judgment must be ?⌧1 ! ?⌧2 for some types ?⌧1 and ?⌧2.

x : ` x :
tp/var

x : ` x :
tp/var

x : ?⌧1 ` xx : ?⌧2
tp/app

· ` �x. x x : ?⌧1 ! ?⌧2
tp/lam

Once the type of a variable is available in the context, this types is propa-
gated upwards unchanged in a derivation, so we can fill in some more of
the types.

x : ?⌧1 ` x :
tp/var

x : ?⌧1 ` x :
tp/var

x : ?⌧1 ` xx : ?⌧2
tp/app

· ` �x. x x : ?⌧1 ! ?⌧2
tp/lam

In the tp/var rules the type of variable is just looked up in the context, so we
can fill in those two types as well.

x : ?⌧1 ` x : ?⌧1
tp/var

x : ?⌧1 ` x : ?⌧1
tp/var

x : ?⌧1 ` xx : ?⌧2
tp/app

· ` �x. x x : ?⌧1 ! ?⌧2
tp/lam

Finally, for the application of the tp/app rule to be correct, the type of x in
the first premise must be a function type, expecting an argument of type ?⌧1
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(the type of x in the second premise) and returning a result of type ?⌧2. That
is:

x : ?⌧1 ` x : ?⌧1
tp/var

x : ?⌧1 ` x : ?⌧1
tp/var

x : ?⌧1 ` xx : ?⌧2
tp/app

· ` �x. x x : ?⌧1 ! ?⌧2
tp/lam

provided ?⌧1 = ?⌧1 ! ?⌧2

Now we observe that there cannot be a solution to the required equation:
there are no types ⌧1 and ⌧2 such that ⌧1 = ⌧1 ! ⌧2 since the right-hand side
is always bigger (and therefore not equal) to the left-hand side.

To recover from this in full generality we would need so-called recursive
types. In this example, we see

⌧1 = F ⌧1

where F = �↵.↵ ! ⌧2 and we might then have a solution with ⌧1 = Y F .
But such a solution is not immediately available to us. For one thing, we
do not have function from types to types such as F . For another, we don’t
have a Y combinator at the level of types. However, it is perfectly possible
to construct recursive types, and we will do so later in the course. In the
notation we will introduce later, we would get

⌧1 = ⇢↵.↵! ⌧2

where ⇢↵. ⌧ binds the type variable ↵ with scope ⌧ . Such a type will be
equivalent to its unfolding [⇢↵. ⌧/↵]⌧ .

Another way to recover some, but not all of the functions that can be
typed in the �-calculus is to introduce polymorphism, which we will also
consider.

2 Characterizing the Booleans

We would now like to show that the representation of the Booleans is in fact
correct. We go through a sequence of conjectures to (hopefully) arrive at the
correct conclusion.
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Conjecture 1 (Representation of Booleans, v1)
If · ` e : ↵! (↵! ↵) then e = true or e = false.

If by “=” we mean mathematical equality that this is false. For example,

· ` (�z. z) (�x.�y. x) : ↵! (↵! ↵)

but the expression (�z. z) (�x.�y. x) represents neither true nor false. But it
is in fact �-convertible to true, so we might loosen our conjecture:

Conjecture 2 (Representation of Booleans, v2)
If · ` e : ↵! (↵! ↵) then e =� true or e =� false.

By the Church-Rosser Theorem, if e =� e0 where e0 is a normal form (that
is, cannot be reduced), then e �!⇤

� e0 so we can replace this by

Conjecture 3 (Representation of Booleans, v3)
If · ` e : ↵! (↵! ↵) then e �!⇤

� true or e �!⇤
� false.

This is actually quite difficult to prove. In particular, it requires that every
expression of the given type does have a normal form. We have already
seen that the standard divergent term ⌦ does not have a type, and neither
does the Y combinator. In fact, it will turn out (although with a difficult
proof) that every simple-typed �-expression does have a normal form! This
is commonly called the weak normalization property. Strong normalization
requires that every reduction sequence terminates, which, incidentally, also
holds here.

Fortunately, we can prove simpler theorems that do not directly rely on
normalization. The first one concerns only normal forms, that is, expressions
that cannot be �-reduced. They play the role that values play in many
programming languages.

Conjecture 4 (Representation of Booleans, v4)
If · ` e : ↵! (↵! ↵) and e is a normal form, then e = true or e = false.

We will later combine this with the following theorems which yields
correctness of the representation of Booleans. These theorems are quite
general (not just on Booleans), and we will see multiple versions of them in
the remainder of the course.

Theorem 5 (Weak Normalization) If � ` e : ⌧ then e �!⇤
� e0 for a normal

form e0.

Theorem 6 (Subject reduction) If � ` e : ⌧ and e �!� e0 then � ` e0 : ⌧ .
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3 Reduction Revisited

Our characterization of normal forms so far is quite simple: they are terms
that do not reduce. But this is a negative condition, and negative conditions
can be difficult to work with in proofs. So we would like a positive definition
normal forms. Just like typing, we tend to give such definitions in the form
of inference rules. The property then holds if the judgment of interest (here,
that an expression is normal) can be derived using the given rules. This is
closely related to the notion of inductive definition.

Before we get to defining normal forms by rules, we formally define
�-reduction by inference rules. Previously, we just stated informally that a
step of �-reduction can be “applied anywhere in an expression”. Now we
write this out. We refer to the last three rules as congruence rules because they
allow the reduction of a subterm. The judgment is here e �! e0 (omitting
the � for brevity) expressing that e reduces to e0.

(�x. e1) e2 �! [e2/x]e1
red/beta

e �! e0

�x. e �! �x. e0
red/lam

e1 �! e01

e1 e2 �! e01 e2
red/app1

e2 �! e02

e1 e2 �! e1 e02
red/app2

A normal form is an expression e such that there does not exists an e0

such that e �! e0. Basically, we have to rule out �-redices (�x. e1) e2, but
we would like to describe normal forms via inference rules so we can easily
prove inductive theorems on them. We might start with the following
incorrect attempt:

x normal
norm/var

e normal
�x. e normal

norm/lam

e1 normal e2 normal

e1 e2 normal
norm/app

It is easy to see that under such a definition every term would be normal.
The culprit here is the rule of application, because, for example, in the
application (�x. x) (�y. y) both function and argument are normal, but their
term itself is not. So we need a separate judgment for neutral terms which
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do not create a redex when they are applied to an argument. In particular,
a �-abstraction is not neutral, but a variable is. Then e1 e2 is normal if e1 is
neutral and e2 is normal.

e normal
�x. e normal

norm/lam
e neutral
e normal

norm/neut

x neutral
neut/var

e1 neutral e2 normal

e1 e2 neutral
neut/app

This definition captures terms of the form

�x1. . . . �xn. ((x e1) . . . ek)

where e1, . . . ek are again in normal form. It is not strictly syntax-directed
in the given form because, for a �-abstraction, both rules norm/lam and
norm/neut could be used. However, norm/neut will fail immediately in the
next step, so we only need to “look ahead” one rule to make the construction
deterministic.

As an example, to show that �x. x x normal we construct the following
derivation, starting from the bottom.

x neutral
neut/var

x neutral
neut/var

x normal
norm/neut

xx neutral
neut/app

xx normal
norm/neut

�x. x x normal
norm/lam

4 Normal Forms and Reduction

The characterization of normal forms via inference rules is compact, but is it
really the same as saying that an expression does not reduce? We would like
to work as much as possible with positive characterizations, so we break
this down into the following two properties

1. For all expressions e, either e reduces or e is normal.
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2. For all expressions e, it is not that case that e reduces and e is normal.

The second property just states that the “either/or” in part 1 is an exclusive
or. We will prove the first, and leave the second as Exercise ??.

To make the proof just a bit easier to write, we introduce a new judgment
e �! expressing that e reduces, but we do not care what to. We obtain it by
erasing the right-hand sides of all the reduction rules. It is then immediate
(although formally done by induction) that e �! e0 for some e0 iff e �! .

(�x. e1) e2 �!
rbl/beta

e �!
�x. e �!

rbl/lam
e1 �!

e1 e2 �!
rbl/app1

e2 �!
e1 e2 �!

rbl/app2

Theorem 7 (Reduction and normal forms, Part (i))
For every expression e, either e �! or e normal.

Proof: We are only given an expression e, so the proof is likely by induction
on the structure of e. Such a proof has the following parts:

(i) We have to establish the property outright for e = x.

(ii) We have to establish the property for e = �x. e1, where the induction
hypothesis is the property for e1.

(iii) We have the establish the property for e = e1 e2 where the induction
hypotheses are the properties for e1 and e2.

If we can cover all three cases we know that the property must hold for all
expressions. Let’s try!

Case: e = x. Then

x neutral By rule neut/var
x normal By rule norm/neut

Case: e = �x. e1. Then
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Either e1 �! or e1 normal By ind.hyp. on e1

e1 �! First subcase
e = �x. e1 �! By rule rbl/lam

e1 normal Second subcase
e = �x. e1 normal By rule norm/lam

Case: e = e1 e2. Then

Either e1 �! or e1 normal By ind.hyp. on e1

e1 �! First subcase
e1 e2 �! By rule rbl/app1

e1 normal Second subcase
Either e1 = �x. e01 and e01 normal
or e1 neutral By inversion on e1 normal

e1 = �x. e01 First sub2case
e = e1 e2 = (�x. e01) e2 �! By rule rbl/beta

e1 neutral Second sub2case
Either e2 �! or e2 nf By ind.hyp. on e2

e2 �! First sub3case
e = e1 e2 �! By rule rbl/app2

e2 normal Second sub3case
e = e1 e2 neutral By rule neut/app

⇤

This proof is slightly shorter from the proof we did in lecture, using an
inversion step that is highlighted in red. What are we doing in this step?
We know we are in the “second subcase” so we have the knowledge that
e1 normal. Now we examine the inference rule and we see there are only
two possible rules that could be used to conclude this judgment: norm/lam
and norm/neut. So we can distinguish these to cases. In each case, we also
know that the premise must hold to obtain the (known) conclusion.

This step in a proof is called inversion because we infer, at the metalevel
at which we reason about our judgments, that the premise of a rule must
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hold if the conclusion does. This is only valid if we consider all the possible
cases, of which there are two in this particular situation. Often, there is only
one, and sometimes there is none (which means that the case were are in is
actually impossible).

Now that we have characterized normal forms, we will be able to prove
a representation theorem for Booleans in the next lecture.

Exercises

Exercise 1 Fill in the blanks in the following typing judgments so the result-
ing judgment holds, or indicate there is no way to do so. You do not need
to justify your answer or supply a typing derivation, and the types do not
need to be “most general” in any sense. Remember that the function type
constructor associates to the right, so that ⌧ ! � ! ⇢ = ⌧ ! (� ! ⇢).

(i) ` y x : ↵

(ii) ` xx :

(iii) · ` : (↵! ↵)! ↵

(iv) · ` (�z. z) (�x.�y.�p. p x y) :

(v)

· `�f.�g.�x. (f x) (g x)

: (↵! )! (↵! )! (↵! )

Since this is the first time we (that is, you) are proving theorems about
judgments defined by rules, we ask you to be very explicit, as we were in
the lectures and lecture notes. In particular:

• Explicitly state the overall structure of your proof: whether it proceeds
by rule induction, and, if so, on the derivation of which judgment, or
by structural induction, or by inversion, or just directly. If you need to
split out a lemma for your proof, state it clearly and prove it separately.
If you need to generalize your induction hypothesis, clearly state the
generalized form.

• Explicitly list all cases in an induction proof. If a case is impossible,
prove that is is impossible. Often, that’s just inversion, but sometimes
it is more subtle.
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• Explicitly note any appeals to the induction hypothesis.

• Any appeals to inversion should be noted as such, as well as the rules
that could have inferred the judgment we already know. This could
lead to zero cases (a contradiction—the judgment could not have been
derived), one case (there is exactly one rule whose conclusion matches
our knowledge), or multiple cases, in which case your proof now splits
into multiple cases.

• We recommend that you follow the line-by-line style of presentation
where each line is justified by a short phrase. This will help you to
check your proof and us to read and verify it.

Exercise 2 Prove that there does not exist an expression e such that e �!
and e normal. In other words, the alternatives stated in Theorem ?? are
exclusive.

As a reminder, the way we prove that a proposition A is false is to assume
A is true and derive a contradiction. For those who care about such things,
this is a perfectly valid intuitionistic (constructive) reasoning principle, as
opposed to an indirect proof. The rule of indirect proof (which we should
avoid at all cost, since all proofs in this course should be constructive) says
that we can prove A is true by assuming that A is false and then deriving a
contradiction from that.
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Typing � ` e : ⌧

�, x1 : ⌧1 ` e2 : ⌧2

� ` �x1. e2 : ⌧1 ! ⌧2
tp/lam

x : ⌧ 2 �

� ` x : ⌧
tp/var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
tp/app

Reduction e �! e0 and e �!⇤ e0

(�x. e1) e2 �! [e2/x]e1
red/beta

e �! e0

�x. e �! �x. e0
red/lam

e1 �! e01

e1 e2 �! e01 e2
red/app1

e2 �! e02

e1 e2 �! e1 e02
red/app2

e �!⇤ e
red⇤/refl

e �! e0 e0 �!⇤ e00

e �!⇤ e00
red⇤/step

Reducible e �!

(�x. e1) e2 �!
rbl/beta

e �!
�x. e �!

rbl/lam e1 �!
e1 e2 �! rbl/app1

e2 �!
e1 e2 �! rbl/app2

Normal and Neutral Expressions e normal and e neutral

e normal
�x. e normal

norm/lam
e neutral
e normal

norm/neut

x neutral
neut/var

e1 neutral e2 normal
e1 e2 neutral

neut/app
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Subject Reduction

15-814: Types and Programming Languages
Frank Pfenning

Lecture 5
September 15, 2020

1 Introduction

In the last lecture we laid the groundwork for a representation theorem on
Booleans, which will prove in this lecture. This provides a clear relationship
between normal forms and one particular type and is an exemplar of many
similar theorems characterizing the normal forms of given types.

In the second part of the this lecture we establish a relationship between
computation and types, complementing the relation between normal forms
and types. The essence of this is that if � ` e : ⌧ and e �! e0 then � ` e0 : ⌧ .

The third part (which we already proved) is that every well-typed ex-
pression either reduces or is a normal form so there is no “loophole” in the
type system.

Together, these three parts form the basic pillars for interpreting the
meaning of types in programming languages, studied here in the setting of
the simply-typed �-calculus which we can think of as a proto-programming-
language, and which we will find embedded in richer and more practical
languages.

2 A Representation Theorem for Booleans

Theorem 1 (Representation of Booleans, v4) If · ` e : ↵ ! (↵ ! ↵) and
e normal then e = true = �x.�y. x or e = false = �x.�y. y.

We postpone the proof to first show an important lemma about neutral
terms which will be used in the proof.
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Lemma 2 (Neutrality) If x1 : ↵1, . . . , xn : ↵n ` e : ⌧ and e neutral then e = xi
and ⌧ = ↵i for some 1  i  n.

Proof: The intuition behind this theorem is that a neutral term e has the
form ((x e1) . . . ek) but there is no variable x that has a function type so k = 0
and e = x. But the only variables x in the context are xi : ↵i.

There are essentially three different forms of induction we could apply
here (abbreviating �0 = x1 : ↵1, . . . , xn : ↵n)

1. Over the structure of the expression e

2. Over the derivation of �0 ` e : ⌧

3. Over the derivation of e neutral

Generally, when we have additional information about an expression such
as e, we rarely perform an induction over the structure of e, but we prefer
to directly exploit the knowledge about e. Secondly (and also a heuristic),
we can easily apply inversion to syntax-directed judgments such as typing,
and less directly so for others. Therefore, we prefer rule induction over
judgments other than typing.

More formally, we proceed by rule induction on e neutral. There are just
two cases.
Case:

x neutral
neut/var

where e = x. Then we reason

x1 : ↵1, . . . , xn : ↵n ` x : ⌧ Assumption
x = xi and ⌧ = ↵i for some 1  i  n By inversion

“Inversion” here refers to the fact that there is only one typing rule for
variables, tp/var, and this rule requires x to be one of the variables in
the context and ⌧ to be the corresponding type.

Case:

e1 neutral e2 normal

e1 e2 neutral
neut/app

where e = e1 e2. Then we reason
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�0 ` e1 e2 : ⌧ Assumption
�0 ` e1 : ⌧2 ! ⌧
and �0 ` e2 : ⌧2 for some ⌧2 By inversion
e1 = xi and ⌧2 ! ⌧ = ↵i for some 1  i  n By ind. hyp.
Contradiction Since ⌧2 ! ⌧ = ↵i is impossible

Therefore, the second case is impossible, as we already noted infor-
mally at the outset. The appeal to the induction hypothesis relies on
the derivations of e1 neutral and �0 ` e1 : ⌧2! ⌧ and is correct because
e1 neutral is a subderivation (in fact, the immediate premise) of the
given derivation for e = e1 e2.

⇤

Now we are ready to tackle the proof of the representation theorem for
normal forms.

Proof: (of Theorem 1) Let’s remind ourselves:

If · ` e : ↵ ! (↵ ! ↵) and e normal then e = true = �x.�y. x or
e = false = �x.�y. y.

Again we have a choice: we could try induction over the structure of e
(not a good idea), rule induction over the derivation of · ` e : ↵! (↵! ↵)
(okay), or rule induction over e normal (even better). As it turns out, we can
do a proof by cases, since the induction hypothesis is never needed! This is,
of course, a special case of induction but we would like to be precise if a
simpler proof principle suffices.

Case:
e neutral
e normal

norm/neut

We conclude that this case is impossible as follows:

· ` e : ↵! (↵! ↵) Assumption
e neutral Premise in this case
Contradiction By Lemma 2

Case:
e1 normal

�x. e1 normal
norm/lam

where e = �x. e1. We continue:
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· ` �x. e1 : ↵! (↵! ↵) Assumption
x : ↵ ` e1 : ↵! ↵ By inversion
Either e1 neutral or e1 = �x. e2 for some e2 and e2 normal

By inversion on e1 normal

Here the appeal to inversion yields two cases, because the conclu-
sion e1 normal could be derived by two different rules (norm/neut or
norm/lam).

Subcase: e1 neutral. Again, this case is impossible by neutrality.

x : ↵ ` e1 : ↵! ↵ From above
e1 neutral This case
Contradiction By Lemma 2

Subcase: e1 = �y. e2 for some e2 and e2 normal. Then

x : ↵ ` �y. e2 : ↵! ↵ From above with e1 = �y. e2
x : ↵, y : ↵ ` e2 : ↵ By inversion
e2 normal This subcase
e2 = �z. e3 for some e3 normal
or e2 neutral By inversion on e2 normal

We now distinguish the reasoning in these two subcases.
Sub2case: e2 = �z. e3 for some e3 with e3 normal. Now it is this

case that is impossible:
x : ↵, y : ↵ ` �z. e3 : ↵ From above with e2 = �x e3
Contradiction By inversion

(no typing rule matches this conclusion)
Sub2case: e2 neutral. Then

x : ↵, y : ↵ ` e2 : ↵ From above
e2 neutral This case
e2 = x or e2 = y By neutrality (Lemma 2)
e = �x. e1 = �x.�y. e2 = �x.�y. x
or e = �x. e1 = �x.�y. e2 = �x.�y. y

By form of e, e1, and e2 in this case

⇤

3 Subject Reduction

Let’s put the representation theorem into the bigger picture. We had previ-
ously conjectured:
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Conjecture 3 (L3.4, Representation of Booleans, v2)
If · ` e : ↵! (↵! ↵) then e =� true or e =� false.

But we want to relate this to computation. Fortunately, by the Church-
Rosser Theorem, e =� e0 for a normal form e0 if and only if e �!⇤ e0 (where
�!⇤ is the reflexive and transitive closure of single-step reduction we have
been mostly working with). So we recast this one more time, relating typing
to computation and representation.

Conjecture 4 (Computation of Booleans)
If · ` e : ↵! (↵! ↵) then e �!⇤ true or e �!⇤ false.

Since every well-typed expression has a normal form (which we did not
prove), the missing link in our reasoning chain is that typing is preserved
under reduction: if we start with an expression e of type ⌧ and we reduce it
all the way to a normal form e0, then e0 will still have type ⌧ . For the special
case where ⌧ = ↵! (↵! ↵) which means that any expression e of type ⌧
that has a normal form represents a Boolean.

Now we return to the main topic of this lecture, namely subject reduction.
Recall our characterization of reduction:

e �! e0

�x. e �! �x. e0
red/lam

e1 �! e01

e1 e2 �! e01 e2
red/app1

e2 �! e02

e1 e2 �! e1 e02
red/app2

(�x. e1) e2 �! [e2/x]e1
beta

And, for reference, here are the typing rules.

�, x1 : ⌧1 ` e2 : ⌧2

� ` �x1. e2 : ⌧1 ! ⌧2
lam

x : ⌧ 2 �

� ` x : ⌧
var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
app

Theorem 5 (Subject Reduction)
If � ` e : ⌧ and e �! e0 then � ` e0 : ⌧ .

Proof: In this theorem statement we are given derivations for two judg-
ments: � ` e : ⌧ and e �! e0. Most likely, the proof will proceed by rule
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induction on one of these and by inversion on the other. The typing judg-
ment is syntax-directed and therefore amenable to reasoning by inversion,
so we try rule induction over the reduction judgment.

By rule induction on the derivation of e �! e0.

Case:

e1 �! e01

�x. e1 �! �x. e01
red/lam

where e = �x. e01.

� ` �x. e1 : ⌧ Assumption
�, x : ⌧2 ` e1 : ⌧1 and ⌧ = ⌧2 ! ⌧1 for some ⌧1 and ⌧2 By inversion
�, x : ⌧2 ` e01 : ⌧1 By induction hypothesis
� ` �x. e01 : ⌧2 ! ⌧1 By rule lam

Case:

e1 �! e01

e1 e2 �! e01 e2
red/app1

where e = e1 e2. We start again by restating what we know in this case
and then apply inversion.

� ` e1 e2 : ⌧ Assumption
� ` e1 : ⌧2 ! ⌧ and
� ` e2 : ⌧2 for some ⌧2 By inversion

At this point we have a type for e1 and a reduction for e1, so we can
apply the induction hypothesis.

� ` e01 : ⌧2 ! ⌧ By ind.hyp.

Now we can just apply the typing rule for application. Intuitively, in
the typing for e1 e2 we have replaced e1 by e01, which is okay since e01
has the type of e1.

� ` e01 e2 : ⌧ By rule lam
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Case:

e2 �! e02

e1 e2 �! e01 e2
red/app2

where e = e1 e2. This proceeds completely analogous to the previous
case.

Case:

(�x. e1) e2 �! [e2/x]e1
�

where e = (�x. e1) e2. In this case we apply inversion twice, since the
structure of e is two levels deep.

� ` (�x. e1) e2 : ⌧ Assumption
� ` �x. e1 : ⌧2 ! ⌧
and � ` e2 : ⌧2 for some ⌧2 By inversion
�, x : ⌧2 ` e1 : ⌧ By inversion

At this point we are truly stuck, because there is no obvious way to
complete the proof.

To Show: � ` [e2/x]e1 : ⌧

Fortunately, the gap that presents itself is exactly the content of the
substitution property, stated below. The forward reference here is ac-
ceptable, since the proof of the substitution property does not depend
on subject reduction.

� ` [e2/x]e1 : ⌧ By the substitution property (Theorem 6)

⇤

Theorem 6 (Substitution Property)
If � ` e : ⌧ and �, x : ⌧ ` e0 : ⌧ 0 then � ` [e/x]e0 : ⌧ 0

Proof sketch: By rule induction on the deduction of �, x : ⌧ ` e0 : ⌧ 0.
Intuitively, in this deduction we can use x : ⌧ only at the leaves, and there
to conclude x : ⌧ . Now we replace this leaf with the given derivation of
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� ` e : ⌧ which concludes e : ⌧ . Luckily, [e/x]x = e, so this is the correct
judgment.

There is only a small hiccup: when we introduce a different variable
x1 : ⌧1 into the context in the lam rule, the contexts of the two assumptions
no longer match. But we can apply weakening, that is, adjoin the unused
hypothesis x1 : ⌧1 to every judgment in the deduction of � ` e : ⌧ . After
that, we can apply the induction hypothesis. ⇤

We recommend you write out the cases of the substitution property in
the style of our other proofs, just to make sure you understand the details.

The substitution property is so critical that we may elevate it to an
intrinsic property of the turnstile (`). Whenever we write � ` J for any
judgment J we imply that a substitution property for the judgments in �
must hold. This is an example of a hypothetical and generic judgment [ML83].
We may return to this point in a future lecture, especially if the property
appears to be in jeopardy at some point. It is worth remembering that,
while we may not want to prove an explicit substitution property, we still
need to make sure that the judgments we define are hypothetical/generic
judgments.

4 Taking Stock

Where do we stand at this point in our quest for a representation theorems
for Booleans? We have the following:

Reduction and Normal Forms

(i) For all e, either e �! or e normal.

(ii) There is no e such that e �! and e normal

Representation of Booleans in Normal Form (L5.1)
If · ` e : ↵ ! (↵ ! ↵) and e normal then either e = true = �x.�y. x or
e = false = �x.�y. y.

Subject Reduction (L5.5)
If � ` e : ⌧ and e �! e0 we have � ` e0 : ⌧ .

We did not prove normalization (also called termination) or confluence
(also called the Church-Rosser property).
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Normalization
If � ` e : ⌧ then e �!⇤ e0 for some e0 with e0 normal.

Confluence
If e �!⇤ e1 and e �!⇤ e2 then there exists an e0 such that e1 �!⇤ e0 and
e2 �! e0.

We could replay the whole development for the representation of natural
numbers instead of Booleans, with some additional complications, but we
will forego this in favor of tackling more realistic programming languages.

Exercises

Exercise 1 Define multi-step reduction e �!⇤ e0 by the following rules:

e �!⇤ e
red⇤/refl

e �! e0 e0 �!⇤ e00

e �!⇤ e00
red⇤/step

Prove by rule induction that if � ` e : ⌧ and e �!⇤ e0 then � ` e0 : ⌧

Exercise 2 Define a new single-step relation e 7! e0 which means that e re-
duces to e0 by leftmost-outermost reduction, using a collection of inference rules.
Recall that I claimed this strategy is sound (it only performs �-reductions)
and complete for normalization (if e has a normal form, we can reach it by
performing only leftmost-outermost reductions). Prove the following state-
ments about your reduction judgment:

(i) If e 7! e0 then e �! e0.

(ii) 7! is small-step deterministic, that is, if e 7! e1 and e 7! e2 then e1 = e2.

You should interpret = as ↵-equality, that is, the two terms differ only in
the names of their bound variables (which we always take for granted). For
each of the following statements, either indicate that they are true (without
proof) or provide a counterexample.

(iii) For all e, either e 7! e0 for some e0 or e normal.

(iv) There does not exist an e such that e 7! e0 for some e0 and e normal.

(v) If e �! e0 then e 7! e0.

(vi) �! is small-step deterministic.
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(vii) �! is big-step deterministic, that is, if e �!⇤ e1 and e �!⇤ e2 where
e1 normal and e2 normal, then e1 = e2.

(viii) For arbitrary e and normal e0, e �!⇤ e0 iff e 7!⇤ e0.
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 6
Thursday, September 17, 2020

1 Introduction

Polymorphism refers to the possibility of an expression to have multiple types.
In that sense, the simply-typed �-calculus is polymorphic. For example, we
have

�x. x ∶ ⌧ → ⌧

for any type ⌧ . More specifically, then, we are interested in reflecting this
property in a type itself. For example, we might want to state

�x. x ∶ ∀↵.↵→ ↵

to express all the types above, but now in a single form. This means we
could now reason within the type system about polymorphic functions
rather than having to reason only at the metalevel with statements such
as “for all types ⌧ , . . .”. Our system will be slightly different from this, for
reasons that will become apparent later.

Christopher Strachey [Str00] distinguished two forms of polymorphism:
ad hoc polymorphism and parametric polymorphism. Ad hoc polymorphism
refers to multiple types possessed by a given expression or function which
has different implementations for different types. For example, plus might
have type int→ int→ int but also float→ float→ float with different implemen-
tations at these two types. Similarly, a function show ∶ ∀↵.↵→ string might
convert an argument of any type into a string, but the conversion function
itself will of course have to depend on the type of the argument: printing
Booleans, integers, floating point numbers, pairs, etc. are all very different
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operations. Even though it is an important concept in programming lan-
guages, in this lecture we will not be concerned with ad hoc polymorphism.

In contrast, parametric polymorphism refers to a function that behaves the
same at all possible types. The identity function, for example, is paramet-
rically polymorphic because it just returns its argument, regardless of its
type. The essence of “parametricity” wasn’t rigorously captured until the
beautiful analysis by John Reynolds [Rey83], which we will sketch in a later
lecture on parametricity. In this lecture we will present typing rules and
some examples.

Slightly different systems for parametric polymorphism were discovered
independently by Jean-Yves Girard [Gir71] and John Reynolds [Rey74]. Gi-
rard worked in the context of logic and developed System F, while Reynolds
worked directly on type systems for programming language and designed
the polymorphic �-calculus. With minor syntactic changes, we will follow
Reynolds’s presentation.

2 Universally Quantified Types

We would like to add types of the form ∀↵. ⌧ to express parametric poly-
morphism. The fundamental idea is that an expression of type ∀↵. ⌧ is a
function that takes a type as an argument.

This is a rather radical change of attitude. So far, our expressions con-
tained no types at all, and suddenly types become embedded in expressions
and are actually passed to functions! Let’s see where it leads us. Now we
could write

�↵.�x. x ∶ ∀↵.↵→ ↵

but abstraction over a type seems so different from abstraction over a ex-
pressions that we make up a new notation and instead write

⇤↵.�x.x ∶ ∀↵.↵→ ↵

using a capital lambda (⇤). In order to express the typing rules, our contexts
carry two different forms of declarations: x ∶ ⌧ (as we had so far) and now
also ↵ type, expressing that ↵ is a type variable. The typing judgment then is
still � � e ∶ ⌧ , without repeated variables or type variables in �. There will
be some further presuppositions mentioned later. For type abstractions, we
have the rule

�,↵ type � e ∶ ⌧
� � ⇤↵. e ∶ ∀↵. ⌧ tp�tplam

LECTURE NOTES THURSDAY, SEPTEMBER 17, 2020



Parametric Polymorphism L6.3

Here, ↵ is a bound variable in ⇤↵. e and ∀↵. ⌧ so we allow it to be silently
renamed if it conflicts with any variable already declared in �.

We haven’t yet seen how ↵ can actually appear in e, but we can already
verify:

↵ type, x ∶ ↵ � x ∶ ↵ var

↵ type � �x. x ∶ ↵→ ↵
lam

⋅ � ⇤↵.�x.x ∶ ∀↵.↵→ ↵
tp�tplam

The next question is how do we apply such a polymorphic function to a
type? Again, we could just write e ⌧ for the application of a polymorphic
function e to a type ⌧ , but we would like it to be more syntactically apparent
so we write e [⌧].

Let’s return to Church’s representation of natural numbers. With the
quantifier, we now have

nat = ∀↵. (↵→ ↵)→ ↵→ ↵

Then we can verify with typing derivations as above:

zero ∶ nat
zero = ⇤↵.�s.�z. z

We also expect the successor function to have type nat→nat, but there is one
slightly tricky spot. We start:

succ ∶ nat→ nat
succ = �n.⇤↵.�s.�z. s (n )

Before, we just applied n to s and z, but now n ∶ nat, which means that it
expects a type as its first argument! At this point (in a hypothetical typing
derivation we did not write out) we have the context

n ∶ nat,↵ type, s ∶ ↵→ ↵, z ∶ ↵
so we need to instantiate the quantifier with ↵, which next requires argu-
ments of type ↵→ ↵ and ↵ (which we have at hand with s and z).

succ ∶ nat→ nat
succ = �n.⇤↵.�s.�z. s (n [↵] s z)
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It becomes more interesting with the addition function. Recall that in the
untyped setting we had

plus = �n.�k.n succ k

iterating the successor function n times on argument k. The start of the
typed version is again relatively straightforward: the only difference is that
we need to apply n first to a type.

plus ∶ nat→ nat→ nat
plus = �n.�k.n [ ] succ k

But what type do we need? We have that the next argument has type
nat→ nat and the following one nat, so that we need to instantiate ↵ with
nat!

plus ∶ nat→ nat→ nat
plus = �n.�k.n [nat] succ k

So we need that
n ∶ ∀↵. (↵→ ↵)→ ↵→ ↵

and then
n [nat] ∶ (nat→ nat)→ nat→ nat

We should point out that this definition of addition cannot be typed in the
simply-typed �-calculus. In that setting, n can only be applied to functions
s of type ↵ → ↵ to iterate starting from z ∶ ↵. This means that very few
functions are actually definable—essentially only functions like successor
and addition, but not exponentiation, or predecessor (see Exercise 1).

A significant aspect of this is that we instantiate the quantifier in nat =∀↵. (↵→ ↵)→ ↵→ ↵ with nat itself.
These considerations lead us to a rule where we substitute into the type:

� � e ∶ ∀↵. ⌧ � � � type

� � e [�] ∶ [��↵]⌧ tp�tpapp
The second premise is there to check that the type � which is part of the
expression e [�] is valid. At this point in the course, this just means that all
the type variables occurring in � are declared in � (just like all the expression
variables in e must be declared in �).

Here is a small sample derivation, assuming we have defined

id ∶ ∀↵.↵→ ↵
id = ⇤↵.�x.x
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Then we can typecheck:

⋮
⋅ � id ∶ ∀↵.↵→ ↵

⋮
⋅ � nat type

⋅ � id [nat] ∶ nat→ nat
tpapp

⋮
⋅ � 3 ∶ nat

⋅ � id [nat]3 ∶ nat
app

where we need some rules to verify that nat is a closed type (that is, has no
free type variables). Fortunately, that’s easy: we just check all the compo-
nents of a type.

� � ⌧1 type � � ⌧2 type

� � ⌧1→ ⌧2 type
tp�arrow ↵ type ∈ �

� � ↵ type
tp�tpvar

�,↵ type � ⌧ type

� � ∀↵. ⌧ type
tp�forall

3 Summary: Typing Rules

For the “official” typing rules it is convenient to assume that �-abstractions
are annotated with the type of the bound variable. In practice, we use a
more flexible set of rules where �-abstractions do not necessarily have to be
annotated.

Here is the summary of the language of the polymorphic �-calculus:

Types ⌧ ∶∶= ↵ � ⌧1→ ⌧2 � ∀↵. ⌧
Expressions e ∶∶= x � �x∶⌧. e � e1 e2 � ⇤↵. e � e [⌧]
Contexts � ∶∶= ⋅ � �, x ∶ ⌧ � �,↵ type

We assume that all variables and type variables in a context are distinct, and
rename bound variable or type variables to maintain this invariant.

In order to avoid any “loopholes” in typing derivations we would like to
presuppose that the context is well-formed, which comes down to ensuring
that all the types occurring in them are valid. We did not discuss this
somewhat technical point in lecture, but for completness’ sake we provide
the rules. The judgment � ctx means that � is a valid (or well-formed)
context.
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(⋅) ctx
ctx�emp

� ctx
(�,↵ type) ctx

ctx�tpvar � ctx � � ⌧ type

(�, x ∶ ⌧) ctx
ctx�var

We now assume that whenever we write � � e ∶ ⌧ or � � ⌧ type then
� ctx. In type theory we call this a presupposition and we are always careful
to maintain this presupposition.

� � ⌧1 type �, x1 ∶ ⌧1 � e2 ∶ ⌧2
� � �x1∶⌧1. e2 ∶ ⌧1→ ⌧2

tp�lam x ∶ ⌧ ∈ �
� � x ∶ ⌧ tp�var

� � e1 ∶ ⌧2→ ⌧1 � � e2 ∶ ⌧2
� � e1 e2 ∶ ⌧1 tp�app

�,↵ type � e ∶ ⌧
� � ⇤↵. e ∶ ∀↵. ⌧ tp�tplam � � e ∶ ∀↵. ⌧ � � � type

� � e [�] ∶ [��↵]⌧ tp�tpapp

We then have the property (called regularity in the textbook) that if
� � e ∶ ⌧ under the presupposition that � ctx then � � ⌧ type. This is easy to
verify by rule induction (see Exercise 2).

4 Typing Self-Application Polymorphically

As an exercise in building a typing derivation, we provide a polymorphic
type for self-application �x. x x. We accomplish this by allowing x to have
a polymorphic types ∀↵.↵→ ↵. We call this type u because there is exactly
one normal term of this type: the polymorphic identity function. Applying
the identity to itself seems plausible in any case. So we claim:

u = ∀↵.↵→ ↵

! ∶ u→ u
! = �x. x [u] x

This is established by the following typing derivation. When you want to
build such a derivation yourself, you should always built it “bottom-up”,
starting with the final conclusion. The fact that the rules are syntax-directed
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means you have no choice which rule to choose, but some parts of the type
may be unknown and may need to be filled in later.

x ∶ u � x [u] ∶ x ∶ u � x ∶
x ∶ u � x [u] x ∶ u tp�app
⋅ � �x. x [u] x ∶ u→ u

tp�lam
As a rule of thumb, it seems to work best to first fill in the first premise of an
application (rule tp�app) and then the second. Continuing in the left branch
of the derivation (and remembering that u = ∀↵.↵→ ↵:

x ∶ u � x ∶ u tp�var
⋮

x ∶ u,↵ type � ↵→ ↵ type

x ∶ u � u type
tp�forall

x ∶ u � x [u] ∶ u→ u
tp�tpapp

x ∶ u � x ∶
x ∶ u � x [u] x ∶ u tp�app
⋅ � �x. x [u] x ∶ u→ u

tp�lam
The type emphasized in red arises as [u�↵](↵→ ↵) = u→ u. The second
premise of the application is immediate by the typing rule for variables and
we obtain

x ∶ u � x ∶ u tp�var
⋮

x ∶ u,↵ type � ↵→ ↵ type

x ∶ u � u type
tp�forall

x ∶ u � x [u] ∶ u→ u
tp�tpapp

x ∶ u � x ∶ u tp�var
x ∶ u � x [u] x ∶ u tp�app
⋅ � �x. x [u] x ∶ u→ u

tp�lam
The fact that ↵→↵ is a valid type follows quickly by the tp�arrow and tp�tpvar
rules. There are more types that work for self-application (see Exercise 3).

Crucial in this example is that we can instantiate the quantifier in
u = ∀↵.↵→ ↵ with u itself. This “self-referential” nature of the type quanti-
fier is called impredicativity because it quantifies not only over types already
defined, but also itself. Some systems of type theory reject impredicative
quantification because the meaning of the quantified type is not constructed
from the meaning of types we previously understand. Impredicativity was
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also seen as a source of paradoxes, although Girard did give a syntactic
argument for the consistency of System F [Gir71] with impredicative quan-
tification.

5 Church Numerals Revisited

We can now revisit the representation of Church numerals and express
them and functions on them in the polymorphic �-calculus. We present
the definitions in the language LAMBDA, which uses polymorphic types
when files have extension .poly or the command line argument -l poly.
We use !a as concrete syntax for ∀↵, and /\a for ⇤↵. Type definitions
are preceded by the keyword type, and type declarations for variable
definitions are preceded by the keyword decl.

1 type nat = !a. (a -> a) -> a -> a
2

3 decl zero : nat
4 decl succ : nat -> nat
5

6 defn zero = /\a. \s. \z. z
7 defn succ = \n. /\a. \s. \z. s (n [a] s z)
8

9 decl plus : nat -> nat -> nat
10 defn plus = \n. \k. n [nat] succ k
11

12 decl times : nat -> nat -> nat
13 defn times = \n. \k. n [nat] (plus k) zero
14

15 norm _0 = zero
16 norm _1 = succ _0
17 norm _2 = succ _1
18 norm _3 = succ _2
19

20 norm _6 = times _2 _3

Listing 1: Polymorphic natural numbers in LAMBDA

So far, this straightforwardly follows the structure of the motivating
examples. In order to represent the predecessor function, we require pairs
of natural numbers. But what are their types? Recall:

pair = �x.�y.�k. k xy
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from which conjecture something like

pair ∶ nat→ nat→ (nat→ nat→ ⌧)→ ⌧

where ⌧ is arbitrary. So we realize that this function is polymorphic and we
abstract over the result type of the continuation. We call the type of pairs of
natural numbers nat2. In the type of the pair function it is then convenient to
place the type abstraction after the two natural numbers have been received.

nat2 = ∀↵. (nat→ nat→ ↵)→ ↵

pair ∶ nat→ nat→ nat2
pair = �x.�y.⇤↵.�k. k xy

Now we can define the pred2, with the specification that pred2 n = pair n n � 1.
We leave open the two places we have to provide a type.

pred2 ∶ nat→ nat→ nat
pred2 = �n.n [ ] (�p. p [ ] (�x.�y.pair (succ x) x)) (pair zero zero)

In the first box, we need to fill in the result type of the iteration (which is the
type argument to n), and this is nat2. In the second box we need to fill in the
result type for the decomposition into a pair, and that is also nat2. Then, for
the final definition of pred we only extract the second component of the pair,
so the continuation only returns a natural number rather than a pair.

pred ∶ nat→ nat
pred = �n.n [nat] (�x.�y. y)

Below is a summary of this code in LAMBDA.
1 type nat2 = !a. (nat -> nat -> a) -> a
2

3 decl pair : nat -> nat -> nat2
4 defn pair = \x. \y. /\a. \k. k x y
5

6 decl pred2 : nat -> nat2
7 defn pred2 = \n. n [nat2] (\p. p [nat2] (\x. \y. pair (succ x) x))
8 (pair zero zero)
9

10 decl pred : nat -> nat
11 defn pred = \n. pred2 n [nat] (\x. \y. y)
12

13 norm _6_5 = pred2 _6
14 norm _5 = pred _6

Listing 2: Predecessor on natural numbers in LAMBDA
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6 Theory

We did not discuss this in lectures, but of course we should expect the prop-
erties for the simply-typed �-calculus to carry over, once suitable reduction
rules have been defined. We will talk about these at the beginning of the
next lecture.

One remarkable fact about the polymorphic �-calculus (which is quite
difficult to prove) is that every expression still has a normal form.

Exercises

Exercise 1

(i) Find a definition of plus ∶ nat → nat → nat that works in the simply-
typed �-calculus in the sense that we need to instantiate the type∀↵. (↵→ ↵)→ ↵→ ↵ only with a type variable.

(ii) Give a simply-typed definition (in the sense of part (i)) for times or
conjecture that none exists.

Exercise 2 Prove that if � � e ∶ ⌧ under the presupposition that � ctx then
� � ⌧ type.

Exercise 3 We write F for a (mathematical) function from types to types
(which is not expressible in the polymorphic �-calculus but requires system
F!). A more general family of types (one for each F ) for self-application is
given by

wF = ∀↵.↵→ F (↵)
!F ∶ wF → F (wF )
!F = �x. x [wF ] x

We recover the type from this lecture with F = ⇤↵.↵. You may want to verify
the general typing derivation in preparation for the following questions, but
you do not need to show it.

(i) Consider F = ⇤↵.↵→ ↵. In this case wF = bool. Calculate the type and
characterize the behavior of !F as a function on Booleans.

(ii) Consider F = ⇤↵. (↵ → ↵) → ↵. Calculate wF , the type of !F , and
characterize the the behavior of !F . Can you relate wF and !F to the
types and functions we have considered in the course so far?
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 7
Tuesday, September 22, 2020

1 Introduction

First, we will briefly talk about the dynamic of polymorphism (which ab-
stracts over types and applies functions to types), and then exercise poly-
morphism a little to generalizing iteration from natural numbers to richer
types, using trees as an example.

Then we take the a big step from a pure �-calculus to real programming
languages by changing our attitude on data: we would like to represent
them directly instead of indirectly as functions, for several reasons explained
in ??.

2 Dynamics of Polymorphism

We already gave the typing rules for parametric polymorphism in the previ-
ous lecture, but we did not yet update the rules for computation or normal
and neutral terms. A key observation is that the structure of the types in our
little language is such that we should be able to just add new rules without
touching the old ones in any way. This form of modularity also carries over
to the proofs of the key properties we would like the system to have: they
decompose into cases along the lines of the type constructs we have.

First, reduction:
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(⇤↵. e) [⌧ ] �! [⌧/↵]e
red/tpbeta

e �! e
0

⇤↵. e �! ⇤↵. e0
red/tplam

e �! e
0

e [⌧ ] �! e
0 [⌧ ]

red/tpapp1

There is no red/tpapp2 rule since we do not reduce types themselves.
In this definition we use substitution [⌧/↵]e, which is defined in the ex-

pected way, possibly renaming type variables bound by ⇤�.� or 8�. sigma

that may occur in e so as to avoid capturing any type variables free in ⌧ .
There are also two new rules for normal and neutral terms, retaining all

the others.

e normal
⇤↵. e normal

norm/lam
e neutral

e [⌧ ] neutral
neut/app

The key theorems are preservation and progress, establishing a connection
between types, reduction, and normal forms.

Preservation. If � ` e : ⌧ and e �! e
0 then � ` e

0 : ⌧

Progress. If � ` e : ⌧ then either e �! e
0 for some e

0 or e normal.

Finality of Normal Forms. There is no � ` e : ⌧ such that e �! e
0 for some

e
0 and e normal.

3 Generalizing Iteration

It may be helpful to think of iteration on natural numbers to arise from they
way they are constructed

zero : nat
succ : nat ! nat

Namely, if we imaging a term

succ (succ . . . (succ zero)) : nat
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then we replace the constructor by appropriate functions and constants (using
g for succ and c for zero

g (g . . . , (g c))

Now we should work out the types of g and c. Clearly, g : ⌧ ! ⌧ for any
type ⌧ and c : ⌧ . We can obtain these types from the type of zero and succ by
replacing nat with ↵. So, if we want to see n : nat as an iterator then

nat = 8↵. (↵! ↵)! ↵! ↵

where the first argument is the result type ⌧ following by a function g : ⌧!⌧

and a constant c : ⌧ .
Let’s follow the same recipe for trees of natural numbers. They are

generated from
node : tree ! nat ! tree ! tree
leaf : tree

In this representation, leaves carry no information and every interior node
has a left subtree, a natural number, and right subtree. For example, the tree

node

node

leaf 1 leaf

2 node

leaf 3 leaf

would be constructed with

node (node leaf 1 leaf) 2 (node leaf 3 leaf)

To see the form of an iterator we replace the constructors node and leaf with
functions g and a constant c, respectively, which would give use the tree

g

g

c 1 c

2 g

c 3 c
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This time, we see that we should have

g : ⌧ ! nat ! ⌧ ! ⌧

c : ⌧

for an arbitrary type ⌧ . Once again, this was obtained from replacing the
type tree in the types of node and leaf with an arbitrary type. We can express
this as a polymorphic type as:

tree = 8↵. (↵! nat ! ↵! ↵)! ↵! ↵

As an example, to sum up the elements of the tree we would define

sum : tree ! nat
sum = �t. t [nat] (�x.�n.�y. plus x (plus n y)) zero

First, we pass to t the result type nat, then a function g expecting the sum
of the left subtree as x, then n as the value stored in the node, and then the
sum of the right subtree as y. The function g then just has to add these three
numbers to obtain the sum of a tree. Since the leaf does not contain any
number, its value is 0 (the neutral element of addition).

The definition of the tree constructors themselves follow the structure of
the type. The easy case first:

leaf : tree
leaf = ⇤↵.�n.�l. l

For the node constructor we have the parameter n at the head of the term, and
we just have to remember to match the types by applying the representations
of the left and right subtrees to all parameters (including the type ↵).

node : tree ! nat ! tree ! nat
node = �t1.�x.�t2. n (t1 [↵] n l) x (t2 [↵] n l)

We did not live-code this in lecture, but below is the code for trees in
LAMBDA, which should come after the code for natural number from the
last lecture. You can find this code online at tree.poly.

1 type tree = !a. (a -> nat -> a -> a) -> a -> a
2

3 decl leaf : tree
4 decl node : tree -> nat -> tree -> tree
5

6 defn leaf = /\a. \n. \l. l
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7 defn node = \t1. \x. \t2. /\a. \n. \l. n (t1 [a] n l) x (t2 [a] n l)
8

9 decl sum : tree -> nat
10 defn sum = \t. t [nat] (\s1. \x. \s2. plus s1 (plus x s2)) zero
11

12 norm t123 = node (node leaf _1 leaf) _2 (node leaf _3 leaf)
13 norm s6 = sum t123
14 conv s6 = _6

Listing 1: Trees of natural numbers in LAMBDA

4 Evaluation versus Reduction

The �-calculus is exceedingly elegant and minimal, a study of functions in
the purest possible form. We find versions of it in most, if not all modern
programming languages because the abstractions provided by functions are
a central structuring mechanism for software. On the other hand, there are
some problem with the functions-as-data representation technique of which
we have seen Booleans, natural numbers, and trees. Here are a few notes:

Generality of typing. The untyped �-calculus can express fixed points (and
therefore all partial recursive functions on its representation of nat-
ural numbers) but the same is not true for Church’s simply-typed
�-calculus or even the polymorphic �-calculus where all well-typed
expressions have a normal form. Types, however, are needed to un-
derstand and classify data representations and the functions defined
over them. Fortunately, this can be fixed by introducing recursive types,
so this is not a deeper obstacle to representing data as functions.

Expressiveness. While all computable functions on the natural numbers can
be represented in the sense of correctly modeling their input/out-
put behavior, some natural algorithms are difficult or impossible to
express. For example, under some reasonable assumptions the mini-
mum function on numbers n and k has complexity O(max(n, k)) [?],
which is surprisingly slow, and our predecessor function took O(n)
steps. Other representations are possible, but they either complicate
typing or inflate the size of the representations.

Observability of functions. Since reduction results in normal form, to in-
terpret the outcome of a computation we need to be able to inspect the
structure of functions. But generally we like to compile functions and

LECTURE NOTES TUESDAY, SEPTEMBER 22, 2020



L7.6 From �-Calculus to Programming Languages

think of them only as something opaque: we can probe it by applying
it to arguments, but its structure should be hidden from us. This is a
serious and major concern about the pure �-calculus where all data
are expressed as functions.

In the remainder of this lecture we focus on the last point: rather than
representing all data as functions, we add data to the language directly, with
new types and new primitives. At the same time we make the structure of
functions unobservable so that implementation can compile them to machine
code, optimize them, and manipulate them in other ways. Functions become
more extensional in nature, characterized via their input/output behavior
rather than distinguishing functions that have different internal structure.

5 Revising the Dynamics of Functions

The statics, that is, the typing rules for functions, do not change, but the way
we compute does. We have to change our notion of reduction as well as
that of normal forms. Because the difference to the �-calculus is significant,
we call the result of computation values and define them with the judgment
e value. Also, we write e 7! e

0 for a single step of computation. For now,
we want this step relation to be deterministic, that is, we want to arrange
the rules so that every expression either steps in a unique way or is a value.
We’ll call this property sequentiality, since it means execution is sequential
rather than parallel or concurrent. Furthermore, since we do not reduce
underneath �-abstractions, we only evaluate expressions that are closed, that
is, have no free variables.

When we are done, we should then check the following properties.

Preservation. If · ` e : ⌧ and e 7! e
0 then · ` e

0 : ⌧ .

Progress. For every expression · ` e : ⌧ either e 7! e
0 for some e

0 or e value.

Finality of Values. There is no · ` e : ⌧ such that e 7! e
0 for some e

0 and
e value.

Sequentiality. If e 7! e1 and e 7! e2 then e1 = e2.

Devising a set of rules is usually the key activity in programming lan-
guage design. Proving the required theorems is just a way of checking one’s
work rather than a primary activity. First, one-step computation. We suggest
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you carefully compare these rules to those in Lecture 4 where reduction
could take place in arbitrary position of an expression.

�x. e value
val/lam

Note that e here is unconstrained and need not be a value.

e1 7! e
0
1

e1 e2 7! e
0
1 e2

step/app1
(�x. e1) e2 7! [e2/x]e1

beta

These two rules together constitute a strategy called call-by-name. There are
good practical as well as foundational reasons to use call-by-value instead,
which we obtain with the following three alternative rules.

e1 7! e
0
1

e1 e2 7! e
0
1 e2

step/app1
e1 value e2 7! e

0
2

e1 e2 7! e1 e
0
2

step/app2

e2 value

(�x. e1) e2 7! [e2/x]e1
step/beta/val

We achieve sequentiality by requiring certain subexpressions to be values.
Consequently, computation first reduces the function part of an application,
then the argument, and then performs a (restricted form) of �-reduction.

There are a lot of spurious arguments about whether a language should
support call-by-value or call-by-name. This turns out to be a false dichotomy
and only historically in opposition.

We could now check our desired theorems, but we wait until we have
introduced the Booleans as a new primitive type.

6 Booleans as a Primitive Type

Most, if not all, programming languages support Booleans. There are two
values, true and false, and usually a conditional expression if e1 then e2 else e3.
From these we can define other operations such as conjunction or disjunc-
tion. Using, as before, ↵ for type variables and x for expression variables,
our language then becomes:

Types ⌧ ::= ↵ | ⌧1 ! ⌧2 | 8↵. ⌧ | bool
Expressions e ::= x | �x. e | e1 e2 | ⇤↵. e | e [⌧ ]

| true | false | if e1 e2 e3

LECTURE NOTES TUESDAY, SEPTEMBER 22, 2020



L7.8 From �-Calculus to Programming Languages

The additional rules seem straightforward: true and false are values, and
a conditional computes by first reducing the condition to true or false and
then selecting the correct branch.

true value false value

e1 7! e
0
1

if e1 e2 e3 7! if e01 e2 e3
step/if

if true e2 e3 7! e2
step/if/true

if false e2 e3 7! e3
step/if/false

Note that we do not evaluate the branches of a conditional until we know
whether the condition is true or false.

How do we type the new expressions? true and false are obvious.

� ` true : bool
tp/true

� ` false : bool
tp/false

The conditional is more interesting. We know its subject e1 should be of type
bool, but what about the branches and the result? We want type preservation
to hold and we cannot tell before the program is executed whether the
subject of conditional will be true or false. Therefore we postulate that both
branches have the same general type ⌧ and that the conditional has the same
type.

� ` e1 : bool � ` e2 : ⌧ � ` e3 : ⌧

� ` if e1 e2 e3 : ⌧
tp/if

Exercises

Exercise 1 Show the new cases in the proof of preservation and progress
arising from parametric polymorphism.

(i) (Preservation) If � ` e : ⌧ and e �! e
0 then � ` e

0 : ⌧

(ii) (Progress) If � ` e : ⌧ then either e �! e
0 for some e

0 or e normal

(iii) (Finality of Normal Forms) There is no � ` e : ⌧ such that e �! e
0 for

some e
0 and e normal.
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Explicitly state any additional substitution properties you need (in addition
to Theorem L5.6), but you do not need to prove them.

Exercise 2 An alternative form of binary tree given in ?? is one where all
information is stored in the leaves and none in the nodes. Let’s call such a
tree a shrub.

(i) Give the types for shrub constructors.

(ii) Give the construction of a shrub containing the numbers 1, 2, and 3.

(iii) Give the polymorphic definition of the type shrub, assuming it is repre-
sented by its own iterator.

(iv) Write a function sumup to sum the elements of a shrub.

(v) Write a function mirror that returns the mirror image of a given tree,
reflected about a vertical line down from the root.

Exercise 3 We say two types ⌧ and � are isomorphic (written ⌧ ⇠= �) if there
are two functions forth : ⌧ ! � and back : � ! ⌧ such that they compose to
the identity in both directions, that is, �x. back (forth x)) is equal to �x. x and
�y. forth (back y) is equal to �y. y.

Consider the two types

nat = 8↵. (↵! ↵)! ↵! ↵

tan = 8↵.↵! (↵! ↵)! ↵

(i) Provide functions forth : nat ! tan and back : tan ! nat that, intuitively,
should witness the isomorphism between nat and tan.

(ii) Compute the normal forms of the two function compositions. You may
recruit the help of the LAMBDA implementation for this purpose.

(iii) Are the two function compositions �-equal to the identity? If yes,
you are done. If not, can you see a sense under which they would be
considered equal, either by changing your two functions or be defining
a suitably justified notion of equality?

Exercise 4 Prove sequentiality: If · ` e : ⌧ , e 7! e1 and e 7! e2 then e1 = e2.
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Progress

15-814: Types and Programming Languages
Frank Pfenning

Lecture 8
Thursday, September 24, 2020

1 Introduction

We start by short exploration of the consequences of making the structure
of functions opaque and then focus on proving progress, one of the key
properties connecting typing and evaluation. This in turn requires the
canonical forms theorem, which is a new form of representation theorem (such
as we have proved for Booleans, represented in the typed �-calculus).

Let’s reiterate the critical properties we care about for now:

Preservation. If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧ .

Progress. For every expression · ` e : ⌧ either e 7! e0 for some e0 or e value.

Finality of Values. There is no · ` e : ⌧ such that e 7! e0 for some e0 and
e value.

Sequentiality. If e 7! e1 and e 7! e2 then e1 = e2.

Since we already proved preservation for ordinary reduction in some detail
for the simply-typed �-calculus, in this lecture we focus on the progress
theorem so we can understand the structure of its proof.

2 Observing Functional Values

As we have emphasized, we assume we cannot directly observe the structure
of functions when they are outcome of computation. Instead, we can probe
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such functions by applying them to argument and observing the results.
As an example, consider our language with parametric polymorphism and
Booleans, and our usual representation of natural numbers as their iterators:

nat : 8↵. (↵! ↵)! ↵! ↵

If we have an expression · ` e : nat such that e value we know it will have
the form ⇤↵. e0 for some e0, but we cannot observe e0. Moreover, e0 may not
even be a value, even though e is. Nevertheless, we can test, for example, if
the value e is zero or positive. Consider

· ` e [bool] : (bool! bool)! bool! bool

and
· ` e [bool] (�b. false) true : bool

If this expression evaluates to true then e “represents” zero, and if it evaluates
to false then e “represents” some positive number. We put “represents”
in quotes here because, for example, e may not be equal to ⇤↵.�s.�z. z.
Instead, it behaves like this function when applied to a type ⌧ , and two
arguments of type ⌧ ! ⌧ and ⌧ in this order. We just have to keep in mind
that this computation takes place when we observe e, and not when e is
originally evaluated.

A small item of notation: we write e ,! v to express that e evaluates to the
value v. This presupposes that · ` e : ⌧ for some ⌧ and ensures that v value.
Formally, it is defined by

v value
v ,! v

eval/val
e 7! e0 e0 ,! v

e ,! v
eval/step

It is also possible to define evaluation directly as a so-called big-step
evaluation judgment as compared to the small-step evaluation we have defined
so far (see Exercise 1).

From now on we will often write v for an expression we know to be a
value, but at least for the moment we will not automatically imply this from
the notation, that is, we will still write v value where we are not already
assured that v is indeed a value.
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3 Progress

The progress property is intended to rule out intuitively meaningless expres-
sions that neither reduce nor constitute a value. For example, the ill-typed
expression if (�x. x) false true cannot take a step since the subject (�x. x)
is a value but the whole expression is not a value and cannot take a step.
Similarly, the expression if b false true is well-typed in the context with
b : bool, but it cannot take a step nor is it a value. Therefore, it is clear that
the assumptions that e is closed that that e has a valid type are both needed
for this theorem. It may be helpful to refer to the summary of the judgments
inference rules while reading this proof.

Theorem 1 (Progress)

If · ` e : ⌧ then either e 7! e0 for some e0 or e value.

Proof: There are not many candidates for the structure of this proof. We
have e and we have a typing for e. From that scant information we need
obtain evidence that e can step or is a value. So we try the rule induction on
· ` e : ⌧ .

Case:

x1 : ⌧1 ` e2 : ⌧2

· ` �x1. e2 : ⌧1 ! ⌧2
tp/lam

where e = �x1. e2. Then we have

�x1. e2 value By rule val/lam

It is fortunate we don’t need the induction hypothesis, because it
cannot be applied! That’s because the context of the premise is not
empty, which is easy to miss. So be careful!

Case:

x : ⌧ 2 (·)
· ` x : ⌧

This case is impossible because there is not declaration for x in the
empty context.
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Case:

· ` e1 : ⌧2 ! ⌧ · ` e2 : ⌧2

· ` e1 e2 : ⌧

where e = e1 e2. At this point we apply the induction hypothesis to
e1. If it reduces, so does e = e1 e2. If it is a value, then we apply the
induction hypothesis to e2. If is reduces, so does e1 e2. If not, we have
a redex. In more detail:

Either e1 7! e01 for some e01 or e1 value By ind.hyp.

e1 7! e01 Subcase
e = e1 e2 7! e01 e2 by rule step/app1

e1 value Subcase
Either e2 7! e02 for some e02 or e2 value By ind.hyp.

e2 7! e02 Sub2case
e1 e2 7! e1 e02 By rule step/app2 since e1 value

e2 value Sub2case
e1 = �x. e01 and x : ⌧2 ` e01 : ⌧ By “inversion”

We pause here to consider this last step. We know that · ` e1 : ⌧2 ! ⌧
and e1 value. By considering all cases for how both of these judgments
can be true at the same time, we see that e1 must be a �-abstraction.
This is often summarized in a canonical forms theorem which we state
after this proof. Finishing this sub2case:

e = (�x. e01) e2 7! [e2/x]e01 By rule step/app/lam since e2 value

Case:

· ` true : bool

where e = true. Then e = true value by rule val/true.

Case: Typing of false. As for true.
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Case:

· ` e1 : bool · ` e2 : ⌧ · ` e3 : ⌧

· ` if e1 e2 e3 : ⌧

where e = if e1 e2 e3.

Either e1 7! e01 for some e01 or e1 value By ind.hyp.

e1 7! e01 Subcase
e = if e1 e2 e3 7! if e01 e2 e3 By rule step/if

e1 value Subcase
e1 = true or e1 = false

By considering all cases for · ` e1 : bool and e1 value

e1 = true Sub2case
e = if true e2 e3 7! e2 By rule step/if/true

e1 = false Sub2case
e = if false e2 e3 7! e3 By rule step/if/false

Cases: For rules tp/tplam and tp/tpapp see Exercise 2.

⇤

This completes the proof. The complex inversion steps can be summa-
rized in the canonical forms theorem that analyzes the shape of well-typed
values. It is a form of the representation theorem for Booleans we proved in
an earlier lecture for the simply-typed �-calculus.

Theorem 2 (Canonical Forms)

(i) If · ` v : ⌧1 ! ⌧2 and v value then v = �x1. e2 for some x1 and e2.

(ii) If · ` v : 8↵. ⌧ then v = ⇤↵. e.

(iii) If · ` v : bool and v value then v = true or v = false.

Proof: For each part, analyzing all the possible cases for the value and
typing judgments. ⇤

LECTURE NOTES THURSDAY, SEPTEMBER 24, 2020



L8.6 Progress

4 Type Preservation
⇤

This proof was not done in lecture, but is presented here for completeness.
In a future lecture we will reexamine the proof of this theorem.

We already know that the rules should satisfy the substitution property
(Theorem L5.6). We can easily check the new cases in the proof because
substitution remains compositional. For example, [e0/x](if e1 e2 e3) =
if ([e0/x]e1) ([e0/x]e2) ([e0/x]e3). However, some new properties are needed
for parametric polymorphism, so we make them explicit here and generalize
the previous theorem.

Theorem 3 (Substitution Property)

(i) If � ` e : ⌧ and �, x : ⌧,�0 ` e0 : ⌧ 0 then �,�0 ` [e/x]e0 : ⌧ 0.

(ii) If � ` ⌧ type and (�,↵ type,�0) ctx then (�, [⌧/↵]�0) ctx.

(iii) If � ` ⌧ type and �,↵ type,�0 ` � type then �, [⌧/↵]�0 ` [⌧/↵]� type.

(iv) If � ` ⌧ type and �,↵ type,�0 : ⌧ ` e : � then �, [⌧/↵]�0 ` [⌧/↵]e : [⌧/↵]�.

Proof: Each part by rule induction on the second given derivation. We have
to exploit the fact that term variables x do not occur in types, and we need
to remember our presuppositions and (silent) renaming of bound variables
(both for terms and types). ⇤

On to preservation.

Theorem 4 (Type Preservation)

If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧ .

Proof: By rule induction on the derivation of e 7! e0.
In each case we apply inversion on the typing derivation to obtain typing

derivations for the components of e. From these derivations we assemble a
typing derivation for e0. In cases of a step involving substitution, we have to
appeal to the substitution property to obtain the resulting derivation.

Case:

e1 7! e01

e1 e2 7! e01 e2
step/app1

where e = e1 e2 and e0 = e01 e2.
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· ` e1 e2 : ⌧ Assumption
· ` e1 : ⌧2 ! ⌧ and · ` e2 : ⌧2 for some ⌧2 By inversion
· ` e01 : ⌧2 ! ⌧ By ind.hyp.
· ` e01 e2 : ⌧ By rule app

Case:

v1 value e2 7! e02

v1 e2 7! v1 e02
step/app2

where e = v1 e2 and e0 = v1 e02. As in the previous case, we proceed by
inversion on typing.

· ` v1 e2 : ⌧ Assumption
· ` v1 : ⌧2 ! ⌧ and · ` e2 : ⌧2 for some ⌧2 By inversion
· ` e02 : ⌧2 By ind.hyp.
· ` v1 e02 : ⌧ By rule app

Case:

v2 value

(�x. e1) v2 7! [v2/x]e1
step/app/lam

where e = (�x. e1) v2 and e0 = [v2/x]e1. Again, we apply inversion on
the typing of e, this time twice. Then we have enough pieces to apply
the substitution property (Theorem 3).

· ` (�x. e1) v2 : ⌧ Assumption
· ` �x. e1 : ⌧2 ! ⌧ and · ` v2 : ⌧2 for some ⌧2 By inversion
x : ⌧2 ` e1 : ⌧ By inversion
· ` [v2/x]e1 : ⌧ By the substitution property (Theorem 3)

Case:

e1 7! e01

if e1 e2 e3 7! if e01 e2 e3
step/if

where e = if e1 e2 e3 and e0 = if e01 e2 e3. As might be expected by
now, we apply inversion to the typing of e, followed by the induction
hypothesis on the type of e1, followed by re-application of the typing
rule for if.
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· ` if e1 e2 e3 : ⌧ Assumption
· ` e1 : bool and · ` e2 : ⌧ and · ` e3 : ⌧ By inversion
· ` e01 : bool By ind.hyp.
· ` if e01 e2 e3 : ⌧ By rule tp/if

Case:

if true e2 e3 7! e2
step/if/true

where e = if true e2 e3 and e0 = e2. This time, we don’t have an
induction hypothesis since this rule has no premise, but fortunately
one step of inversion suffices.

· ` if true e2 e3 : ⌧ Assumption
· ` true : bool and · ` e2 : ⌧ and · ` e3 : ⌧ By inversion
· ` e0 : ⌧ Since e0 = e2.

Case: Rule step/if/false is analogous to the previous case.

Case:

e1 7! e01

e1 [�] 7! e01 [�]
step/tpapp

where e = e1 [�] and e0 = e01 [�].

· ` e1 [�] : ⌧ Assumption
· ` e1 : 8↵. ⌧2 where ⌧ = [�/↵]⌧2 By inversion
· ` e01 : 8↵. ⌧2 By ind. hyp
· ` e01 [�] : [�/↵]⌧2 By rule tp/tpapp
· ` e0 : ⌧ Since e0 = e01 [�] and ⌧ = [�/↵]⌧2

Case:

(⇤↵. e2) [�] 7! [�/↵]e2
step/tpapp/tplam

where e = (⇤↵. e2) [�] and e0 = [�/↵]e2.

· ` (⇤↵. e2) [�] : ⌧ Assumption
· ` (⇤↵. e2) : 8↵. ⌧2 and · ` � type
with ⌧ = [�/↵]⌧2 for some ⌧2 By inversion
↵ type ` e2 : ⌧2 By inversion
· ` [�/↵]e2 : [�/↵]⌧2 By the substitution property (Theorem 3)

⇤
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5 Pairs

Types capture fundamental programming abstractions. If a type system and
its underlying programming language is well-designed, we can then build
complex data representations and computational mechanisms from a few
primitives. The most fundamental is that of a function, captured in the type
⌧1 ! ⌧2. As a next step we look for ways to aggregate data. The simplest is
pairs, which are captured by the type ⌧1 ⇥ ⌧2. By iterating pairs we can then
assemble tuples with elements of arbitrary types.

5.1 Constructing Pairs

Fundamentally, for each new type we introduce we must be able to construct
element of the type. For example, �x. e constructs element of the function
type ⌧1!⌧2. To construct new elements of the type ⌧1⇥⌧2 we use the almost
universal notation he1, e2i. The typing rule is straightforward

� ` e1 : ⌧1 � ` e2 : ⌧2

� ` he1, e2i : ⌧1 ⇥ ⌧2
tp/pair

This is the only rule for pairs, so we maintain the property that the rules are
syntax-directed.

Next we should consider the dynamics, that is, which are the new values
of type ⌧1 ⇥ ⌧2 and how do we evaluate pairs. In this lecture we consider
eager pairs, that is, a pair is only a value if both components are. Lazy pairs
are the subject of Exercise 6.

e1 value e2 value

he1, e2i value
val/pair

We then assume that we can observe the components of a pair. So, at the
current extent of our language we can observe the Booleans and, inductively,
pairs of observable type.

Types ⌧ ::= ↵ | ⌧1 ! ⌧2 | 8↵. ⌧ | bool | ⌧1 ⇥ ⌧2
Observable Types o ::= bool | o1 ⇥ o2

To evaluate a pair we decided on evaluating from left to right: it preserves se-
quentiality and is consistent with other constructs like function applications
that are also evaluated from left to right.

e1 7! e01

he1, e2i 7! he01, e2i
step/pair1

v1 value e2 7! e02

hv1, e2i 7! hv1, e02i
step/pair2
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In writing this rule we are starting a convention where expressions known
to be values are denoted by v instead of e.

5.2 Destructing Pairs

Constructing pairs is only one side of the coin. We also need to be able to
access the components of a pair. There seem to be two natural choices: (1) to
have a first and second projection function, and (2) decompose a pair with
a letpair-like construct (from the pure �-calculus) that gives access to both
components. It turns out, projections as a primitive are more suitable for
lazy pairs, while a letpair construct matches eager pairs. We formulate it
here as a case expression, because it turns out that several other destructors
can also be written in this way, leading to a more uniform language.

case e (hx1, x2i ) e0)

The crucial operational rule just deconstructs a pair of values.

v1 value v2 value

case hv1, v2i (hx1, x2i ) e3) 7! [v1/x2][v2/x2]e3
step/casep/pair

We also need a second rule to reduce the subject of the case-expression until
it becomes a value.

e0 7! e00

case e0 (hx1, x2i ) e3) 7! case e00 (hx1, x2i ) e3)
step/casep0

In the typing rule, we know the subject of the case-expression should be a
pair and the body should be the same type as the whole expression.

� ` e : ⌧1 ⇥ ⌧2 �, x1 : ⌧1, x2 : ⌧2 ` e0 : ⌧ 0

� ` case e (hx1, x2i ) e0) : ⌧ 0
tp/casep

Note how x1 and x2 are added to the context in the second premise because
they may appear in e0.

We are of course obligated to check that our language properties are
preserved under this extension, which we will do shortly. Meanwhile, let’s
write two small programs, verifying that the projections can indeed be
defined.

fst : 8↵. 8�. (↵⇥ �)! ↵
fst = ⇤↵.⇤�.�p. case p (hx, yi ) x)

snd : 8↵. 8�. (↵⇥ �)! �
snd = ⇤↵.⇤�.�p. case p (hx, yi ) y)
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6 Preservation and Progress, Revisited
⇤

This section was also not covered in lecture, but given here for completeness.
Design of the new types and expressions are always carefully rigged so

that the preservation and progress theorems continue to hold. Among other
things, we make sure that each definition is self-contained. For example, we
might have postulated a primitive function pair : ⌧1 ! (⌧2 ! (⌧1 ⇥ ⌧2)) but
then the canonical forms theorem would have to be altered: not every value
of function type is actually a �-expression. Instead, we have a new expression
constructor h�,�i and we can define pair as a regular function from that.

Theorem 5 (Type Preservation, new cases for ⌧1 ⇥ ⌧2)

If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧

Proof: Recall the structure of the proof of type preservation. We use rule
induction on the derivation of e 7! e0 and apply inversion on · ` e : ⌧ in
order to gain enough information to assemble a derivation of e0. We exploit
here that the typing rules are syntax-directed. Technically, we rely on the
substitution property and so that needs to be extended as well. But since we
continue to use a standard hypothetical judgment and we do not touch our
notion of variable, the new cases don’t require any particular attention.

The congruence cases of reduction, where we reduce a subexpression,
are straightforward because we can follow this pattern mechanically. For
example:

Case:

e1 7! e01

he1, e2i 7! he01, e2i
step/pair1

where e = he1, e2i, e0 = he01, e2i.

· ` he1, e2i : ⌧ Assumption
· ` e1 : ⌧1 and · ` e2 : ⌧2 where ⌧ = ⌧1 ⇥ ⌧2. By inversion
· ` e01 : ⌧1 By ind. hyp.
· ` he01, e2i : ⌧1 ⇥ ⌧2 By rule tp/pair

The main case to check then is one where some “real” reduction takes place.
This is when a destructor for values of a type meets a constructor.
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Case:

v1 value v2 value

case hv1, v2i (hx1, x2i ) e3) 7! [v1/x1][v2/x2]e3
step/casep/pair

where e = case hv1, v2i (hx1, x2i ) e3) and e0 = [v1/x2][v2/x2]e3. In
this case, we cannot apply the induction hypothesis (the premises are
of a different form), but we can nevertheless apply inversion and then
use the substitution property.

· ` case hv1, v2i (hx1, x2i ) e3) : ⌧ Assumption
· ` hv1, v2i : ⌧1 ⇥ ⌧2
and x1 : ⌧1, x2 : ⌧2 ` e3 : ⌧ for some ⌧1 and ⌧2 By inversion
· ` v1 : ⌧1 and · ` v2 : ⌧2 By inversion
x1 : ⌧1 ` [v2/x2]e3 : ⌧ By substitution (Theorem 3)
· ` [v1/x1][v2/x2]e3 : ⌧ By substitution (Theorem 3)

⇤

In preparation for the progress theorem, we extend the canonical forms
theorem. The latter is a bit different than the other theorems in that for every
extension of our language by a new form of type, we need to add a case that
characterizes the values of the new type.

Theorem 6 (Canonical Forms)

Assume v value. Then

(i) If · ` v : ⌧1 ! ⌧2 then v = �x. e0 for some x and e0.

(ii) If · ` v : 8↵. ⌧ then v = ⇤↵. e.

(iii) If · ` v : bool then v = true or v = false.

(iv) If · ` v : ⌧1 ⇥ ⌧2 then v = hv1, v2i for some v1 value and v2 value.

Proof: We consider each case for v value and then invert on the typing
derivation in each case. ⇤

Theorem 7 (Progress, new cases for ⌧1 ⇥ ⌧2)

If · ` e : ⌧ then either e 7! e0 for some e0 or e value.

Proof: By rule induction on · ` e : ⌧ . The rules where we reduce pairs are
straightforward, as before, so we only write out the case construct.
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Case:

· ` e0 : ⌧1 ⇥ ⌧2 x1 : ⌧1, x2 : ⌧2 ` e2 : ⌧

· ` case e0 (hx1, x2i ) e3) : ⌧
tp/casep

where e = case e0 (hx1, x2i ) e3).

Either e0 7! e00 for some e0 for e0 value By ind. hyp.

e0 7! e00 First subcase
case e0 (hx1, x2i ) e3) 7! case e00 (hx1, x2i ) e3) By rule step/casep0

e0 value Second subcase
e0 = hv1, v2i for some v1 value and v2 value

By the canonical forms (Theorem 6)
case e0 (hx1, x2i ) e3) 7! [v1/x1][v2/x2]e3 By rule step/casep/pair

⇤

Exercises

Exercise 1 Design rules for the big-step evaluation judgment e ,! v which
do not use any auxiliary judgment. In particular, you cannot refer to e value
or e 7! e0, nor may design your own auxiliary judgments. You may restrict
yourself to functions and Booleans, and you should presuppose that · ` e : ⌧ .

(i) Show the rules.

(ii) Prove that if e ,! v with · ` e : ⌧ then v value.

(iii) Prove that if e ,! v (with · ` e : ⌧ ) then e 7!⇤ v.

Your rules should also be complete in the sense that if e 7!⇤ v with v value
then e ,! v, but you do not need to prove this.

Exercise 2 Show cases for type abstraction and type application in the proof
of progress (Theorem 1).

Exercise 3 Consider adding a new expression ? to our call-by-value lan-
guage (with functions and Booleans) with the following evaluation and
typing rules:

? 7! ?
step/bot

� ` ? : ⌧
bot

We do not change our notion of value, that is, ? is not a value.
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1. Does preservation (Theorem L6.2) still hold? If not, provide a coun-
terexample. If yes, show how the proof has to be modified to account
for the new form of expression.

2. Does the canonical forms theorem (L6.4) still hold? If not, provide
a counterexample. If yes, show how the proof has to be modified to
account for the new form of expression.

3. Does progress (Theorem L6.3) still hold? If not, provide a counterex-
ample. If yes, show how the proof has to be modified to account for
the new form of expression.

Once we have nonterminating computation, we sometimes compare ex-
pressions using Kleene equality: e1 and e2 are Kleene equal (e1 ' e2) if they
evaluate to the same value, or they both diverge (do not compute to a value).
Since we assume we cannot observe functions, we can further restrict this
definition: For · ` e1 : bool and · ` e2 : bool we write e1 ' e2 iff for all values
v, e1 7!⇤ v iff e2 7!⇤ v.

4. Give an example of two closed terms e1 and e2 of type bool such that
e1 ' e2 but not e1 =� e2, or indicate that no such example exists (no
proof needed in either case).

Exercise 4 In our call-by-value language with functions, Booleans, and ?
(see Exercise 3) consider the following specification of or, sometimes called
“short-circuit or”:

or true e ' true
or false e ' e

where e1 ' e2 is Kleene equality from Exercise 3.

• We cannot define a function or : bool! (bool!bool) with this behavior.
Prove that it is indeed impossible.

• Show how to translate an expression or e1 e2 into our language so
that it satisfies the specification, and verify the given equalities by
calculation.

Exercise 5 In our call-by-value language with functions, Booleans, and ?
(see Exercise 3) consider the following specification of por, sometimes called
“parallel or”:

por true e ' true
por e true ' true
por false false ' false
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where e1 ' e2 is Kleene equality as in Exercises 3 and 4.

1. We cannot define a function por : bool! (bool! bool) in our language
with this behavior. Prove that it is indeed impossible.

2. We also cannot translate expressions por e1 e2 into our language so
that the result satisfies the given properties (which you do not need to
prove). Instead consider adding a new primitive form of expression
por e1 e2 to our language.

(a) Give one or more typing rules for por e1 e2.
(b) Provide one or more evaluation rules for por e1 e2 so that it satis-

fies the given specification and, furthermore, such that preserva-
tion, canonical forms, and progress continue to hold.

(c) Show the new case(s) in the preservation theorem.
(d) Show the new case(s) in the progress theorem.
(e) Do your rules satisfy sequentiality? If not, provide a counterex-

ample. If yes, just indicate that it is the case (you do not need to
prove it).

Exercise 6 Lazy pairs, constructed as h|e1, e2|i, are an alternative to the eager
pairs he1, e2i. Lazy pairs are typically available in “lazy” languages such as
Haskell. The key differences are that a lazy pair h|e1, e2|i is always a value,
whether its components are or not. In that way, it is like a �-expression,
since �x. e is always a value. The second difference is that its destructors are
fst e and snd e rather than a new form of case expression.

We write the type of lazy pairs as ⌧1 N ⌧2. In this exercise you are asked
to design the rules for lazy pairs and check their correctness.

1. Write out the new rule(s) for e val.

2. State the typing rules for new expressions h|e1, e2|i, fst e, and snd e.

3. Give evaluation rules for the new forms of expressions.

Instead of giving the complete set of new proof cases for the additional
constructs, we only ask you to explicate a few items. Nevertheless, you need
to make sure that the progress and preservation continue to hold.

4. State the new clause in the canonical forms theorem.

5. Show one case in the proof of the preservation theorem where a de-
structor is applied to a constructor.
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6. Show the case in the proof of the progress theorem analyzing the
typing rule for fst e.

Exercise 7 Design the lazy unit h| |i as the nullary version of the lazy pairs
of Exercise 6. We write this type as >. Give the rules for values, typing,
and evaluation, being careful to preserve their origins as “lazy pairs with zero
components”. Prove or refute that 1 ⇠= >.

Exercise 8 It is often stated that lazy pairs are not necessary in an eager
language, because we can already define ⌧1 N ⌧2 and the corresponding
constructors and destructors. Fill in this table.

⌧1 N ⌧2 , (1! ⌧1)⇥ (1! ⌧2)

h|e1, e2|i ,
fst e ,
snd e ,
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Abstract Syntax

Types ⌧ ::= ⌧1 ! ⌧2 | 8↵. ⌧ | ↵ | bool
Terms e ::= x | �x. e | e1 e2 (!)

| ⇤↵. e | e [⌧ ] (8)
| true | false | if e1 e2 e3 (bool)

Contexts � ::= · | �,↵ type | �, x : ⌧ (all variables distinct)

Judgments

� ctx � is a valid context
� ` ⌧ type ⌧ is a valid type presupposes � ctx
� ` e : ⌧ expression e has type ⌧ presupposes � ctx, ensures � ` ⌧ type

e value expression e is a value presupposes · ` e : ⌧ for some ⌧
e 7! e0 expression e steps to e0 presupposes · ` e : ⌧ for some ⌧

Contexts �

(·) ctx
ctx/emp

� ctx
(�,↵ type) ctx

ctx/tpvar
� ctx � ` ⌧ type

(�, x : ⌧) ctx
ctx/var

Functions ⌧1 ! ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 ! ⌧2 type
tp/arrow

�, x1 : ⌧1 ` e2 : ⌧2

� ` �x1:⌧1. e2 : ⌧1 ! ⌧2
tp/lam

x : ⌧ 2 �

� ` x : ⌧
tp/var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
tp/app

�x. e value
val/lam

e2 value
(�x. e1) e2 7! [e2/x]e1

step/app/lam

e1 7! e01

e1 e2 7! e01 e2
step/app1

e1 value e2 7! e02

e1 e2 7! e1 e02
step/app2
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Polymorphic Types 8↵. ⌧

↵ type 2 �

� ` ↵ type
tp/tpvar

�,↵ type ` ⌧ type

� ` 8↵. ⌧ type
tp/forall

�,↵ type ` e : ⌧

� ` ⇤↵. e : 8↵. ⌧
tp/tplam

� ` e : 8↵. ⌧ � ` � type

� ` e [�] : [�/↵]⌧
tp/tpapp

⇤↵. e value
val/tplam

(⇤↵. e) [⌧ ] 7! [⌧/↵]e
step/tpapp/tplam

e 7! e0

e [⌧ ] 7! e0 [⌧ ]
step/tpapp

Booleans bool

� ` bool type
tp/bool

� ` true : bool
tp/true

� ` false : bool
tp/false

� ` e1 : bool � ` e2 : ⌧ � ` e3 : ⌧

� ` if e1 e2 e3 : ⌧
tp/if

true value
val/true

false value
val/false

if true e2 e3 7! e2
step/if/true

if false e2 e3 7! e3
step/if/false

e1 7! e01

if e1 e2 e3 7! if e01 e2 e3
step/if

Theorems
Preservation. If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧ .

Progress. For every expression · ` e : ⌧ either e 7! e0 for some e0 or e value.

Finality of Values. There is no · ` e : ⌧ such that e 7! e0 for some e0 and e value.

Determinacy. If e 7! e1 and e 7! e2 then e1 = e2.
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Lecture Notes on
Sums

15-814: Types and Programming Languages
Frank Pfenning

Lecture 9
Tuesday, September 30, 2020

1 Introduction

In this lecture we continue to build up our small functional language, isolat-
ing fundamental building blocks for constructing data and functions. We
begin with the unit type 1 with just a single value, the unit element. After
investigating some elementary properties of the unit we introduce disjoint
sums which is the second form of data aggregation after products (whose
values are pairs). With those type constructors in hand, we can represent
a variety of interesting types with a finite number of elements, but not yet
types with infinitely elements except opaquely through functional repre-
sentations. This gap will be addressed in the next lecture by introducing
recursive types.

2 The Unit Type

Even though it may not look particularly useful initially, we now introduce
the unit type 1, inhabited by exactly one value h i. It is also the nullary
version of (eager) pairs (think: a pair hv1, v2i has two components while h i
has zero).

� ` h i : 1
tp/unit

h i val
val/unit

With pairs, there is a single destructor thats extracts two components, so for
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the unit type there is also a single destructor that extracts zero components.

� ` e : 1 � ` e0 : ⌧ 0

� ` case e (h i ) e0) : ⌧ 0
tp/caseu

In the dynamics, we only reduce the new version of the case construct, since
the unit element is already a value.

e0 7! e00

case e0 (h i ) e1) 7! case e00 (h i ) e1)
step/caseu0

case h i (h i ) e1) 7! e1
step/caseu/unit

It is easy to verify that our theorems continue to hold, and that · ` e : 1 and
e val imply that e = h i (as an extension of the canonical forms theorem).

The unit type is not as useless as it might appear. In C, the unit type
is called void and indicates that a function does not return a value. In a
functional language with effects, you will often see code such as

let val () = print(v)

to execute an effect and return the only value of type 1 (called unit in
Standard ML). We will also see that it is actually quite important in concert
with disjoint sums.

3 Type Isomorphisms

Intuitively, 1 should be the nullary product, which we might hope to express
with something like ⌧ ⇥ 1 = ⌧ . But “=” does not make any sense here:
these type are different because the are inhabited by different terms. Instead,
what we want to say is the the type are isomorphic, written as ⌧ ⇥ 1 ⇠= ⌧ .
Again, intuitively speaking, two types are isomorphic if they have the same
information contents. In the general case, we say that ⌧ ⇠= � if there are two
functions,

Forth : ⌧ ! � and Back : � ! ⌧ such that they compose to the identity in
both directions. Writing it out explicitly:

Forth : ⌧ ! �
Back : � ! ⌧
Back � Forth = �x. x : ⌧ ! ⌧
Forth � Back = �y. y : � ! �
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When comparing functions (or expressions in general) we have to decide
which form of equality to use. The simple �- or even �⌘-equivalence we used
before does not apply here for two reasons: (1) we have many other types
besides functions, and (2) we have decided that functions are opaque, so we
should not try to analyze their structure. The latter observation pushes us in
the direction of an extensional equality: two functions are equal if they return
equal results when applied to the same argument. This is based on the
idea that the structure of functions cannot be observed, but their behavior
on arguments can. Because we are in a call-by-value language, this means
we have to verify their behavior when applied to arbitrary values of the
correct type. On the other hand, types like (eager) products are observable,
so we can just compare their components directly. We write v ⇠ v0 : ⌧ if
two expressions are extensionally equal, presupposing that v and v0 are
closed values of type ⌧ . For general expressions, we write e ⇡ e0 : ⌧ which
is defined by evaluating e and e0 to a value and comparing the results.

Expressions: e ⇡ e0 : ⌧ iff e 7!⇤ v, e0 7!⇤ v0 with v, v0 values, and v ⇠ v0 : ⌧ ,
or neither e nor e0 evaluate to value.

As a side remark, in our current language all well-typed expressions have a
value, so the final condition is vacuous but will become relevant during the
next language. This definition means we now have to compare values. For
functions, this will refer back to the definition on expressions, but only at a
smaller type.

Functions: v ⇠ v0 : ⌧1 ! ⌧2 iff for all v1 : ⌧1 we have v v1 ⇡ v0 v1 : ⌧2.

Pairs: v ⇠ v0 : ⌧1 ⇥ ⌧2 iff v = hv1, v2i, v0 = hv01, v02i and v1 ⇠ v01 : ⌧1 and
v2 ⇠ v02 : ⌧2.

Units: v ⇠ v0 : 1 iff v = h i and v0 = h i (which is always the case, by the
canonical forms theorem).

We will later have occasion to revisit and slightly revise this definition, but
it is adequate for now.

Returning to the specific example of ⌧ ⇠= ⌧ ⇥ 1, let’s verify this isomor-
phism. We define

Forth : ⌧ ! (⌧ ⇥ 1)
Forth = �x. hx, h ii
Back : (⌧ ⇥ 1)! ⌧
Back = �p. case p (hx, yi ) x)
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To check that Back �Forth ⇡ �x. x : ⌧ ! ⌧ we apply both sides to an arbitrary
value v : ⌧ and calculate

LHS = (Back � Forth) v
7!⇤ Back ((�x. hx, h ii) v)
7! Back hv, h ii
= (�p. case p (hx, yi ) x)) hv, h ii
7! case hv, h ii (hx, yi ) x)
7! v

RHS = (�x. x) v
7! v

So the two functions are extensionally equal.
For the other direction, we exploit that, by the canonical forms theorem,

a value of type v : ⌧ ⇥ 1 must have the form v = hv0, h ii:

LHS = (Forth � Back) v
7!⇤ Forth (Back hv0, h ii)
= Forth ((�p. case p (hx, yi ) x)) hv0, h ii)
7! Forth (case hv0, h ii (hx, yi ) x))
7! Forth v0
= (�x. hx, h ii) v0
7! hv0, h ii
= v

RHS = (�y. y) v
7! v

Again both sides are equal, so both compositions are equal to the identity,
witnessing the isomorphism between ⌧ and ⌧ ⇥ 1.

4 Disjoint Sums

Type theory is an open-ended enterprise: we are always looking to capture
types of data, modes of computation, properties of programs, etc. One
important building block are type constructors that build more complicated
types out of simpler ones. The function type constructor ⌧1 ! ⌧2 is one
example. Today we see another one: disjoint sums ⌧1 + ⌧2. A value of this
type is either a value of type ⌧1 or a value of type ⌧2 tagged with the information
about which side of the sum it is. This last part is critical and distinguishes it
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from the union type which is not tagged and much more difficult to integrate
soundly into a programming language. We use l and r as tags or labels and
write l · e1 for the expression of type ⌧1 + ⌧2 if e1 : ⌧1 and, analogously, r · e2
if e2 : ⌧2.

� ` e1 : ⌧1

� ` l · e1 : ⌧1 + ⌧2
tp/left

� ` e2 : ⌧2

� ` r · e2 : ⌧1 + ⌧2
tp/right

These two forms of expressions allow us to form elements of the disjoint
sum. To destruct such a sum we need a case construct that discriminates
based on whether element of the sum is injected on the left or on the right.

� ` e : ⌧1 + ⌧2 �, x1 : ⌧1 ` e1 : � �, x2 : ⌧2 ` e2 : �

� ` case e (l · x1 ) e1 | r · x2 ) e2) : �
tp/cases

Let’s talk through this rule. The subject of the case should have type ⌧1 + ⌧2
since this is what we are discriminating. If the value of this type is l · v1
then by the typing rule for the left injection, v1 must have type ⌧1. Since the
variable x1 stands for v1 it should have type ⌧1 in the first branch. Similarly,
x2 should have type ⌧2 in the seond branch. Since we cannot tell until the
program executes which branch will be taken, just like the conditional in
the last lecture, we require that both branches have the same type �, which
is also the type of the whole case.

From this, we can also deduce the value and stepping judgments for the
new constructs.

e value
l · e value

val/left
e value

r · e value
val/right

e 7! e0

l · e 7! l · e0
step/left

e 7! e0

r · e 7! r · e0
step/right

e0 7! e00

case e0 (. . . | . . .) 7! case e00 (. . . | . . .)
step/cases0

v1 value

case (l · v1) (l · x1 ) e1 | . . .) 7! [v1/x1]e1
step/cases/left

v2 value

case (r · v2) (. . . | r · x2 ) e2) 7! [v2/x2]e2
step/cases/right

We have carefully constructed our rules so that the new cases in the
preservation and progress theorems should be straightforward.
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Theorem 1 (Preservation)
If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧

Proof: Before we dive into the new case, a remark on the rule. We can
see that the type of an expression l · e1 is inherently ambiguous, even if
we know that e1 : ⌧1. In fact, it will have the type ⌧1 + ⌧2 for every type
⌧2. In the “official” rule, therefore, we should check that ⌧2 is a valid type
(see Section 8).

In any case, these considerations do not affect type preservation. There,
we just need to show that any type ⌧ that e possesses will also be a type of e0
if e 7! e0. Now, it is completely possible that e0 will have more types than e,
but that doesn’t contradict the theorem.1

The proof of preservation proceeds as usual, by rule on induction on the
step e 7! e0, applying inversion of the typing of e. We show only the new
cases, because the cases for all other constructs remain exactly as before. We
assume that the substitution property carries over.

Case:

e1 7! e01

l · e1 7! l · e01
step/left

where e = l · e1 and e0 = l · e01

· ` l · e1 : ⌧1 + ⌧2 Assumption
· ` e1 : ⌧1 By inversion
· ` e01 : ⌧1 By ind.hyp.
· ` l · e01 : ⌧1 + ⌧2 By rule step/left

Case: Rule step/right: analogous to step/left.

Case: Rule step/cases0: similar to the previous two cases.

Case:

v1 value

case (l · v1) (l · x1 ) e1 | . . .) 7! [v1/x1]e1
step/cases/left

where e = case (l · v1) (l · x1 ) e1 | . . .) and e0 = [v1/x1]e1.

1It is an instructive exercise to construct a well-typed closed term e with e 7! e0 such that
e0 has more types than e.
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· ` case (l · v1) (l · x1 ) e1 | r · x2 ) e2) : ⌧ Assumption
· ` l · v1 : ⌧1 + ⌧2 and
x1 : ⌧1 ` e1 : ⌧ , and x2 : ⌧2 ` e2 : ⌧ for some ⌧1 and ⌧2 By inversion
· ` v1 : ⌧1 By inversion
· ` [v1/x1]e1 : ⌧ By the substitution property

Case: Rule step/case/sum/r: analogous to the previous case.

⇤

The progress theorem proceeds by induction on the typing derivation, as
usual, analyzing the possible cases. Before we do that, it is always helpful to
call out the canonical forms theorem that characterizew well-typed values.
New here is part (iv).

Theorem 2 (Canonical Forms) Assume v value.

(i) If · ` v : ⌧1 ! ⌧2 then v = �x1. e2 for some e2.

(ii) If · ` v : ⌧1 ⇥ ⌧2 then v = hv1, v2i for some v1 value and v2 value.

(iii) If · ` v : 1 then v = h i.

(iv) If · ` v : ⌧1 + ⌧2 then v = l · v1 for some v1 value or v = r · v2 for some
v2 value.

Proof sketch: For each part, analyzing all the possible cases for the value
and typing judgments. ⇤

Theorem 3 (Progress)
If · ` e : ⌧ then either e 7! e0 for some e0 or e value.

Proof: By rule induction on the given typing derivation.

Cases: For constructs pertaining to types ⌧1 ! ⌧2, bool, ⌧1 ⇥ ⌧2, and 1 just as
before since we did not change their rules.

Case:

· ` e1 : ⌧1

· ` l · e1 : ⌧1 + ⌧2
tp/left

where e = l · e1.
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Either e1 7! e01 for some e01 or e1 value By ind.hyp.

e1 7! e01 Subcase
l · e1 7! l · e01 By rule step/left

e1 value Subcase
l · e1 value By rule val/l

Case: Rule tp/right is symmetric to previous case.

Case:

· ` e0 : ⌧1 + ⌧2 x1 : ⌧1 ` e1 : ⌧ x2 : ⌧2 ` e2 : ⌧

· ` case e0 (l · x1 ) e1 | r · x2 ) e2) : ⌧
tp/cases

where e = case e0 (l · x1 ) e1 | r · x2 ) e2).

Either e0 7! e00 for some e00 or e0 value By ind.hyp.

e0 7! e00 Subcase
e = case e0 (l · x1 ) e1 | r · x2 ) e2)
7! case e00 (l · x1 ) e1 | r · x2 ) e2) By rule step/cases0

e0 value Subcase
e0 = l · e00 for some e00 value
or e0 = r · e00 for some e00 value By canonical forms (Theorem 2)

e0 = l · e00 and e00 value Sub2case
e = case (l · e00) (l · x1 ) e1 | . . .) 7! [e00/x1]e1

By rule step/cases/left

e0 = r · e00 and e00 value Sub2case
e = case (r · e00) (. . . | r · x2 ) e2) 7! [e00/x2]e2

By rule step/cases/right

⇤
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5 Examples of Sums

Once we have sums and the unit type from the previous lecture, we can
now define the Boolean type.

bool , 1 + 1

true , l · h i
false , r · h i

if e0 e1 e2 , case e0 (l · x1 ) e1 | r · x2 ) e2)
(provided x1 62 FV(e1) and x2 62 FV(e2))

The provisos on the last definition are important because we don’t want to
accidentally capture a free variable in e1 or e2 during the translation.

Using 1 we can define other types. For example

option ⌧ = ⌧ + 1

represents an optional value of type ⌧ . Its values are l · v for v : ⌧ (we have a
value) or r · h i (we have not value of type ⌧ ).

A more interesting example would be the natural numbers:

nat = 1 + (1 + (1 + · · ·))
0 = l · h i
1 = r · (l · h i)
2 = r · (r · (l · h i))
succ = �n. r · n

Unfortunately, “· · ·” is not really permitted in the definition of types. We
could define it recursively as

nat = 1 + nat

but supporting this style of recursive type definition is not straightforward.
So natural numbers, if we want to build them up from simpler components
rather than as a primitive, require a unit type, sums, and recursive types.

6 The Empty Type

We have the singleton type 1, a type with two elements, 1 + 1, so can we
also have a type with no elements? Yes! We’ll call it 0 because it will satisfy
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that 0 + ⌧ ⇠= ⌧ . There are no constructors and no values of this type, so the
e value judgment is not extended.

If we think of 0 as a nullary sum, we expect there still to be a destructor.
But instead of two branches it has zero branches!

� ` e0 : 0 � ` ⌧ type

� ` case e0 ( ) : ⌧
tp/casez

Computation also makes some sense with a congruence rule reducing the
subject, but the case can never be reduced.

e0 7! e00

case e0 ( ) 7! case e00 ( )
step/casez0

Progress and preservation extend somewhat easily, and the canonical forms
property is extended with

(v) If · ` v : 0 then we have a contradiction.

The empty type has somewhat limited uses precisely because there is no
value of this type. However, there may still be expression e such that · ` e : 0
if we have explicitly nonterminating expressions. Such terms can appear
the subject of a case where they reduce forever by the only rule. We can also
ask, for example, what would be functions from 0! 0. We find:

�x. x : 0! 0
�x. case x ( ) : 0! 0
�x.? : 0! 0

where ? is introduced in Exercise L8.3.

7 More Isomorphisms

The next example illustrates and important technique and therefore has
a name: Currying, after the logician Haskell Curry. Instead of a function
taking a pair as an argument we can take the two arguments in succession.
And vice versa! We express this with the following type isomorphism:2

(⌧ ⇥ �)! ⇢ ⇠= ⌧ ! (� ! ⇢)

2In lecture, we only discussed the existence of this isomorphism without providing or
checking the function witnessing it.
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We program the Forth and Back functions in a type-directed manner. We
show the process only once, but we recommend thinking about coding in
this general style. We have

Forth : ((⌧ ⇥ �)! ⇢)! (⌧ ! (� ! ⇢))

We see this function takes three arguments in succession: first a function of
type (⌧ ⇥ �)! ⇢, then a value of type ⌧ followed by a value of type �. So
we start the code with three �-abstractions, followed by an as yet unknown
body.

Forth = �f.�x.�y.

where
f : (⌧ ⇥ �)! ⇢
x : ⌧
y : �

: ⇢

We can see that only f produces a result of type ⇢, and it requires a pair of
type ⌧ ⇥ � as an argument. Fortunately, we have x and y available to form
the two components of the pair. Filling everything in:

Forth : ((⌧ ⇥ �)! ⇢)! (⌧ ! (� ! ⇢))
Forth = �f.�x.�y. f hx, yi

Programming the other direction in a similar manner yields

Back : (⌧ ! (� ! ⇢))! ((⌧ ⇥ �)! ⇢)
Back = �g.�p. case p (hx, yi ) g x y)

Let’s see if we can verify that Forth and Back compose to the identity, picking
an arbitrary direction first.

Back � Forth = �f.Back (Forth f)
?
= �f. f : ((⌧ ⇥ �)! ⇢)! ((⌧ ⇥ �)! ⇢)

To compare these two functions we apply them to an arbitrary value v :
(⌧ ⇥ �)! ⇢ and compare the result. We reason:

(�f.Back (Forth f)) v
7! Back (Forth v)
= Back ((�f.�x.�y. f hx, yi) v)
7! Back (�x.�y.v hx, yi)
= (�g.�p. case p (hx, yi ) g x y)) (�x.�y. v hx, yi)
7! �p. case p (hx, yi ) (�x0.�y0. v hx0, y0i)x y)
?
= v : (⌧ ⇥ �)! ⇢
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In the last step we renamed some variable to avoid confusion.
Again, we are comparing two functions, this time on an argument of

type ⌧ ⇥ �. These two functions are the same if the return the same result if
we apply them to the pair hv1, v2i of two values v1 : ⌧ and v2 : ⌧2. We use
values here because the type ⌧ ⇥ � is observable, and a value of this type is
a pair of two values. Then we find:

(�p. case p (hx, yi ) (�x0.�y0. v hx0, y0i)x y)) hv1, v2i
7! case hv1, v2i (hx, yi ) (�x0.�y0. v hx0, y0i)x y)
7! (�x0.�y0. v hx0, y0i) v1 v2
7!2 v hv1, v2i
= v hv1, v2i

The final equality is the one we wanted to check. Checking the other direc-
tion is left to Exercise 3.

For the purpose of reasoning about type isomorphisms we extend our
notion of extensional equality by adding a case for sums.

Sums: v ⇠ v0 : ⌧1 + ⌧2 iff either v = l · v1, v0 = l · v01 and v1 ⇠ v01 : ⌧1 or
v = r · v2, v0 = r · v02 and v2 ⇠ v02 : ⌧2

One of the properties that is easy to check is that ⌧ + � ⇠= � + ⌧ . We
can speculate some other isomorphism, based on an kind of arithmetic
interpretation of the types. For example, ⇥ might distribute over +:

⌧ ⇥ (� + ⇢)
?⇠= (⌧ ⇥ �) + (⌧ ⇥ ⇢)

Some strange ones pop up if we think of � ! ⌧ as ⌧�. The reason to even
conjecture this is because we have already checked that ⇢ ! (� ! ⌧) ⇠=
(⇢⇥ �)! ⌧ which could be written as (⌧�)⇢ ⇠= ⌧�⇥⇢.

2! ⌧
?⇠= ⌧ ⇥ ⌧

1! ⌧
?⇠= ⌧

0! ⌧
?⇠= 1

While odd, these are not ridiculous. Consider the first one, and recall that
1 + 1 ⇠= bool. In one direction, we can apply the given function to true and
false to obtain two values, in other direction we can set the given values
as result of the function on true and false, respectively. Do these functions
constitute an ismorphism?
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An example of types that are not isomorphic in general would be

⌧ 6⇠= ⌧ ⇥ ⌧

In order to show, that they are not always isomorphic it suffices to provide
a counterexample where the cardinality of the set of values do not match.
(Recall that isomorphism implies equal cardinality, but also that the func-
tions Forth and Back are expressible in our language.) In this example, if we
pick ⌧ = 2 then v : ⌧ for two values (l · h i and r · h i, to be precise) while the
right-hand side contains four values. On the other hand, the isomorphism
does hold for ⌧ = 1 since both sides have exactly one value (h i for the
left-hand side and h h i, h i i for the right-hand side).

8 Summary

See 09-sums-rules.pdf for a summary of the rules.

Exercises

Exercise 1 Exhibit the functions Forth and Back witnessing the following
isomorphisms. You do not need to prove that they constitute an ismorphism,
just show the functions. We remain here in the pure language of Section 8
where every function is terminating.

(i) ⌧ ⇥ (� + ⇢) ⇠= (⌧ ⇥ �) + (⌧ ⇥ ⇢)

(ii) 2! ⌧ ⇠= ⌧ ⇥ ⌧

(iii) 1! ⌧ ⇠= ⌧

(iv) 0! ⌧ ⇠= 1

(v) (� + ⇢)! ⌧ ⇠= (� ! ⌧)⇥ (⇢! ⌧)

Exercise 2 Many of the type isomorphisms follow arithmetic equalities,
interpreting ⌧ + � as addition, ⌧ ⇥ � as multiplication, and ⌧ ! � as expo-
nentiation �⌧ (see Exercise 1).

But there are also differences. In arithmetic, we have an additive in-
verse �a such that a + (�a) = 0. Prove that there can be no general type
constructor �⌧ such that ⌧ + (�⌧) ⇠= 0.
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Exercise 3 Verify that the composition Forth � Back ⇡ �g. g where Forth and
Back coerce from a curried function to its tupled counterpart.

Forth : ((⌧ ⇥ �)! ⇢)! (⌧ ! (� ! ⇢))
Forth = �f.�x.�y. f hx, yi

Back : (⌧ ! (� ! ⇢))! ((⌧ ⇥ �)! ⇢)
Back = �g.�p. case p (hx, yi ) g x y)
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Abstract Syntax

Types ⌧ ::= ⌧1 ! ⌧2 | 8↵. ⌧ | ↵ | ⌧1 ⇥ ⌧2 | 1 | ⌧1 + ⌧2 | 0
Terms e ::= x | �x. e | e1 e2 (!)

| ⇤↵. e | e [⌧ ] (8)
| he1, e2i | case e (hx1, x2i ) e0) (⇥)
| h i | case e (h i ) e0) (1)
| l · e | r · e | case e (l · x1 ) e1 | r · x2 ) e2) (+)
| case e ( ) (0)

Contexts � ::= · | �,↵ type | �, x : ⌧ (all variables distinct)

Judgments

� ctx � is a valid context

� ` ⌧ type ⌧ is a valid type presupposes � ctx
� ` e : ⌧ expression e has type ⌧ presupposes � ctx, ensures � ` ⌧ type

e value expression e is a value presupposes · ` e : ⌧ for some ⌧
e 7! e0 expression e steps to e0 presupposes · ` e : ⌧ for some ⌧

Contexts �

(·) ctx
ctx/emp

� ctx
(�,↵ type) ctx

ctx/tpvar
� ctx � ` ⌧ type

(�, x : ⌧) ctx
ctx/var

Functions ⌧1 ! ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 ! ⌧2 type
tp/arrow

� ` ⌧1 type �, x1 : ⌧1 ` e2 : ⌧2

� ` �x1:⌧1. e2 : ⌧1 ! ⌧2
tp/lam

x : ⌧ 2 �

� ` x : ⌧
tp/var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
tp/app

�x. e value
val/lam

e2 value
(�x. e1) e2 7! [e2/x]e1

step/app/lam

e1 7! e01

e1 e2 7! e01 e2
step/app1

e1 value e2 7! e02

e1 e2 7! e1 e02
step/app2
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Polymorphic Types 8↵. ⌧

↵ type 2 �

� ` ↵ type
tp/tpvar

�,↵ type ` ⌧ type

� ` 8↵. ⌧ type
tp/forall

�,↵ type ` e : ⌧

� ` ⇤↵. e : 8↵. ⌧
tp/tplam

� ` e : 8↵. ⌧ � ` � type

� ` e [�] : [�/↵]⌧
tp/tpapp

⇤↵. e value
val/tplam

(⇤↵. e) [⌧ ] 7! [⌧/↵]e
step/tpapp/tplam

e 7! e0

e [⌧ ] 7! e0 [⌧ ]
step/tpapp

Pairs ⌧1 ⇥ ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 ⇥ ⌧2 type
tp/prod

� ` e1 : ⌧1 � ` e2 : ⌧2

� ` he1, e2i : ⌧1 ⇥ ⌧2
tp/pair

� ` e : ⌧1 ⇥ ⌧2 �, x1 : ⌧1, x2 : ⌧2 ` e0 : ⌧ 0

� ` case e (hx1, x2i ) e0) : ⌧ 0
tp/casep

e1 value e2 value
he1, e2i value

val/pair
v1 value v2 value

case hv1, v2i (hx1, x2i ) e3) 7! [v1/x1][v2/x2]e3
step/casep/pair

e1 7! e01

he1, e2i 7! he01, e2i
step/pair1

v1 value e2 7! e02

hv1, e2i 7! hv1, e02i
step/pair2

e0 7! e00

case e0 (hx1, x2i ) e3) 7! case e00 (hx1, x2i ) e3)
step/casep0
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Unit 1

� ` 1 type
tp/one

� ` h i : 1
tp/unit

� ` e : 1 � ` e0 : ⌧ 0

� ` case e (h i ) e0) : ⌧ 0
tp/caseu

h i value
val/unit

case h i (h i ) e) 7! e
step/caseu/unit

e0 7! e00

case e0 (h i ) e1) 7! case e00 (h i ) e1)
step/caseu0

Sums ⌧1 + ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 + ⌧2 type
tp/sum

� ` e1 : ⌧1 � ` ⌧2 type

� ` l · e1 : ⌧1 + ⌧2
tp/left

� ` ⌧1 type � ` e2 : ⌧2

� ` r · e2 : ⌧1 + ⌧2
tp/right

� ` e : ⌧1 + ⌧2 �, x1 : ⌧1 ` e1 : � �, x2 : ⌧2 ` e2 : �

� ` case e (l · x1 ) e1 | r · x2 ) e2) : �
tp/cases

e1 value
l · e1 value

val/left
e2 value

r · e2 value
val/right

v1 value
case l · v1 (l · x1 ) e1 | r · x2 ) e2) 7! [v1/x1]e1

step/cases/left

v2 value
case r · v2 (l · x1 ) e1 | r · x2 ) e2) 7! [v2/x2]e2

step/cases/right

e1 7! e01

l · e1 7! l · e01
step/left

e2 7! e02

r · e2 7! r · e02
step/right

e0 7! e00

case e0 (l · x1 ) e1 | r · x2 ) e2) 7! case e0 (l · x1 ) e1 | r · x2 ) e2)
step/cases0
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Empty Type 0

� ` 0 type
tp/zero

(no constructor)

� ` e0 : 0 � ` ⌧ type

� ` case e0 ( ) : ⌧
tp/casez

(no values)

e0 7! e00

case e0 ( ) 7! case e00 ( )
step/casez0

Theorems
Preservation. If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧ .

Progress. For every expression · ` e : ⌧ either e 7! e0 for some e0 or e value.

Finality of Values. There is no · ` e : ⌧ such that e 7! e0 for some e0 and e value.

Sequentiality. If e 7! e1 and e 7! e2 then e1 = e2.

Canonical Forms. Assume · ` v : ⌧ and v value.

(i) If ⌧ = ⌧1 ! ⌧2 then v = �x. e2 for some e2

(ii) If ⌧ = 8↵. ⌧ 0 then v = ⇤↵. e0 for some e0

(iii) If ⌧ = ⌧1 ⇥ ⌧2 then v = hv1, v2i for some v1 value and v2 value
(iv) If ⌧ = 1 then v = h i
(v) If ⌧ = ⌧1 + ⌧2 then v = l · v1 for some v1 value or v = r · v2 for some v2 value

(vi) If ⌧ = 0 then we have a contradiction
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Lecture Notes on
Recursive Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 10
Thursday, October 1, 2020

1 Introduction

Using type structure to capture common constructions available in program-
ming languages, we have built a rich set of primitives in our programming
language (see 09-sums-rules.pdf for a summary of the rules). Booleans
turned out be representable using generic constructions, since bool = 1 + 1.
However, natural numbers would be

nat = 1 + (1 + (1 + · · ·))

which cannot be expressed already. However, we can observe that the tail of
the sum is equal to the whole sum. That is,

nat = 1 + nat

We won’t be able to achieve such an equality, but we can achieve an isomor-
phism

nat ⇠= 1 + nat

with two functions to witness the isomorphism.

nat
unfold�!⇠= �
fold

1 + nat

Actually, unfold and fold will not be functions but language primitives be-
cause we want them to apply to a large class of recursively defined types.
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L10.2 Recursive Types

2 Recursive Types

The more general type constructor that solves recursive type equations is
written as ⇢↵. ⌧ . Rho (⇢) here stands for “recursive”, ↵ is a type variable
with scope ⌧ . The general picture to keep in mind is that a recursive type
⇢↵. ⌧ should be isomorphic to its unfolding [⇢↵. ⌧/↵]⌧ .

⇢↵. ⌧

unfold�!⇠= �
fold

[⇢↵. ⌧/↵]⌧

Once we have defined the fold and unfold expressions with their statics and
dynamics, we will have to check that these two types are indeed isomorphic.

As an example, consider

nat = ⇢↵. 1 + ↵

Does this give us the desired isomorphism? Let’s check:

nat = ⇢↵. 1 + ↵
⇠= [⇢↵. 1 + ↵/↵](1 + ↵)
= 1 + (⇢↵. 1 + ↵)
= 1 + nat

So, yes, we get the desired isomorphism. Here are some other examples of
types with recursive definitions we’d like to represent in a similar manner.

Lists list ⌧ ⇠= 1 + (⌧ ⇥ list ⌧)
Binary Trees tree ⇠= 1 + (tree⇥ nat⇥ tree)
Binary Numbers bin ⇠= list (1 + 1)

For example, binary trees of natural numbers would then be explicitly
defined as

tree = ⇢↵. 1 + (↵⇥ nat⇥ ↵)
⇠= 1 + (tree⇥ nat⇥ tree)

and satisfy the desired isomorphism.

3 Fold and Unfold

Let’s recall the principal isomorphism we would like to have:

⇢↵. ⌧

unfold�!⇠= �
fold

[⇢↵. ⌧/↵]⌧
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Each new type we have comes with some constructors for values of the new
type and some destructors. Computation arises when a destructor meets a
constructor. According to the display above, fold should be the constructor
(because it results in something of type ⇢↵. ⌧ ), while unfold is a destructor.
Reading the types off the above desired isomorphism:

� ` e : [⇢↵. ⌧/↵]⌧

� ` fold e : ⇢↵. ⌧
tp/fold

� ` e : ⇢↵. ⌧

� ` unfold e : [⇢↵. ⌧/↵]⌧
tp/unfold

We decide that fold e is a value only if e is a value. This is so that, for
example, when we write v : nat, the value v will actually directly represent
a natural number instead of some expression that might result in a natural
number (see Exercise 1)

e value
fold e value

val/fold

The interesting rule for stepping (usually the first one to write) is the one
where a destructor meets a constructor.

v value
unfold (fold v) 7! v

step/unfold/fold

Does this rule preserve types? Let’s say we have

· ` unfold (fold v) : �

By inversion (only the unfold rule could have this conclusion), we obtain

· ` fold v : ⇢↵. ⌧

where � = [⇢↵. ⌧/↵]⌧ . Applying inversion again, we get

· ` v : [⇢↵. ⌧/↵]⌧

which is also the type of unfold (fold v). Therefore, the rule step/unfold
satisfies type preservation.

We now only need to add rules to reach values and redices, so-called
congruence rules.

e 7! e0

fold e 7! fold e0
step/fold

e 7! e0

unfold e 7! unfold e0
step/unfold0
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It is a matter of checking the progress theorem and also verifying the desired
isomorphism to ensure that we now have enough rules. A student suggested

fold (unfold e) 7! e
?

which is eminently reasonable, but turned out to be unnecessary. Instead,
we find that fold (unfold e) is extensionally equivalent to e at type ⇢↵. tau.

4 Examples

Before we check our desired properties, let’s write some examples on natural
numbers (in our unary representation).

nat = ⇢↵. 1 + ↵
⇠= 1 + nat

zero : nat
zero = fold (l · h i)
one : nat
one = fold (r · zero)

= fold (r · fold (l · h i))
succ : nat! nat
succ = �n. fold (r · n)
pred : nat! nat
pred = �n. case (unfold n) (l · x1 ) zero | r · x2 ) x2)

At this point we realize that we cannot write any function that recurses over
a natural number. Unlike the �-calculus, the representation here as a sum
and a recursive types only allows us to implement a case construct. This is
not a significant obstacle, since we will shortly add general recursion to our
language and then functions like addition, multiplication, exponentiation,
and greatest common divisor can be implemented simply and uniformly.

5 Preservation and Progress

We have already seen the key idea in the preservation theorem; all other
cases are simple and follow familiar patterns.

For progress, we first need a canonical form theorem. We get the new
case
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(vi) If · ` v : ⇢↵. ⌧ and v value then v = fold v0 for a value v0.

This follows, as before, by analyzing the cases for typing and values.
The critical case in the proof of progress (by rule induction on the given

typing derivation) is

· ` e1 : ⇢↵. ⌧

· ` unfold e1 : [⇢↵. ⌧/↵]⌧
tp/unfold

If e1 7! e01 then, by rule, unfold e1 7! unfold e01. If e1 is a value, then
the canonical forms theorem tells us that e1 = fold v2 for some value v2.
Therefore, the step/unfold applies and unfold (fold v2) 7! v2.

6 Isorecursive Types

The new type constructor ⇢↵. ⌧ we have defined is called an isorecursive type,
because we have and isomorphism

⇢↵. ⌧

unfold�!⇠= �
fold

[⇢↵. ⌧/↵]⌧

rather than an equality between the two types (which would be equirecursive).
But is it really an isomorphism? Let’s check the two directions.

First, we need to check that unfold (fold v) = v for any value v :
[⇢↵. ⌧/↵]⌧ . But immediately (by rule step/unfold) we have

unfold (fold v) 7! v

so the two are certainly equal.
In the other direction, we need to verify that

fold (unfold v)
?
= v for any value v : ⇢↵. ⌧

By the canonical forms theorem, v = fold v0 for some value v0. Then we
reason

fold (unfold v)
= fold (unfold (fold v0))
7! fold v0

= v

So, an isorecursive type is indeed isomorphic to its unfolding.
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7 Excursion: Embedding the Untyped �-Calculus

As one of you suspected during lecture, now that we have recursive types,
perhaps we can type �x. x x, which we previously proved to have no type.
And if that works, why stop there? Why not type the Y combinator itself?
In an earlier lecture we convinced ourselves that �x. x x : ⌧ ! � for any
types ⌧ and ⌧ satisfying ⌧ = ⌧ ! �. That’s because x needs to take itself as
an argument.

This does not seem promising, since we still cannot solve this equation!
But we may be able to approximate it by an isomorphism. Can we find a type
U such that U ⇠= U ! ⌧2. The unspecified type ⌧2 gets in the way, so let’s try
it with ⌧2 = U . So, we have to solve

U

unfold�!⇠= �
fold

U ! U

In our language, any recursive type equation has a solution (perhaps degen-
erate), so we just set

U = ⇢↵.↵! ↵ ⇠= U ! U

Let’s try to type self-application at type U ! U .

?
x : U ` xx : U

· ` �x. x x : U ! U
tp/lam

This still does not work, but we can unfold the type of the first occurrence of
x so it matches the type of its argument!

x : U ` x : U
tp/var

x : U ` unfold x : U ! U
tp/unfold

x : U ` x : U
tp/var

x : U ` (unfold x) x : U
tp/app

· ` �x. (unfold x) x : U ! U
tp/lam

So, lo and behold, if we are willing to insert an unfold we can now type-check
self-application.

Curious: can we do the same with the Y combinator? The answer is
yes, but let’s be even more ambitious: let’s translate the whole untyped
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�-calculus into our language! We write M for untyped expressions to
distinguish them from the target language expressions e.

Untyped Exps M ::= x | �x.M | M1M2

We try to devise a translation p�q such that

pMq : U

for any untyped expression M . To be more precise, assume the untyped
expression has free variables x1, . . . , xn, then we aim for

x1 : U, . . . , xn : U ` pMq : U

The reason all variables have type U because in the source they stand for an
arbitrary untyped expression. We define

pxq = x
p�x.Mq = fold (�x. pMq)
pM1M2q = (unfold pM1q) pM2q

We suggest you go through these definitions and type-check them, keeping
in mind the all-important

U

unfold�!⇠= �
fold

U ! U

The type-correctness of this translation means we have a very direct repre-
sentation of the whole untyped �-calculus in our language, using only a single
type U (but exploiting recursive types). Therefore, the untyped �-calculus is
sometimes referred to as the unityped �-calculus because it can be represented
with a single universal type U .

Since the Y combinator is only a particular untyped �-expression, we
can also translate it into the target.

However, there is still a fly in the ointment: even though we know the
target is well-typed, we don’t know if it behaves correctly, operationally.
Under some definitions it does not. For example, �x.⌦ has no normal form,
but p�x.⌦q = fold (�x. p⌦q) is a value and does not take a step. We will
discuss at a later point how to bridge this gap, which is not straightforward.
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8 Fixed Point Expressions

We have added recursive types that solve recursive type equations. But in
order to write all the programs we want (for example, on natural numbers
all the recursive functions) we also need recursively defined expressions.
The Y combinator is not directly available to us in the needed generality,
even though it can be defined at type U . Instead we add a primitive, fix f. e,
where f is a variable. It is not a value, and it steps by unrolling the fixed
point:

fix f. e 7! [fix f. e/f ]e
step/fix

This “unrolling” is quite similar to unfolding a recursive type, but at the
level of expressions. However, it is independent of recursive types and can
be applied in full generality. One particular example is fix f. f 7! fix f. f so
in this language we can define ? = fix f. f (see Exercise L8.3). Emboldened
by this property, we imagine we might have in general

�, f : ` e :

� ` fix f. e : ⌧
tp/fix

but there are still some holes in this typing rule.
We want preservation to hold (progress is trivial to extend, because a

fixed point always steps) so we need that

· ` fix f. e : ⌧ implies · ` [fix f. e/f ]e : ⌧

From this we can deduce two things: first, e : ⌧ because that is the result of
substitution. And, second, for the substitution property to hold we need
that f : ⌧ so we can substitute [fix f. e/f ]e. Filling in this information:

�, f : ⌧ ` e : ⌧

� ` fix f. e : ⌧
tp/fix

Now we have settled both statics and dynamic and have fixed point expres-
sions available to us. For example

plus : nat! (nat! nat)
plus = fix p.�n.�k. case (unfold n) (l · ) k | r ·m) succ (p m k))

There are a few unpleasant things about fixed point expressions. One is
that it is neither a constructor nor a destructor of any particular type, but
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is applicable at any type ⌧ . It thus violates one of the design principles of
our language that we have followed so far. We may interpret this as an
indication that recursion is a fundamental computational principle separate
from any particular typing construct, but this is not a universally held view.

The second one is that in fix f. e the variable f does not stand for a
value (like all other variables x we have used so far) but a expression (we
substitute fix f. e for f , and that’s not a value). To avoid this latter issue, in
call-by-value languages sometimes the fixed point expression is limited to
functions, as in fun f(x) = e where e can depend on both x and f .

Exercises

Exercise 1 Prove adequacy of natural number encodings in type nat.

1. Define a (mathematical) function pnq on natural numbers n such that
· ` pnq : nat and pnq value.

2. Define a (mathematical) function xvy on values v with · ` v : nat
returning the number represented by v.

3. Prove that the pair of functions p�q and x�y witness an isomorphism
between the usual (mathematical) natural numbers and closed values
of type nat.

Exercise 2 Consider the combinators Y and Z. Here Z, the call-by-value
fixed point combinator, is defined as

Z = �f. (�x. f (�v. x x v)) (�x. f (�v. x x v))

1. Exhibit a difference between Y and Z under that assumption that the
pure untyped �-calculus follows a call-by-value evaluation strategy.

2. Give the translation pZq : U into the universal type.

Exercise 3 Consider the type of list of natural numbers

list = ⇢↵. (nat⇥ ↵) + 1 ⇠= (nat⇥ list) + 1

Define the following functions

(i) nil : list, the empty list.

(ii) cons : nat⇥ list! list, adding an element to a list.
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(iii) append : list! list! list, appending two lists.

(iv) reverse : list! list, reversing a list.

(v) ilist : list!8�. (nat⇥ �! �)! �! � satisfying

ilist nil [⌧ ] f c = c
ilist (cons hn, li) [⌧ ] f c = f hn, iter l [⌧ ] f ci

where you may take equality to be extensional. This captures iteration
over lists, for the special case where the elements are all natural num-
bers. You do not need to prove the correctness of your representation.

(vi) Design a type and implementation for primitive recursion over lists,
defining a function plist.
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Abstract Syntax

Types ⌧ ::= ⌧1 ! ⌧2 | 8↵. ⌧ | ↵ | ⌧1 ⇥ ⌧2 | 1 | ⌧1 + ⌧2 | 0 | ⇢↵. ⌧
Terms e ::= x | �x. e | e1 e2 (!)

| ⇤↵. e | e [⌧ ] (8)
| he1, e2i | case e (hx1, x2i ) e0) (⇥)
| h i | case e (h i ) e0) (1)
| l · e | r · e | case e (l · x1 ) e1 | r · x2 ) e2) (+)
| case e ( ) (0)
| fold e | unfold e (⇢)
| fix f. e

Contexts � ::= · | �,↵ type | �, x : ⌧ (all variables distinct)

Judgments

� ctx � is a valid context

� ` ⌧ type ⌧ is a valid type presupposes � ctx
� ` e : ⌧ expression e has type ⌧ presupposes � ctx, ensures � ` ⌧ type

e value expression e is a value presupposes · ` e : ⌧ for some ⌧
e 7! e0 expression e steps to e0 presupposes · ` e : ⌧ for some ⌧

Theorems
Preservation. If · ` e : ⌧ and e 7! e0 then · ` e0 : ⌧ .

Progress. For every expression · ` e : ⌧ either e 7! e0 for some e0 or e value.

Finality of Values. There is no · ` e : ⌧ such that e 7! e0 for some e0 and e value.

Sequentiality. If e 7! e1 and e 7! e2 then e1 = e2.

Canonical Forms. Assume · ` v : ⌧ and v value.

(i) If ⌧ = ⌧1 ! ⌧2 then v = �x. e2 for some e2

(ii) If ⌧ = 8↵. ⌧ 0 then v = ⇤↵. e0 for some e0

(iii) If ⌧ = ⌧1 ⇥ ⌧2 then v = hv1, v2i for some v1 value and v2 value
(iv) If ⌧ = 1 then v = h i
(v) If ⌧ = ⌧1 + ⌧2 then v = l · v1 for some v1 value or v = r · v2 for some v2 value

(vi) If ⌧ = 0 then we have a contradiction

(vii) If ⌧ = ⇢↵. ⌧ 0 then v = fold v0 for some v0 value
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Contexts �

(·) ctx
ctx/emp

� ctx
(�,↵ type) ctx

ctx/tpvar
� ctx � ` ⌧ type

(�, x : ⌧) ctx
ctx/var

Functions ⌧1 ! ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 ! ⌧2 type
tp/arrow

� ` ⌧1 type �, x1 : ⌧1 ` e2 : ⌧2

� ` �x1:⌧1. e2 : ⌧1 ! ⌧2
tp/lam

x : ⌧ 2 �

� ` x : ⌧
tp/var

� ` e1 : ⌧2 ! ⌧1 � ` e2 : ⌧2

� ` e1 e2 : ⌧1
tp/app

�x. e value
val/lam

e2 value
(�x. e1) e2 7! [e2/x]e1

step/app/lam

e1 7! e01

e1 e2 7! e01 e2
step/app1

e1 value e2 7! e02

e1 e2 7! e1 e02
step/app2

Polymorphic Types 8↵. ⌧

↵ type 2 �

� ` ↵ type
tp/tpvar

�,↵ type ` ⌧ type

� ` 8↵. ⌧ type
tp/forall

�,↵ type ` e : ⌧

� ` ⇤↵. e : 8↵. ⌧
tp/tplam

� ` e : 8↵. ⌧ � ` � type

� ` e [�] : [�/↵]⌧
tp/tpapp

⇤↵. e value
val/tplam

(⇤↵. e) [⌧ ] 7! [⌧/↵]e
step/tpapp/tplam

e 7! e0

e [⌧ ] 7! e0 [⌧ ]
step/tpapp
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Pairs ⌧1 ⇥ ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 ⇥ ⌧2 type
tp/prod

� ` e1 : ⌧1 � ` e2 : ⌧2

� ` he1, e2i : ⌧1 ⇥ ⌧2
tp/pair

� ` e : ⌧1 ⇥ ⌧2 �, x1 : ⌧1, x2 : ⌧2 ` e0 : ⌧ 0

� ` case e (hx1, x2i ) e0) : ⌧ 0
tp/casep

e1 value e2 value
he1, e2i value

val/pair
v1 value v2 value

case hv1, v2i (hx1, x2i ) e3) 7! [v1/x1][v2/x2]e3
step/casep/pair

e1 7! e01

he1, e2i 7! he01, e2i
step/pair1

v1 value e2 7! e02

hv1, e2i 7! hv1, e02i
step/pair2

e0 7! e00

case e0 (hx1, x2i ) e3) 7! case e00 (hx1, x2i ) e3)
step/casep0

Unit 1

� ` 1 type
tp/one

� ` h i : 1
tp/unit

� ` e : 1 � ` e0 : ⌧ 0

� ` case e (h i ) e0) : ⌧ 0
tp/caseu

h i value
val/unit

case h i (h i ) e) 7! e
step/caseu/unit

e0 7! e00

case e0 (h i ) e1) 7! case e00 (h i ) e1)
step/caseu0
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Sums ⌧1 + ⌧2

� ` ⌧1 type � ` ⌧2 type

� ` ⌧1 + ⌧2 type
tp/sum

� ` e1 : ⌧1 � ` ⌧2 type

� ` l · e1 : ⌧1 + ⌧2
tp/left

� ` ⌧1 type � ` e2 : ⌧2

� ` r · e2 : ⌧1 + ⌧2
tp/right

� ` e : ⌧1 + ⌧2 �, x1 : ⌧1 ` e1 : � �, x2 : ⌧2 ` e2 : �

� ` case e (l · x1 ) e1 | r · x2 ) e2) : �
tp/cases

e1 value
l · e1 value

val/left
e2 value

r · e2 value
val/right

v1 value
case l · v1 (l · x1 ) e1 | r · x2 ) e2) 7! [v1/x1]e1

step/cases/left

v2 value
case r · v2 (l · x1 ) e1 | r · x2 ) e2) 7! [v2/x2]e2

step/cases/right

e1 7! e01

l · e1 7! l · e01
step/left

e2 7! e02

r · e2 7! r · e02
step/right

e0 7! e00

case e0 (l · x1 ) e1 | r · x2 ) e2) 7! case e0 (l · x1 ) e1 | r · x2 ) e2)
step/cases0

Empty Type 0

� ` 0 type
tp/zero

(no constructor)

� ` e0 : 0 � ` ⌧ type

� ` case e0 ( ) : ⌧
tp/casez

(no values)

e0 7! e00

case e0 ( ) 7! case e00 ( )
step/casez0
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Recursive Types ⇢↵. ⌧

�,↵ type ` ⌧ type

� ` ⇢↵. ⌧ type
tp/rho

� ` e : [⇢↵. ⌧/↵]⌧

� ` fold e : ⇢↵. ⌧
tp/fold

� ` e : ⇢↵. ⌧

� ` unfold e : [⇢↵. ⌧/↵]⌧
tp/unfold

e value
fold e value

val/fold
v value

unfold (fold v) 7! v
step/unfold/fold

e 7! e0

fold e 7! fold e0
step/fold

e 7! e0

unfold e 7! unfold e0
step/unfold0

Recursion

�, f : ⌧ ` e : ⌧

� ` fix f :⌧. e : ⌧
tp/fix

fix f. e 7! [fix f. e/f ]e
step/fix
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Lecture Notes on
Elaboration

15-814: Types and Programming Languages
Frank Pfenning

Lecture 11
Tuesday, October 6, 2020

1 Introduction

We have spent a lot of time analyzing and designing the essence of a pro-
gramming language, starting from first principles. The focus has been on
the statics (the type system), the dynamics (the rules for how to evaluate
programs), and understanding the relationship between them in a mathe-
matically rigorous way.

There is, of course, a lot more to a real programming language. At
the “front end” there is the concrete syntax according to which the program
text is parsed. The result of parsing is either some abstract syntax or an
error message if the program is not well-formed according to the grammar
defining its syntax. At the “back end” there are concerns about how a
language might be executed efficiently, or compiled to machine language so it
can run even faster. In this course we will say little about issues of grammar,
concrete syntax, parsers or parser generators, because we want to focus on
the deeper semantic issues where we have accumulated a lot of knowledge
about language design.

In today’s lecture we will look at elaboration, which is a translation medi-
ating between specific forms of concrete syntax and internal representation
in abstract syntax. Elaborating the program allows us to provide some
conveniences that make it easy to write and read concise programs without
giving up the sound underlying principles we have learned about in this
course so far.
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2 An Example: Binary Numbers

Before binary numbers, we introduce the concrete syntax of LAMBDA when
applied to call-by-value functional programs (recognized by the .cbv ex-
tension). We see a few items of concrete syntax. We use $ for recursion, both
at the level of types (to stand for ⇢) and at the level of terms (to stand for
fix). Instead of writing l.e and r.e (with different fonts being unavailable
in the ASCII source) we write 0l e and 0r e (pronounced “tick l” and “tick
r”). Finally, we interpose the keyword of between the subject of the case
expressions and the branches in order to avoid an ambiguous grammar.

We also see the new kind of declaration eval x = e which evaluates
e 7!⇤ v and defines x to stand for the resulting value v. Remember that this
is quite different from the normal form of e, as we have discussed multiple
times.

1 type nat = $a. 1 + a % == 1 + nat
2

3 decl zero : nat
4 decl succ : nat -> nat
5 defn zero = fold (’l ()) % ˜ fold (l.<>)
6 defn succ = \n. fold (’r n)
7

8 eval two = succ (succ zero)
9

10 decl pred : nat -> nat
11 defn pred = \n. case (unfold n) of (’l _ => zero | ’r m => m)
12

13 eval one = pred two
14

15 decl plus : nat -> nat -> nat
16 defn plus = $plus. \n. \k.
17 case (unfold n)
18 of (’l _ => k | ’r m => succ (plus m k))
19

20 eval three = plus two one
21

22 decl times : nat -> nat -> nat
23 defn times = $times. \n. \k.
24 case (unfold n)
25 of (’l _ => zero | ’r m => plus (times m k) k)
26

27 eval six = times three two

Listing 1: Unary natural numbers in call-by-value LAMBDA
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The unary representation of numbers is perfect from the foundational
point of view, but impractical. In particular, representation of numbers
become very large, and operations on them very slow. But we already know
a better representation: binary numbers, which are (finite) sequences of bits
0 and 1.

Binary numbers (type bin) are generated by three constructors:

1. e : bin where e represents 0,

2. b0 : bin ! bin where b0 x represents 2x, and

3. b1 : bin ! bin where b1 x represents 2x+ 1.

This representation means that we see the least significant bit first. For
example, 6 = (110)2 wwould be represented by b0 (b1 (b1 e)). This “little-
endian” representation is well-suited for operations on binary numbers; the
representation where we write the bits in the order we are used to not so
much (consider, for example, the increment function defined below).

The types of the constructors lead us to the recursive equation

bin = ⇢↵.↵+ (↵+ 1)
⇠= bin + (bin + 1)

and the definitions
b0 = �x. fold (l · x)
b1 = �x. fold (r · l · x)
e = fold (r · r · h i)

On this representation we can now define the binary increment function inc.
We would like it to satisfy the specification

inc (b0 x) = b1x
inc (b1 x) = b0 (inc x)
inc (e) = b1 e

From this we can derive a closed form definition, where we have to be
respect that fact that inc is defined recursively.

1 type bin = $a. a + (a + 1) % == bin + (bin + 1)
2

3 decl b0 : bin -> bin
4 decl b1 : bin -> bin
5 decl e : bin
6

LECTURE NOTES TUESDAY, OCTOBER 6, 2020



L11.4 Elaboration

7 defn b0 = \x. fold (’l x)
8 defn b1 = \x. fold (’r (’l x))
9 defn e = fold (’r (’r ()))

10

11 decl inc : bin -> bin
12 defn inc = $inc. \x. case (unfold x)
13 of ( ’l y => b1 y
14 | ’r y => case y
15 of ( ’l z => b0 (inc z)
16 | ’r z => b1 e
17 )
18 )
19

20 eval _6 = b0 (b1 (b1 e))
21 eval _7 = inc _6
22 eval _8 = inc _7

Listing 2: Binary numbers in call-by-value LAMBDA

We see the output of the last three evaluations

1 defn _6 = fold ’l fold ’r ’l fold ’r ’l fold ’r ’r ()
2 defn _7 = fold ’r ’l fold ’r ’l fold ’r ’l fold ’r ’r ()
3 defn _8 = fold ’l fold ’l fold ’l fold ’r ’l fold ’r ’r ()

which we can recognize as the binary representations of 6, 7, and 8 where
’l represents a bit 0, ’r ’l represents a bit 1, and ’r ’r represents the
terminator for the bit sequence.

One step towards a more natural (and readable) representation is to
generalize the binary sum to an variadic sums, which we discuss in Section 4

3 Isomorphism Revisited

The representation of binary numbers has a feature which is common in the
representation of complex data, but haven’t seen so far: there are multiple
different representations of the same data. For example, e and b0 e both
represent the number 0, because 2 ⇥ 0 = 0. In fact, each number has
infinitely many representations: we can just add leading zeros to every
representation. In Exercise 1 we explore how to remove this ambiguity from
the representation of binary numbers, but this is certainly not possible in
other examples.

We could try to show that the translation between unary and binary
numbers are an isomorphism (which will fail). For that purpose, we define
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the following translations:

nat2bin : nat ! bin
bin2nat : bin ! nat

These serve as the “strawman” proposal for a pair of functions witnessing
an isomorphism. We write them here in the concrete syntax of LAMBDA.

1 decl nat2bin : nat -> bin
2 decl bin2nat : bin -> nat
3

4 (*
5 * nat2bin zero = e
6 * nat2bin (succ n) = inc (nat2bin n)
7 *)
8 defn nat2bin = $nat2bin. \n.
9 case (unfold n) of (’l _ => e | ’r m => inc (nat2bin m))

10

11 (*
12 * bin2nat (b0 x) = times two (bin2nat x)
13 * bin2nat (b1 x) = succ (times two (bin2nat x))
14 * bin2nat (e) = zero
15 *)
16 defn bin2nat = $bin2nat. \x.
17 case (unfold x)
18 of ( ’l y => times two (bin2nat y)
19 | ’r y => case y of ( ’l z => succ (times two (bin2nat z))
20 | ’r z => zero
21 )
22 )

However, these two functions do not form an isomorphism because any
alternative form of a binary number with leading zeros, when mapped to a
unary number and back will be standardized in the sense that the leading
zeros will be erased.

standardize : bin ! bin
standardize = nat2bin � bin2nat

On the domain of binary numbers the function standardize represents a
retract, mapping any number to its standard form without leading zeros.

While common, ambiguous representations such as bin have their dan-
gers. In particular, we could define functions that make no sense at all from
the numerical standpoint because they behave differently on different repre-
sentations of the same number! For example, the function bad below returns
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true for the standard representation and false for a nonstandard one, even
though these two representation are supposed to be indistinguishable.

1 decl bad : bin -> 1 + 1
2 defn bad = \x. case (unfold x) of (’l x => ’r () | ’r y => ’l () )
3

4 eval tt = bad (b0 e)
5 eval ff = bad e

It is therefore important, when working on ambiguous representation, to
keep in mind and reason about whether functions are correct with respect
to different representations of the same elements. In more general type
theories this kind of construction with the guarantee that accompanies it is
called a quotient type.

4 Variadic Sums

Once we know that the sum is associative and commutative with unit 0 we
can introduce a more general notation that is useful for practical purposes:
rather than just using labels l and r for a binary sum, we can allow a finite
set I of tags or label (think of them as strings) and write

(i1 : ⌧1) + · · ·+ (in : ⌧n)

where each summand is marked with a distinct label i. We also write this in
abstract syntax as

X

i2I
(i : ⌧i)

The empty type 0 arises from I = { } and we might define

bool = (true : 1) + (false : 1)
option ⌧ = (none : 1) + (some : ⌧)
order = (less : 1) + (equal : 1) + (greater : 1)
nat ⇠= (zero : 1) + (succ : nat)

= ⇢↵. (zero : 1) + (succ : ↵)

list ⌧ ⇠= (nil : 1) + (cons : ⌧ ⇥ list ⌧)
= ⇢↵. (nil : 1) + (cons : ⌧ ⇥ ↵)

bin ⇠= (b0 : bin) + (b1 : bin) + (e : 1)
= ⇢↵. (b0 : ↵) + (b1 : ↵) + (e : 1)
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This generalized form of sum also comes with a generalized constructor
(allowing any label of a sum) and case expression (requiring a branch for
each label of a sum). For example, we might have the following definitions.

bin = ⇢↵. (b0 : ↵) + (b1 : ↵) + (e : 1)

b0 : bin ! bin
b1 : bin ! bin
e : bin

b0 = �x. fold (b0 · x)
b1 = �x. fold (b1 · ·x)
e = fold (e · h i)
inc : bin ! bin
inc = fix inc.�x. case (unfold x)

(b0 · y ) b1 y
| b1 · y ) b0 (inc y)
| e · _ ) b1 e)

5 “Syntactic Sugar”

A simple form of elaboration is to eliminate some simple forms of “syntactic
sugar” and translate them into an internal form to simplify downstream
processing. A good example are the following definitions:

bool , (true : 1) + (false : 1)
true , true · h i
false , false · h i
if e1 then e2 else e3 , case e1 (true · _ ) e2 | false · _ ) e3)

Here, we used another common convention, name we use an underscore (_)
in place of a variable name if that variable does not occur in its scope (here,
this scope would be e2 for the first underscore and e3 for the second. Such a
syntactic transformation could take place before or after type checking.

6 Data Constructors and Pattern Matching

As another example, consider the definition of the natural numbers in unary
form:

nat = ⇢↵. (zero : 1) + (succ : ↵)
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This is unnecessarily difficult to read because we have to remember that ↵
really is supposed to stands for nat on the right hand. Easier to read is

nat ⇠= (zero : 1) + (succ : nat)

Moreover, the labels may sometimes be a bit awkward to use, so perhaps
we could “automatically” define

zero : 1! nat
zero = �u. zero · u
succ : nat ! nat
succ = �n. succ · n

Notice there the difference between the function succ (in italics) and the label
succ (in bold). Maybe we could even go further and eliminate the 1! nat
because we already know that 1! ⌧ ⇠= ⌧ , in which case we would obtain

zero : nat
zero = zero · h i

Finally, it would be nice if we could simplify pattern matching as well.
Instead of, for example,

pred : nat ! nat
pred = �n. case (unfold n) (zero · _ ) zero | succ · n0 ) n0)

it would be easier to read and understand if we could write

pred : nat ! nat

pred zero = zero
pred (succ n0) = n0

This would somehow only make sense if “zero” was understood not only as
a constant of type nat, but also that it corresponded to a label zero with the
same name so we can elaborate it into the case of the internal definition of
predecessor shown just before. And similarly for succ and succ.

In fact, modern functional languages such as Haskell, OCaml, or Stan-
dard ML provide syntax for data type definitions that provide essentially
the above functionality, and more. In ML we would write:

datatype nat = Zero | Succ of nat
fun pred Zero = Zero
| pred (Succ n’) = n’
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In OCaml it might be

type nat = Zero | Succ of nat;;
let pred n = match n with
| Zero -> Zero
| Succ n’ -> n’;;

And Haskell:

data Nat = Zero | Succ Nat

pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n’) = n’

The type we gave here for pred is optional, but it is often helpful to explicitly
state the type of a function. We should also keep in mind that the dynamics
of Zero and Succ is different in Haskell because it is a call-by-need (“lazy”)
language.

We refer to Zero and Succ as data constructors, which means they are
simultaneously functions (or constants in the case of Zero) to constructs
values of a sum, and labels so we can pattern-match against them.

7 Generalizing Sums

Let’s recall our language so far:

Types ⌧ ::= ↵ | ⌧1 ! ⌧2 | ⌧1 ⇥ ⌧2 | 1 | ⌧1 + ⌧2 | 0 | ⇢↵. ⌧
Expressions e ::= x (variables)

| �x. e | e1 e2 (!)
| he1, e2i | case e (hx1, x2i ) e0) (⇥)
| h i | case e (h i ) e0) (1)
| l · e | r · e | case e (l · x1 ) e1 | r · x2 ) e2) (+)
| case e ( ) (0)
| fold e | unfold e (⇢)
| f | fix f. e (recursion)

Except for functions and recursive types, the destructors are of the form
case e (. . .). We will now unify these constructs even more, replacing the
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primitive unfold e by a new one, case e (fold x ) e0). We can then define
Unfold as a function

Unfold : ⇢↵. ⌧ ! [⇢↵. ⌧/↵]⌧
Unfold , �x. case x (fold x ) x)

See Exercise 3 for more on this restructuring of the language.

Streamlining our language a little bit further, we now officially generalize
the sum from binary to n-ary, allowing labels i to be drawn from a finite
index set I . The case construct for the sums then has a branch for each i 2 I .
Our previous constructs are a special case, with ⌧1 + ⌧2 ,

P
i2{l,r}(i : ⌧i) =

(l : ⌧1) + (r : ⌧2) and 0 , P
i2;(i : ⌧i).

Types ⌧ ::= ↵ | ⌧1 ! ⌧2 | ⌧1 ⇥ ⌧2 | 1 |
P

i2I(i : ⌧i) | ⇢↵. ⌧
Expressions e ::= x (variables)

| �x. e | e1 e2 (!)
| he1, e2i | case e (hx1, x2i ) e0) (⇥)
| h i | case e (h i ) e0) (1)
| i · e | case e (i · x ) e0)i2I (

P
)

| fold e | case e (fold x ) e0) (⇢)
| f | fix f. e (recursion)

Except for functions, all destructors are now case-expressions. Functions are
different because values are of the form �x. e that we cannot match against
because we assumed that they are not observable outcomes of computation.

For sums, we have the following generalized statics and dynamics. Key
is that we have to check all branches of a case expressions, and all of them
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have the same type ⌧ 0.

k 2 I � ` e : ⌧k

� ` k · e :
P

i2I(i : ⌧i)
tp/sum

� ` e :
P

i2I(i : ⌧i) �, xi : ⌧i ` e0i : ⌧
0 (for all i 2 I)

� ` case e (i · xi ) e0i)i2I : ⌧ 0
tp/cases

e value
i · e value

val/sum

e 7! e0

i · e 7! i · e0
step/inject

e0 7! e00

case e0 (i · xi ) e0i)i2I 7! case e00 (i · xi ) e0i)i2I
step/cases0

k 2 I v value
case (k · v) (i · xi ) e0i)i2I 7! [v/xk]e0k

step/cases/inject

8 Nesting Case Expressions

As another example, let’s consider a function half on natural numbers that is
supposed to round down. We write it down in a pattern-matching style.

half : nat ! nat

half zero = zero
half (succ zero) = zero
half (succ (succ n00)) = succ (half n00)

This could be elaborated into two nested case expressions and a use of
recursion. To avoid an even deeper nesting of cases, we use Unfold as
defined in the previous section.

half = fix h.�n. case (Unfold n) ( zero · _ ) zero
| succ · n0 ) case (Unfold n0) ( zero · _ ) zero

| succ · n00 ) succ (h n00)))

Such nested case expressions naturally lead to the question on how
to define arbitrarily nested patterns and how they should be typed and
evaluated, which we will discuss in the next lecture.
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Exercises

Exercise 1 It is often intuitive to define types in a mutually recursive way.
As a simple example, consider how to define binary numbers in standard
form, that is, not allowing leading zeros. We define binary numbers in stan-
dard form (std) mutually recursively with strictly positive binary numbers
(pos).

std ⇠= (e : 1) + (b0 : pos) + (b1 : std)
pos ⇠= (b0 : pos) + (b1 : std)

(i) Using only std, pos, and function types formed from them, give all
types of e, b0, and b1 defined as follows:

b0 = �x. fold (b0 · x)
b1 = �x. fold (b1 · x)
e = fold (e · h i)

(ii) Define the types std and pos explicitly in our language using the ⇢ type
former so that the isomorphisms stated above hold.

(iii) Does the function inc from Section 4 have type std ! pos? You may use
all the types for b0, b1 and e you derived in part (i). Then either explain
where the typing fails or indicate that it has that type. You do not need
to write out a typing derivation.

(iv) Write a function pred : pos!std that returns the predecessor of a strictly
positive binary number. You must make sure your function is correctly
typed, where again you may use all the types from part (i).

Exercise 2 It is often convenient to define functions by mutual recursion.
As a simple example, consider the following two functions on bit strings
determining if it has even or odd parity.

bin ⇠= (e : 1) + (b0 : bin) + (b1 : bin)

even : bin ! bool
odd : bin ! bool

even e = true
even (b0 x) = even x
even (b1 x) = odd x

odd e = false
odd (b0 x) = odd x
odd (b1 x) = even x
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(i) Write a function parity with a single fixed point constructor and use
it to define even and odd. Also, state the type of your parity function
explicitly.

(ii) More generally, our simple recipe for implementing a recursively spec-
ified function using the fixed point constructor in our call-by-value
language goes from the specification

f : ⌧1 ! ⌧2
f x = h f x

to the implementation

f = fix g.�x. h g x

It is easy to misread these, so remember that by our syntactic conven-
tion, h f x stands for (h f)x and similarly for h g x. Give the type of
h and show by calculation that f satisfies the given specification by
considering f v for an arbitrary value v of type ⌧1.

(iii) A more general, mutually recursive specification would be

f : ⌧1 ! ⌧2
g : �1 ! �2
f x = h1 f g x
g y = h2 f g y

Give the types of h1 and h2.

(iv) Show how to explicitly define f and g in our language from h1 and
h2 using the fixed point constructor and verify its correctness by cal-
culation as in part (ii). You may use any other types in the language
introduced so far (pairs, unit, sums, polymorphic, and recursive types).

Exercise 3 In the language where the primitive unfold has been replaced by
pattern matching, we can define the following two functions:

Unfold : ⇢↵. ⌧ ! [⇢↵. ⌧/↵]⌧
Unfold = �x. case x (fold x ) x)

Fold : [⇢↵. ⌧/↵]⌧ ! ⇢↵. ⌧
Fold = �x. fold x

Prove that Fold and Unfold are witnessing a type isomorphism.
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Pattern Matching

15-814: Types and Programming Languages
Frank Pfenning

Lecture 12
Thursday, October 8, 2020

1 Introduction

As we have seen in the last lecture, tagged sums together with pattern
matching allow us to combine the elimination forms for a variety of types,
namely products ⌧1 ⇥ ⌧2, unit 1, sums

P
i2I(i : ⌧i), and recursive types ⇢↵. ⌧ .

Allowing patterns to be nested allows for shorter, more easily understand-
able programs, but they eventually lead to more fundamental changes in the
language statics and dynamics. In this lecture we will make these changes
to illustrate how a still foundational language can start to become closer and
closer to a practical functional language.

2 Nested Cases

As a simple example from the last lecture, consider the specification of a
function that divides a unary number by two, rounding down.

nat = ⇢↵. (zero : 1) + (succ : ↵)

half : nat ! nat

half zero = zero
half (succ zero) = zero
half (succ (succ n00)) = succ (half n00)

With nested patterns, we could write this as
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half = fix half.�n.
case n ( fold zero · h i ) zero

| fold succ · fold zero · h i ) zero
| fold succ · fold succ · n00 ) succ (half n00) )

This is now quite close to the specification, but using fold and tags zero and
succ instead of using the constructor functions zero and succ we use in the
mathematical specification.

This example also shows why we prefer the destructor for recursive
types to be a fold pattern rather than the primitive unfold: without it, we
would have to interrupt our nested pattern and distinguish cases further
after unfolding subterms explicitly. Using it as a pattern constructor is also
justified by the fact that it is eager, so it exposes a value underneath that we
can match against.

3 General Pattern Matching

Based on these examples, we now unify all the different case expressions
into a single one. For this, we need two new categories of syntax: branches
bs and patterns p. Patterns are either variables, or value constructors for one
of types (omitting those that are opaque). We elide here fixed points as well
as values whose structure should not be observable, namely functions �x. e
and type function ⇤↵. e.

Expressions e ::= x | he1, e2i | h i | i · e | fold e | case e (bs) | . . .
Patterns p ::= x | hp1, p2i | h i | i · p | fold p
Branches bs ::= · | (p ) e | bs)

Because we have new forms of expression, there will also be new judgments
for typing the constructs. Let’s see what these might be by starting with the
rule for case expressions.

� ` e : ⌧ � ` ⌧ . bs : �

� ` case e (bs) : �
case

The new judgment here is
� ` ⌧ . bs : �

We read this as

Match a case subject of type ⌧ against the branches bs, each of which
must have type �.
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The reason all branches must have the same type is the same as for the
conditionals or branching over a sum: we don’t know which branch will be
taken when the program runs. Furthermore, each pattern in bs should match
the type ⌧ . Because there are two alternatives for branches in the syntax,
we have two typing rules for branches. The first (tp/bs/alt) checks the first
branch and then the remaining ones. The second (tp/bs/none) expresses that
once all branches have been checked, there are no further constraints on ⌧
and �.

�0 � p : ⌧ �,�0 ` e : � � ` ⌧ . bs : �

� ` ⌧ . (p ) e | bs) : �
tp/bs/alt

� ` ⌧ . (·) : �
tp/bs/none

The first rule here uses a new judgment, �0 � p : ⌧ . This is almost like the
judgment � ` p : ⌧ , noting that every pattern is also an expression. However,
it is more restrictive in that the variables in �0 must be exactly the variables
in p and, moreover, variables in p may be not occur more than once.1 We
define it with the rules below. When we think about the rules in this set, it
may be helpful to keep in mind that when type-checking we know the type
⌧ and the pattern p and we try to generate the context �0, assigning a type to
each free variable in p (assuming such a �0 exists; otherwise there will be no
derivation for the given p and ⌧ ).

x : ⌧ � x : ⌧
pat/var

�1 � p1 : ⌧1 �2 � p2 : ⌧2

�1,�2 � hp1, p2i : ⌧1 ⇥ ⌧2
pat/pair

· � h i : 1
pat/unit

(k 2 I) � � p : ⌧k

� � k · p :
P

i2I(i : ⌧i)
pat/inject

� � p : [⇢↵. ⌧/↵]⌧

� � fold p : ⇢↵. ⌧
pat/fold

It is implicit in the rule for pairs that �1 and �2 are disjoint in their variables,
which means that patterns may contain neither duplicate variables nor
extraneous variables. For example, we have

x : nat � fold succ · x : nat

but we can not have

x : nat, y : nat � fold succ · x : nat

because such a judgment would allow e in the branch

fold succ · x ) e
1In lecture, we did not distinguish this judgment, but without this distinction this rule

would be ambiguous.
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to mention y (which will not be bound when the value is matched against a
pattern). Therefore, the judgment � � p : ⌧ must be “tight” in the sense that
� contains precisely the variables in p.

For an ordinary hypothetical judgment � ` e : ⌧ we have certain proper-
ties, the most important of which is substitution. But we also have weakening
which means we can always adjoin another hypothesis without changing
the validity of the derivation. That is, if � ` e : ⌧ then also �, x : � ` e : ⌧ as
long as �, x : � is a well-formed context. However, this is not the case for
the typing of patterns, as explained above. This is an example of a linear
hypothetical judgment where all hypotheses must be used exactly once.

This new set of typing rules is still syntax-directed, which now includes
not only the typing of expressions, but also the typing of branches and
patterns.

4 An Example: Equality on Binary Numbers

Before formalizing the operational semantics, we return to the binary num-
bers and write a function to increment and then a second one to test equality.
We use here the concrete syntax of LAMBDA. Tags are preceded by a tick
mark to distinguish them syntactically from variables. They generalize ’l
and ’r from the binary sums. We begin with the “boilerplate” code, defin-
ing a recursive type and then the constructors with their types. In a slight
deviation from the previous encoding, we say that e : 1! bin so that each
constructor, uniformly, takes the type of the correspondingly tagged value
as an argument.

1 type bin = $a. (’b0 : a) + (’b1 : a) + (’e : 1)
2

3 decl b0 : bin -> bin
4 decl b1 : bin -> bin
5 decl e : 1 -> bin
6

7 defn b0 = \x. fold ’b0 x
8 defn b1 = \x. fold ’b1 x
9 defn e = \u. fold ’e u

Incrementing a number is now straightforward, using a simple pattern
match based on the three possible tags of a value of type bin.
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1 decl inc : bin -> bin
2 defn inc = $inc. \x.
3 case x of ( fold ’b0 y => b1 y
4 | fold ’b1 y => b0 (inc y)
5 | fold ’e _ => b1 (e ()) )

A first cut in the implementation of equality uses pattern matching against
a pair of binary numbers.

1 type bool = (’true : 1) + (’false : 1)
2 decl true : bool
3 decl false : bool
4 defn true = ’true ()
5 defn false = ’false ()
6

7 % warning: this implementation is incorrect!
8 decl eq : bin -> bin -> bool
9 defn eq = $eq. \x. \y.

10 case (x,y) of ( (fold ’b0 u, fold ’b0 w) => eq u w
11 | (fold ’b1 u, fold ’b1 w) => eq u w
12 | (fold ’e _, fold ’e _) => true )

This implementation is clearly incorrect, because we somehow have to say
“when none of the other patterns match, return false”. But this is easy, either
using variables that don’t occur or the special wildcard which syntactically
reminds us of this fact.

1 % warning: this implementation is still incorrect!
2 decl eq : bin -> bin -> bool
3 defn eq = $eq. \x. \y.
4 case (x,y) of ( (fold ’b0 u, fold ’b0 w) => eq u w
5 | (fold ’b1 u, fold ’b1 w) => eq u w
6 | (fold ’e _, fold ’e _) => true
7 | (_, _) => false )

In fact, we could also use a single _ to match against the pair in this last
catch-all case.

This implementation, however, is still incorrect. See if you can spot and
fix the bug before moving on to the next page.
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The problem is that the representation allows leading zeros, so that
eq (e h i) (b0 (e h i)) should return true but the current implementation
returns false.

We could fix the problem by standardizing the numbers and then using
equality only on numbers in standard form. It is easy to make a mistake
there, however, unless you also track standard forms in the types, as sug-
gested in Exercise L11.1.

Alternatively, we can change the definition to account for leading zeros
by stripping them away during the comparisons against zero (represented
here by the pattern fold e · _).

1 % relax: this implementation is now correct!
2 decl eq : bin -> bin -> bool
3 defn eq = $eq. \x. \y.
4 case (x,y) of ( (fold ’b0 u, fold ’b0 w) => eq u w
5 | (fold ’b1 u, fold ’b1 w) => eq u w
6 | (fold ’e _, fold ’b0 w) => eq x w
7 | (fold ’b0 u, fold ’e _) => eq u y
8 | (fold ’e _, fold ’e _) => true
9 | _ => false )

This definition now works correctly. Note that in the two new branches that
strip tags ’b0’ we exploit the fact that we know the one of the elements of
the pair are actually zero and are bound to a variable already (the function
arguments x and y, respectively). We could write the slightly more verbose
eq (e ()) w and eq u (e ()) instead.

5 Dynamics of Pattern Matching

The dynamics now also has to deal with pattern matching, and up to a
certain point it seems less complicated. When we match a value v against
a pattern p, this match either has to fail or return to us a substitution ⌘
for all the variables in p. We write this as either v = [⌘]p or “there is no ⌘
with v = [⌘]p”. This ⌘ is a simultaneous substitution for all the variables
in p which we write as (v1/x1, . . . , vn/xn). Matching proceeds sequentially
through the patterns. If it reaches the end of the branches and no case has
matched, it transitions to raising a Match exception, which is a new possible
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outcome of a computation.

e0 7! e00

case e0 (bs) 7! case e00 (bs)
step/case0

v value v = [⌘]p

case v (p ) e | bs) 7! [⌘]e
step/case/match

v value there is no ⌘ with v = [⌘]p case v (bs) 7! e0

case v (p ) e | B) 7! e0
step/case/nomatch

v value
case v (·) 7! raise Match

step/case/none

If we allow raise Match to have every possible type, then the preservation
theorem still goes through. Furthermore, since it is not a value, the canonical
forms theorem will continue to hold. However, the progress theorem now
has to change: a closed well-typed expression either can take a step or is a
value or raises a match exception.

This may be somewhat unsatisfactory because the slogan “well-typed
programs do not go wrong” no longer applies in its purest form. However, the
progress theorem (once carefully spelled out) still characterizes the possible
outcomes of computations exactly.

In order to avoid this unpleasantness, in Standard ML (SML) it is as-
sumed that pattern matches are exhaustive. If the compiler determines that
a given set of patterns is not, it adds a catch-all final branch at the end.
However, this branch reads “_ ) raise Match” (exploiting the presence of
exceptions in SML) which is therefore no different from the semantics we
gave above.

We will complete the discussion of pattern matching and exceptions in
the next lecture.

Exercises

Exercise 1 In this exercise we explore how to make the rules for pattern
matching slightly less abstract.

(i) Define v . p 7! [⌘], as a three-place judgment using inference rules.
This judgment should be derivable exactly if v = [⌘]p (but you do not
need to prove that).
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(ii) Define ⌘ : � as a two-place judgment using inference rules. This
judgment should be derivable if ⌘ substitutes a value of suitable type
for each variable in �.

(iii) Prove that if ⌘ : � and � � p : ⌧ then [⌘]p value and · ` [⌘]p : ⌧ .

(iv) Define a new judgment v 6. p using inference rules. This judgment
should be derivable exactly if there is no substitution ⌘ such that
v = [⌘]p.

(v) It should be the case that for any v and p, either v . p 7! ⌘ or v 6. p.
State any additional assumptions you may need (say, on the typing of
v or p) and sketch the proof. Include two representative cases.

(vi) Revise the dynamics for pattern matching to use the new judgments
devised above.

(vii) Revise the proof of preservation to account for general pattern matching.
Essentially, remove all the cases for individual destructors and then
add in a case for the generalized case construct. The key question is
how to use the properties you have developed above. If you need any
additional properties of simultaneous substitutions ⌘ please state them,
but you do not need to prove them.

Exercise 2 In this exercise we explore the restriction that patterns cannot
have any repeated variables.

(i) Explain why in our language we cannot reasonably allow patterns
with repeated variables. Be as concrete as possible.

(ii) Explore to which extent repeated pattern variables might make sense
and revise the judgment � � p : ⌧ accordingly.
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Lecture Notes on
Exceptions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 13
Tuesday, October 13, 2020

1 Introduction

In the previous lecture we introduced general pattern matching, which
naturally led to considering an exception if no branch matched. In this
lecture we continue our investigation of exceptions. As always, we consider
statics and dynamics and the important theorems showing that they cohere.

2 Preservation for Exceptions

Recall the typing of case-expressions and branches for general pattern match-
ing from the last lecture:

� ` e : ⌧ � ` ⌧ . bs : �

� ` case e (bs) : �
case

�0 � p : ⌧ �,�0 ` e : � � ` ⌧ . bs : �

� ` ⌧ . (p ) e | bs) : �
tp/bs/alt

� ` ⌧ . (·) : �
tp/bs/none

A key observation here is that when we reach the empty list of branches
(rule tp/bs/none) the type � can be anything—usually, it is determined from
the other branches.
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Now recall the dynamics of pattern matching from the last lecture.

e0 7! e00

case e0 (bs) 7! case e00 (bs)
step/case0

v value v = [⌘]p

case v (p ) e | bs) 7! [⌘]e
step/case/match

v value there is no ⌘ with v = [⌘]p case v (bs) 7! e0

case v (p ) e | B) 7! e0
step/case/nomatch

v value
case v (·) 7! raise Match

step/case/none

Here we imagine that we extended the syntax of expressions

Expressions e ::= . . . | case e (bs) | raise E
Exceptions E ::= Match | . . .

where there may be other (for now unspecified) exceptions such as DivByZero.
In order to obtain type preservation, we need raise E to have all possible

types, because the expression on the left-hand side of the step/case/none
rule (namely case v (·)) can have any type.

� ` raise Match : ⌧
tp/raise

Type preservation then obviously holds for the only rule so far that involves
raising an exception. We just need to make sure that as we explore the
dynamics of raising an exceptions preservation continues to hold.

3 Progress for Exceptions

We are aiming at the following version of the progress theorem.

Theorem 1 (Progress with Exceptions, v1) If · ` e : ⌧ then

(i) either e 7! e0 for some e0,

(ii) or e val,
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(iii) or e = raise E for an exception E.

Trying to prove this will uncover the fact that, currently, this theorem
is false for our language. Consider, as a simple example, hraise Match, h ii.
This has type ⌧ ⇥ 1 for any ⌧ , and yet it is stuck: it can not transition, it is not
a value, and it is not of the form raise E. To remedy this shortcoming, we
need to add rules to the dynamics to propagate an exception to the top level.
This is awkward, because we need to do it for every kind of expression we
already have! This is a shortcoming of this particular style of defining the
dynamics of our language, compounded by the fact that exceptions are a
control construct, in some sense unrelated to our type structure.

We only show the rules related to pairs.

hraise E, ei 7! raise E
step/pair/raise1

v value
hv, raise Ei 7! raise E

step/pair/raise2

case (raise E) B 7! raise E
step/case/raise

It is insignificant here whether we have general pattern matching, or pattern
matching specialized to pairs as in earlier versions of our language.

Now we can prove the progress theorem as usual.

Proof: (Progress with Exceptions, Theorem 1) By rule on induction on the
derivation of · ` e : ⌧ . In comparison with earlier proofs, when we apply
the induction hypothesis we obtain three cases to distinguish. In case a
subexpression raises an exception, the expression does as well (as long as it
is not a value) because we have added enough rules to propagate exception
to the top level. ⇤

4 Catching Exceptions

Most languages allow programs not only to raise exceptions but also to catch
them. Let’s consider the simplest such construct, try e1 e2. The intention is
for it to evaluate e1 and return its value if that is successful. If it raises an
exception, evaluate e2 instead. This time, we begin with the dynamics.

e1 7! e01

try e1 e2 7! try e01 e2
step/try0

v1 value
try v1 e2 7! v1

step/try/value

try (raise E) e2 7! e2
step/try/raise
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What type do we need to assign to try e1 e2 in order to guarantee type
preservation. We start with what we know:

� ` e1 : � ` e2 :

� ` try e1 e2 :
tp/try

We should be able to “try” an expression of arbitrary type ⌧ , so

� ` e1 : ⌧ � ` e2 :

� ` try e1 e2 :
tp/try

Because of the rule step/try/value, the type of the overall expression needs
to be equal to ⌧ as well.

� ` e1 : ⌧ � ` e2 :

� ` try e1 e2 : ⌧
tp/try

Finally, in case e1 fails we step to e2, so we also must have e2 : ⌧ .

� ` e1 : ⌧ � ` e2 : ⌧

� ` try e1 e2 : ⌧
tp/try

One issue here is that in e2 we cannot tell which exception may have been
raised, even if we may want to take different actions for different exceptions.
That is, we would like to be able to match against different exceptions. The
generalizations do not introduce any new ideas, so we leave it to Exercise 1
to work out the details.

Exceptions in this lecture and Exercise 1 are not first class, which means
that exceptions are not values. This in turn means that functions cannot
take exceptions as arguments or return them. If we want exceptions to carry
values (for example, error messages) then either exceptions and expression
will be mutually recursive syntactic classes, or we lift exceptions and make
them first class. The merits of this approach are debatable, but its formaliza-
tion is not much more difficult than what we have already done (see [Har16,
Chapter 29]).
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Exercises

Exercise 1 We would like to generalize the try construct to so it can branch
on the exception that may have been raised. So we have

Expressions e ::= . . . | raise E | try e (ms)
Exceptions E ::= Match | DivByZero | . . .
Exception Handlers ms ::= · | (E ) e | ms)

Note that exception handlers are not already covered by regular pattern
matching, because exceptions are neither values nor patterns.

1. Write out typing rules for the generalized try construct and exception
handlers.

2. Write out the dynamics for the new constructs. Exception handlers
should be tried in order.

You do not have to prove preservation or progress, but you should make sure
your rules posses these properties (when taken together with the language
we have developed in the course so far).

Exercise 2 We would like to generalize exceptions further so they can be
returned by functions, passed as arguments, and dynamically created. For
this purpose we create a new type exn. We think of the type exn as a disjoint
sum

exn = (Match : 1) + (DivByZero : 1) + · · ·
except that we can add new alternatives to the sum with a declaration

exn = exn+ (i : ⌧)

For example, in the absence of strings in the language, we could number dif-
ferent error exceptions instead of relying on the general Match by including

exn = exn+ (Error : nat)

and then let the programmer raise Error k to indicate error number k.
A key property to keep in mind that e : exn is an ordinary expression

(and its value can be passed around) and raise e requires e to be an exception
that can be raised, changing the control flow. Generalized pattern matching
should now work to match against exceptions, as they are ordinary values.

Formally develop such a language extension, including the abstract
syntax of the new constructs, statics, dynamics, precise statement and key
cases in the proofs of preservation and progress.
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The K Machine

15-814: Types and Programming Languages
Frank Pfenning

Lecture 14
Thursday, October 15, 2020

1 Introduction

After examining an exceedingly pure, but universal notion of computation
in the �-calculus, we have been building up an increasingly expressive
language including recursive types. The standard theorems to validate
the statics and dynamics are progress and preservation, relying also on
canonical forms. We have also seen the generic principles such as recursion
and exceptions can be integrated into our language elegantly, with the
necessary modifications of the progress theorem. We have also seen that the
supposed opposition of dynamic and static typing is instead just a reflection
of breadth of properties we would like to enforce statically, and the supposed
opposition of eager (strict) and lazy constructors is just a question of which
types we choose to include in our language.

At this point we briefly turn our attention to defining the dynamics of
the constructs at a lower level of abstraction that we have done so far. This
introduces some complexity in what we call “dynamic artifacts”, that is,
objects beyond the source expressions that help us describe how programs
execute. In this lecture, we show the K machine in which a stack is made
explicit. This stack can also be seen as a continuation, capturing everything
that remains to be done after the current expression has been evaluated.
At the end of the lecture we show an elegant high-level implementation
of the K machine in our own language. This is an example of a so-called
metacircular interpreter.
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2 Introducing the K Machine

Let’s review the dynamics of functions.

�x. e value
val/lam

e1 7! e01

e1 e2 7! e01 e2
step/app1

v1 value e2 7! e02

v1 e2 7! v1 e02
step/app2

(�x. e01) v2 7! [v2/x]e01
step/app/lam

The rules step/app1 and step/app2 are congruence rules: they descend into an
expression e in order to find a redex, (�x. e01) v2 in this case. The reduction
rule step/beta is the “actual” computation step, which takes place when a
constructor (here: �-abstraction) is met by a destructor (here: application).

The rules for all other forms of expression follow the same pattern. The
definition of a value of the given type guides which congruence rules are
required. Overall, the preservation and progress theorems verify that a
particular set of rules for a type constructor was defined coherently.

In a multistep computation

e0 7! e1 7! e2 7! · · · 7! en = v

each expression ei represents the whole program and v its final value. This
makes the dynamics economical: only expressions are required when defin-
ing it. But a straightforward implementation would have to test whether
expressions are values, and also find the place where the next reduction
should take place by traversing the expression using congruence rules.

It would be a little bit closer to an implementation if we could keep track
where in a large program we currently compute. The key idea needed to
make this work is to also remember what we still have to do after we are done
evaluating the current expression. This is the role of a continuation (read: “how
we continue after this”). In the particular abstract machine we present, the
continuation is organized as a stack, which appears to be a natural data
structure to represent the continuation.

The machine has two different forms of states

k . e evaluate e with continuation k
k / v return value v to continuation k
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In the second form, we will always have v value. We call this an invariant or
presupposition and we have to verify that all transition rules of the abstract
machine preserve this invariant.

As for continuations, we’ll have to see what we need as we develop the
dynamics of the machine. For now, we only know that we will need an
initial continuation or empty stack, written as ✏.

Continuations k ::= ✏ | . . .

In order to evaluate an expression, we start the machine with

✏ . e

and we expect that it transitions to a final state

✏ / v

if and only if e 7!⇤ v. Actually, we can immediately generalize this: no
matter what the continuation k, we want evaluation of e return the value of
e to k:

For any continuation k, expression e and value v,
k . e 7!⇤ k / v iff e 7!⇤ v

We should keep this in mind as we are developing the rules for the K
machine.

3 Evaluating Functions

Just as for the usual dynamics, the transitions of the machine are organized
by type. We begin with functions. An expression �x. e is a value. Therefore,
it is immediately returned to the continuation.

k . �x. e 7! k / �x. e

It is immediate that the theorem we have in mind about the machine is
satisfied by this transition.

How do we evaluate an application e1 e2? We start by evaluating e1 until
it is a value, then we evaluate e2, and then we perform a �-reduction. When
we evaluate e1 we have to remember what remains to be done. We do this
with the continuation

(_ e2)
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which has a blank in place of the expression that is currently being evaluated.
We push this onto the stack, because once this continuation has done its
work, we still need to do whatever remains after that.

k . e1 e2 7! k � (_ e2) . e1

When the evaluation of e1 returns a value v1 to the continuation k � (_ e2)
we evaluate e2 next, remembering we have to pass the result to v1.

k � (_ e2) / v1 7! k � (v1 _) . e2

Finally, when the value v2 of e2 is returned to this continuation we can carry
out the �-reduction, substituting v2 for the formal parameter x in the body e01
of the function. The result is an expression that we then proceed to evaluate.

k � ((�x. e01) _) / v2 7! k . [v2/x]e
0
1

The continuation for [v2/x]e01 is the original continuation of the application,
because the ultimate value of the application is the ultimate value of [v2/x]e01.

Summarizing the rules pertaining to functions:

k . �x. e 7! k / �x. e
k . e1 e2 7! k � (_ e2) . e1

k � (_ e2) / v1 7! k � (v1 _) . e2
k � ((�x. e01) _) / v2 7! k . [v2/x]e01

And the continuations required:

Continuations k ::= ✏
| k � (_ e2) | k � (v1 _)

4 A Small Example

Let’s run the machine through a small example,

((�x.�y. x) v1) v2
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for some arbitrary values v1 and v2.

✏ . ((�x.�y. x) v1) v2
7! ✏ � (_ v2) . (�x.�y. x) v1
7! ✏ � (_ v2) � (_ v1) . �x.�y. x
7! ✏ � (_ v2) � (_ v1) / �x.�y. x
7! ✏ � (_ v2) � ((�x.�y. x) _) . v1
7!⇤ ✏ � (_ v2) � ((�x.�y. x) _) / v1
7! ✏ � (_ v2) . �y. v1
7! ✏ � (_ v2) / �y. v1
7! ✏ � ((�y. v1) _) . v2
7!⇤ ✏ � ((�y. v1) _) / v2
7! ✏ . v1
7!⇤ ✏ / v1

If v1 and v2 are functions, then the multistep transitions based on our desired
correctness theorem are just a single step each.

We can see that the steps are quite small, but that the machine works as
expected. We also see that some values (such as v1) appear to be evaluated
more than once. A further improvement of the machine would be to mark
values so that they are not evaluated again.

5 Eager Pairs

Functions are lazy in the sense that the body of a �-abstraction is not eval-
uated, even in a call-by-value language. As another example we consider
eager pairs ⌧1 ⇥ ⌧2. In lecture we actually did sums, but the same pattern
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emerges for both. Recall the rules:1

v1 value v2 value

hv1, v2i value
val/pair

e1 7! e01

he1, e2i 7! he01, e2i
step/pair1

v1 value e2 7! e02

hv1, e2i 7! hv1, e02i
step/pair2

e0 7! e00

case e0 (hx1, x2i ) e) 7! case e00 (hx1, x2i ) e)
step/casep0

v1 value v2 value

case hv1, v2i (hx1, x2i ) e) 7! [v1/x1, v2/x2]e
step/casep/pair

We develop the rules in a similar way. Evaluation of a pair begins by
evaluating the first component.

k . he1, e2i 7! k � h_, e2i . e1

When the value is returned, we start with the second component.

k � h_, e2i / v1 7! k � hv1,_i . e2

When the second value is returned, we can immediately form the pair (a
new value) and return it to the continuation further up the stack.

k � hv1,_i / v2 7! k / hv1, v2i

For a case expression, we need to evaluate the subject of the case.

k . case e0 (hx1, x2i ) e) 7! k � case _ (hx1, x2i ) e) . e0

When e0 has been evaluated, a pair should be returned to this continuation,
and we can carry out the reduction and continue with evaluating e after
substitution.

k � case _ (hx1, x2i ) e) / hv1, v2i 7! k . [v1/x1, v2/x2]e

1We return here to the usual destructors instead of general pattern matching, as a matter
of simplicity. See ?? for the more general language.
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To summarize:

k . he1, e2i 7! k � h_, e2i . e1
k � h_, e2i / v1 7! k � hv1,_i . e2
k � hv1,_i / v2 7! k / hv1, v2i

k . case e0 (hx1, x2i ) e) 7! k � case _ (hx1, x2i ) e) . e0
k � case _ (hx1, x2i ) e) / hv1, v2i 7! k . [v1/x1, v2/x2]e

Continuations k ::= ✏
| k � (_ e2) | k � (v1 _) (!)
| k � h_, e2i | k � hv1,_i | k � case _ (hx1, x2i ) e) (⇥)

6 Typing the K Machine

We postpone a correctness proof for the K machine to the beginning of next
lecture. For now, we study the statics of the machine.

In general, it is informative to maintain static typing to the extent possible
when we transform the dynamics. If there is a new language involved we
might say we have a typed intermediate language, but even if in the case of the
K machine where we still evaluate expressions and just add continuations,
we still want to maintain typing.

We type a continuation as receiving a value of type ⌧ and eventually
producing the final answer for the whole program of type �. That is, k ÷
⌧ ) �. Continuations are always closed, so there is no context � of free
variables. We use a different symbol ÷ for typing and ) for the functional
interpretation of the continuation so there is no confusion with the usual
notation.

The easiest case is

✏÷ ⌧ ) ⌧

since the empty continuation ✏ immediately produces the value that it is
passed as the final value of the computation.

We consider k � (_ e2) in some detail. This is a continuation that takes a
value of type ⌧2 ! ⌧1 and applies it to an expression e2 : ⌧2. The resulting
value is passed to the remaining continuation k. The final answer type of
k � (_ e2) and k are the same �. Writing this out in the form of an inference
rule:

k ÷ ⌧1 ) � · ` e2 : ⌧2

k � (_ e2)÷ (⌧2 ! ⌧1) ) �
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The order in which we develop this rule is important: when designing or
recalling such rules yourself we strongly recommend you fill in the various
judgments and types incrementally, as we did in lecture.

The other function-related continuations follows a similar pattern. We
arrive at

k ÷ ⌧1 ) � · ` v1 : ⌧2 ! ⌧1 v1 value

k � (v1 _)÷ ⌧2 ) �

Pairs follow a similar pattern and we just show the rules.

k ÷ (⌧1 ⇥ ⌧2) ) � · ` e2 : ⌧2

k � h_, e2i÷ ⌧1 ) �

k ÷ (⌧1 ⇥ ⌧2) ) � · ` v1 : ⌧1 v1 value

k � hv1,_i÷ ⌧2 ) �

k ÷ ⌧ 0 ) � x1 : ⌧1, x2 : ⌧2 ` e0 : ⌧ 0

k � case _ (hx1, x2i ) e0)÷ (⌧1 ⇥ ⌧2) ) �

With these rules, we can state preservation and progress theorems for the K
machine, but their formulation and proof entirely follow previous develop-
ments so we elide them here.

7 Implementing the K Machine

We now proceed to implement the K machine for our language within our
language, using LAMBDA’s concrete syntax. Because we are implementing
the language within itself, this is called a metacircular interpreter. We need to
be careful to distinguish the metalanguage in which we write our interpreter
from the object language in which should be able to execute programs.

As a matter of convenience and readability (but not a matter of essence),
we will use varyadic sums and nested pattern matching in the metalanguage,
and binary sums and simple pattern matching in the object language.

In these notes we only show the cases for functions ⌧1 ! ⌧2 and sums
⌧1 + ⌧2 in the object language; the other cases follow the same patterns and
pose only minor challenges (see ??).

The first beautiful idea of the metacircular interpreter is to implement
object-language variables by meta-language variables. This means that
object-level functions are implemented via meta-level functions, but at dif-
ferent types. As a result, we will not need to implement substitution, because
applying the meta-level function will have the effect of implementing object-
level substitution.
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But first the type E of object-level expressions. It is a (recursive) sum
type where each constructor and destructor has a separate summand. We
start with just functions.

1 type E = $E. (’lam : E -> E) + (’app : E * E)

There is no case for variables, since they are represented by meta-language
variable. For example, using p·q for the representation function for expres-
sion in our language, we have

E = ⇢E. (lam : E ! E) + (app : E ⇥ E)

p�x. eq = fold lam · (�x. peq)
pxq = x
pe1 e2q = fold app · hpe1q, pe2qi

Here are two examples of this representation in our language
1 decl I : E
2 defn I = fold ’lam (\x. x)
3

4 decl omega : E
5 defn omega = fold ’lam (\x. fold ’app (x, x))

We can now define some “boilerplate” code, namely the meta-level construc-
tor functions. To make them more easily readable, we give them in curried
form.

1 decl lam : (E -> E) -> E
2 decl app : E -> E -> E
3

4 defn lam = \f. fold ’lam f
5 defn app = \e1. \e2. fold ’app (e1, e2)

The next step is to think about the representation of the stack. We represent
this as a meta-level function from values to values. Since we don’t have a
separate type of object-level values (at the moment), they are represented as
expressions and it is up to us, as the meta-programmer, to ensure that they
are only applied the object-level values.

The interpreter is defined by two functions, eval and retn. The first
function eval will have the property that

k . e 7!⇤ k / v if and only if eval peq pkq 7!⇤ retn pvq pkq

while retn pkq pvq represents k / v. This second function is immediate,
because returning a value to a continuation simply applies the continuation
(represented as a function) to the value.
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1 decl retn_ : E -> (E -> E) -> E (* k < v === retn v k *)
2 defn retn_ = \v. \k. k v

We use here an underscore to complete the name retn_ because the next
function, eval_ would clash with LAMBDA’s eval keyword. For uniformity,
we use this disambiguation for both functions.

The main function eval e k evaluates e and passes the value to k (instead
of returning it). Its first case is fairly simple: when the expression e is a
�-abstraction, it is already a value and we return it to the continuation k.

1 decl eval_ : E -> (E -> E) -> E (* k > e === eval e k *)
2 defn eval_ = $eval_. \e. \k.
3 case e of ( fold ’lam _ => retn_ e k
4 | ... )

The second case is that of an application e1 e2. We first have to evaluate e1,
with a continuation that evaluates e2 next. That is,

1 decl eval_ : E -> (E -> E) -> E (* k > e === eval e k *)
2 defn eval_ = $eval_. \e. \k.
3 case e of ( fold ’lam _ => retn_ e k
4 | fold ’app (e1, e2) =>
5 eval_ e1 (\v1. eval_ e2 (\v2. ... )))

The rules of the K machine dictated that once we have evaluated both e1 and
e2 to v1 and v2, respectively, then v1 = �x. e01 and we then need to evaluate
[v2/x]e01. We accomplish this in two steps: first, we match v1 against the
representation of �-expression. This exposes the underlying meta-level
function f . We then perform the substitution by applying f to v2.

1 decl eval_ : E -> (E -> E) -> E (* k > e === eval e k *)
2 defn eval_ = $eval_. \e. \k.
3 case e of ( fold ’lam _ => retn_ e k
4 | fold ’app (e1, e2) =>
5 eval_ e1 (\v1. eval_ e2 (\v2.
6 case v1 of (fold ’lam f => eval_ (f v2) k))) )

However, this is not the final return value. Instead we pass it to the continu-
ation k that expects the value of e1 e2 (which will be computed as the value
of f v2).

At the “top level” the evaluate function passes the initial continuation to
eval, which is �v. v corresponding to the empty stack ✏.

1 decl evaluate : E -> E
2 defn evaluate = \e. eval_ e (\v. v)
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An interesting property of this representation is that to some extent visibility
on the object language is inherited from visibility in the metalanguage. For
example,

1 eval ii = evaluate (app I I)

shows us

1 % 28 evaluation steps
2 decl ii : E
3 defn ii = fold ’lam ---

In other words, we do not see the normal form because none is computed:
arbitrary closed �-expressions are values in both the object language and
metalanguage.

We also see that there is a significant overhead in the interpreter: an
expression which takes 1 step to reach a normal form in the small-step
dynamics takes 28 steps in the metainterpreter. Of course, we imagine the
metainterpreter could be compiled, so in the end it may be efficient enough
for many purposes.

For binary sums, the same techniques apply. Key is to represent the
branches of a case statement as functions from the tagged value to the result.

pl · eq = fold left · peq
pr · eq = fold right · peq
pcase e (l · x1 ) e1 | r · x2 ) e2)q = fold cases · hpeq, h�x1. pe1q,�x2. pe2qii

We first show the extension of the type and the constructor functions.

1 type E = $E. (’lam : E -> E) + (’app : E * E)
2 + (’left : E) + (’right : E)
3 + (’cases : E * (E -> E) * (E -> E))
4

5 decl left : E -> E
6 decl right : E -> E
7 decl cases : E -> (E -> E) -> (E -> E) -> E
8

9 defn left = \e. fold ’left e
10 defn right = \e. fold ’right e
11 defn cases = \e. \b1. \b2. fold ’cases (e, b1, b2)

Below is the completed cade for evaluation for left and right injection into a
sum as well as distinguishing cases over sums. Again, we avoid implement-
ing substitutions by exploiting function application in the meta-level, where
each branch is represented as a function.
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1 decl eval_ : E -> (E -> E) -> E (* k > e === eval e k *)
2 defn eval_ = $eval_. \e. \k.
3 case e of ( fold ’lam _ => retn_ e k % b/c \x.e value
4 | fold ’app (e1, e2) =>
5 eval_ e1 (\v1. eval_ e2 (\v2.
6 case v1 of (fold ’lam f => eval_ (f v2) k)))
7 | fold ’left e => eval_ e (\v. retn_ (left v) k)
8 | fold ’right e => eval_ e (\v. retn_ (right v) k)
9 | fold ’cases (e,b1,b2) => eval_ e (\v.

10 case v of ( fold ’left v1 => eval_ (b1 v1) k
11 | fold ’right v2 => eval_ (b2 v2) k
12 ))
13 )

The complete code with the examples can be found in cps-live.cbv.
It is now very easy to change the language semantics. For example,

say we wanted to make the object language to be call-by-name. We would
modify the line for application from

1 | fold ’app (e1, e2) =>
2 eval_ e1 (\v1. eval_ e2 (\v2.
3 case v1 of (fold ’lam f => eval_ (f v2) k)))

to passing e2 directly to f instead of evaluting it first
1 | fold ’app (e1, e2) =>
2 eval_ e1 (\v1.
3 case v1 of (fold ’lam f => eval_ (f e2) k))

A similar modification can be made if we wanted sums to be lazy as well.
This style of programming is called continuation-passing style, which is

a perfect match for the K machine. This kind of interpreter is also called a
definitional interpreter [?] since it can be seen as providing a dynamics to the
object language.

8 Whither Types?

We have represented all expressions in the object language with the same
type E in the metalanguage. This means we can evaluate even expressions
which have no type, such as omega in our example. To complete our imple-
mentation of the object language we should also provide a object-language
type-checker in the metalanguage. We may return to this in a future lecture;
for now we are content to have implemented the dynamics.

A metalanguage term of type E that is not the representation of a well-
typed term in the object language may lead to a runtime exception when

LECTURE NOTES THURSDAY, OCTOBER 15, 2020

http://www.cs.cmu.edu/~fp/courses/15814-f20/lectures/14-kmachine/cps-live.cbv


The K Machine L14.13

we distinguishes cases among the result of evaluation, which happens
in the implementation of every destructor (in our code here, application
and case over binary sums). These meta-level case expressions are not
exhaustive pattern matches, but assume the represented term (and therefore
also its value) are well-typed at the object level. This is an example of an
representation invariant, and a fairly trick one, and shows that we should not
expect in general that all pattern matches be exhaustive.

Exercises

Exercise 1 Extend the K Machine for the following constructs, in each case
writing out new continuations as necessary and giving both stepping and
typing rules.

1. Constructor and destructor for the unit type 1.

2. Constructor and destructor for the sum type
P

i2I(i : ⌧i).

3. Constructor and destructor for recursive types ⇢↵. ⌧ .

4. The fixed point expression fix f. e.

5. Constructor and destructors for lazy pairs ⌧1 N ⌧2 (see Exercise L8.6).

Exercise 2 Extend the metacircular interpreter of the K machine as designed
in ??. You do not need to show any rules for the machine, but you should
write example code to exercise all the new features in your interpreter.

Exercise 3 Extend the K machine for general (nested) pattern matching.
Give any possible new machine states explicit, and show both the typing
and stepping rules for the machine. As part of this, you will have to deal
with exceptions. Consider only the simplest case where exceptions cannot
be caught.

Exercise 4 Distinguish a type V of values from expressions so that, for exam-
ple, we never accidentally pass an unevaluated expression to a continuation
and that the final answer is also a value. State the types of eval and retn. How
much of the interpreter do you need to rewrite to guarantee this property?
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Lecture Notes on
Types as Propositions

15-814: Types and Programming Languages
Frank Pfenning

Lecture 15
Tuesday, October 20, 2020

1 Introduction

These lecture notes are pieced together from several lectures in an

undergraduate course on Constructive Logic, so they are a bit more

extensive than what we discussed in the lecture.

2 Natural Deduction

The goal of this section is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Löf [ML96, Page 27]:

The meaning of a proposition is determined by [. . . ] what counts as a

verification of it.

A verification may be understood as a certain kind of proof that only
examines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].
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In this chapter we apply Martin-Löf’s approach, which follows a rich
philosophical tradition, to explain the basic propositional connectives.

We will define the meaning of the usual connectives of propositional
logic (conjunction, implication, disjunction) by rules that allow us to infer
when they should be true, so-called introduction rules. From these, we derive
rules for the use of propositions, so-called elimination rules. The resulting
system of natural deduction is the foundation of intuitionistic logic which has
direct connections to functional programming and logic programming.

3 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence for
it. In everyday life, such evidence is often immediate: we may look out the
window and see that it is raining. In logic, we are concerned with situation
where the evidence is indirect: we deduce the judgment by making correct
inferences from other evident judgments. In other words: a judgment is
evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “A is true at time t” (from temporal logic), “A is neces-

sarily true” (from modal logic), “program M has type ⌧” (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of
conjunction. We write A true for the judgment “A is true” (presupposing
that A is a proposition. Given propositions A and B, we can form the
compound proposition “A and B”, written more formally as A ^ B. But
we have not yet specified what conjunction means, that is, what counts as a
verification of A ^B. This is accomplished by the following inference rule:

A true B true

A ^B true
^I

Here the name ^I stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A ^B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,
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and ^I is the name of the rule. Intuitively, the ^I rule says that a proof of
A ^B true consists of a proof of A true together with a proof of B true.

The general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, the judgment J is
called the conclusion. In general, we will use letters J to stand for judgments,
while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A ^ B
completely. So what can be deduced if we know that A ^B is true? By the
above rule, to have a verification for A ^B means to have verifications for
A and B. Hence the following two rules are justified:

A ^B true

A true
^E1

A ^B true

B true
^E2

The name ^E1 stands for “first/left conjunction elimination”, since the
conjunction in the premise has been eliminated in the conclusion. Similarly
^E2 stands for “second/right conjunction elimination”. Intuitively, the ^E1

rule says that A true follows if we have a proof of A ^B true, because “we
must have had a proof of A true to justify A ^B true”.

We will later see what precisely is required in order to guarantee that
the formation, introduction, and elimination rules for a connective fit to-
gether correctly. For now, we will informally argue the correctness of the
elimination rules, as we did for the conjunction elimination rules.

As a second example we consider the proposition “truth” written as
>. Truth should always be true, which means its introduction rule has no
premises.

> true
>I

Consequently, we have no information if we know > true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero corresponding
elimination rules. This is precisely what we wrote out above.
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4 Hypothetical Judgments

Consider the following derivation, for arbitrary propositions A, B, and C:

A ^ (B ^ C) true

B ^ C true
^E2

B true
^E1

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A ^ (B ^ C) true has not been justified. We
can extract the following knowledge:

From the assumption that A^ (B ^C) is true, we deduce that B must

be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

J1 · · · Jn...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judg-
ment J is the conclusion. All instances of the inference rules are hypothetical
judgments as well (albeit possibly with 0 assumptions if the inference rule
has no premises).

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we will write
J1, . . . , Jn ` J for the hypothetical judgment which is established by the
hypothetical deduction above. We may refer to J1, . . . , Jn as the antecedents
and J as the succedent of the hypothetical judgment. For example, the
hypothetical judgment A ^ (B ^ C) true ` B true is proved by the above
hypothetical deduction that B true indeed follows from the hypothesis
A ^ (B ^ C) true using inference rules.

Substitution Principle for Hypotheses: We can always substitute a
proof for any hypothesis Ji to eliminate the assumption. Into the above
hypothetical deduction, a proof of its hypothesis Ji

K1 · · · Km...
Ji
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can be substituted in for Ji to obtain the hypothetical deduction

J1 · · ·

K1 · · · Km...
Ji · · · Jn...
J

This hypothetical deduction concludes J from the unproven assumptions
J1, . . . , Ji�1,K1, . . . ,Km, Ji+1, . . . , Jn and justifies the hypothetical judgment

J1, . . . , Ji�1,K1, . . . ,Km, Ji+1, . . . , Jn ` J

That is, into the hypothetical judgment J1, . . . , Jn ` J , we can always substi-
tute a derivation of the judgment Ji that was used as a hypothesis to obtain
a derivation which no longer depends on the assumption Ji. A hypothetical
deduction with 0 assumptions is a proof of its conclusion J .

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A ^B true

B true
^E2

A ^B true

A true
^E1

B ^A true
^I

can be seen a hypothetical derivation of A^B true ` B ^A true. Similarly, a
minor variation of the first proof in this section is a hypothetical derivation
for the hypothetical judgment A ^ (B ^ C) true ` B ^ A true that uses the
hypothesis twice.

With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A�B). The intro-
duction rule reads: A�B is true, if B is true under the assumption that A is
true.

A true
u

...
B true

A�B true
�Iu

The tricky part of this rule is the label u and its bar. If we omit this annotation,
the rule would read

A true...
B true

A�B true
�I
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which would be incorrect: it looks like a derivation of A�B true from the
hypothesis A true. But the assumption A true is introduced in the process
of proving A � B true; the conclusion should not depend on it! Certainly,
whether the implication A�B is true is independent of the question whether
A itself is actually true. Therefore we label uses of the assumption with a new
name u, and the corresponding inference which introduced this assumption
into the derivation with the same label u.

The rule makes intuitive sense, a proof justifying A � B true assumes,
hypothetically, the left-hand side of the implication so that A true, and
uses this to show the right-hand side of the implication by proving B true.
The proof of A � B true constructs a proof of B true from the additional
assumption that A true.

As a concrete example, consider the following proof of A� (B� (A^B)).

A true
u

B true
w

A ^B true
^I

B � (A ^B) true
�Iw

A� (B � (A ^B)) true
�Iu

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled u is discharged in the last
inference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A�B true means that
we have a hypothetical proof of B true from A true. By the substitution
principle, if we also have a proof of A true then we get a proof of B true.

A�B true A true

B true
�E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties con-

cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.
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A ^B true
u

B true
^E2

A ^B true
u

A true
^E1

B ^A true
^I

(A ^B)� (B ^A) true
�Iu

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a
distributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences of
steps in proof constructions are also possible.

...
(A� (B ^ C))� ((A�B) ^ (A� C)) true

First, we use the implication introduction rule bottom-up.

A� (B ^ C) true

u

...
(A�B) ^ (A� C) true

(A� (B ^ C)� ((A�B) ^ (A� C)) true
�Iu

Next, we use the conjunction introduction rule bottom-up, copying the
available assumptions to both branches in the scope.

A� (B ^ C) true

u

...
A�B true

A� (B ^ C) true

u

...
A� C true

(A�B) ^ (A� C) true
^I

(A� (B ^ C))� ((A�B) ^ (A� C)) true
�Iu

We now pursue the left branch, again using implication introduction
bottom-up.
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A� (B ^ C) true

u
A true

w

...
B true

A�B true
�Iw

A� (B ^ C) true

u

...
A� C true

(A�B) ^ (A� C) true
^I

(A� (B ^ C))� ((A�B) ^ (A� C)) true
�Iu

Note that the hypothesis A true is available only in the left branch and
not in the right one: it is discharged at the inference �Iw. We now switch to
top-down reasoning, taking advantage of implication elimination.

A� (B ^ C) true

u
A true

w

B ^ C true
�E

...
B true

A�B true
�Iw

A� (B ^ C) true

u

...
A� C true

(A�B) ^ (A� C) true
^I

(A� (B ^ C))� ((A�B) ^ (A� C)) true
�Iu

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

A� (B ^ C) true

u
A true

w

B ^ C true
�E

B true
^E1

A�B true
�Iw

A� (B ^ C) true

u

...
A� C true

(A�B) ^ (A� C) true
^I

(A� (B ^ C))� ((A�B) ^ (A� C)) true
�Iu

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.
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A� (B ^ C) true

u
A true

w

B ^ C true
�E

B true
^E1

A�B true
�Iw

A� (B ^ C) true

u
A true

v

B ^ C true
�E

C true
^E2

A� C true
�Iv

(A�B) ^ (A� C) true
^I

(A� (B ^ C))� ((A�B) ^ (A� C)) true
�Iu

5 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication.
The disjunction “A or B” (written as A _ B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A _B is true, if either A or B is true.

A true

A _B true
_I1

B true

A _B true
_I2

Now it would be incorrect to have an elimination rule such as
A _B true

A true
_E1?

because even if we know that A _ B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

> true
>I

A _ > true
_I2

A true
_E1?

Thus we take a different approach. If we know that A _ B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

A _B true

A true
u

...
C true

B true
w

...
C true

C true
_Eu,w
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If we know that A _ B true then we also know C true, if that follows
both in the case where A _ B true because A is true and in the case where
A _B true because B is true. Note that we use once again the mechanism
of hypothetical judgments. In the proof of the second premise we may use
the assumption A true labeled u, in the proof of the third premise we may
use the assumption B true labeled w. Both are discharged at the disjunction
elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A _B true. The premises of the two possible introduction
rules are A true and B true. In case A true we conclude C true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled u in the hypothetical derivation.
The case for B true is symmetric, using the hypothetical derivation in the
third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

...
(A _B)� (B _A) true

We begin with an implication introduction.

A _B true
u

...
B _A true

(A _B)� (B _A) true
�Iu

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption
A_B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

A _B true
u

A true
v

...
B _A true

B true
w

...
B _A true

B _A true
_Ev,w

(A _B)� (B _A) true
�Iu

The assumption labeled u is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.
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Now each gap can be filled in directly by the two disjunction introduction
rules.

A _B true
u

A true
v

B _A true
_I2

B true
w

B _A true
_I1

B _A true
_Ev,w

(A _B)� (B _A) true
�Iu

This concludes the discussion of disjunction. Falsehood (written as ?,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of ? true, it is sound to conclude the truth
of any arbitrary proposition if we know ? true. This justifies the elimination
rule

? true

C true
?E

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduction
rules, and an elimination rule in which we have to consider zero cases. This
is precisely the ?E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ¬A) as A�?. In other words, ¬A is true
precisely if the assumption A true is contradictory because we could derive
? true.

6 Summary of Natural Deduction

The judgments, propositions, and inference rules we have defined so far col-
lectively form a system of natural deduction. It is a minor variant of a system
introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
A _ (A�B) as true for arbitrary A and B, although in the system we have
presented so far this would have no proof. Classical logic is based on the
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Introduction Rules Elimination Rules

A true B true

A ^B true
^I

A ^B true

A true
^E1

A ^B true

B true
^E2

> true
>I

no >E rule

A true
u

...
B true

A�B true
�Iu

A�B true A true

B true
�E

A true

A _B true
_I1

B true

A _B true
_I2

A _B true

A true
u

...
C true

B true
w

...
C true

C true
_Eu,w

no ?I rule

? true

C true
?E

Figure 1: Rules for intuitionistic natural deduction

principle that every proposition must be true or false. If we distinguish
these cases we see that A _ (A � B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and
evidence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see, it has a direct
connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.
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7 Propositions as Types

We now investigate a computational interpretation of constructive proofs
and relate it to functional programming. On the propositional fragment of
logic this is called the Curry-Howard isomorphism [How80]. From the very
outset of the development of constructive logic and mathematics, a central
idea has been that proofs ought to represent constructions. The Curry-Howard
isomorphism is only a particularly poignant and beautiful realization of
this idea. In a highly influential subsequent paper, Per Martin-Löf [ML80]
developed it further into a more expressive calculus called type theory.

In order to illustrate the relationship between proofs and programs we
introduce a new judgment:

M : A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will
also interpret M : A as “M is a program of type A”. These dual interpretations
of the same judgment is the core of the Curry-Howard isomorphism. We
either think of M as a syntactic term that represents the proof of A true, or
we think of A as the type of the program M . As we discuss each connective,
we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A
for some appropriate proof term M . But we want something more: every
deduction of M : A should correspond to a deduction of A true with an
identical structure and vice versa. In other words we annotate the inference
rules of natural deduction with proof terms. The property above should
then be obvious. In that way, proof term M of M : A will correspond directly
to the corresponding proof of A true.

Conjunction. Constructively, we think of a proof of A^B true as a pair of
proofs: one for A true and one for B true. So if M is a proof of A and N is a
proof of B, then the pair h|M,N |i is a proof of A ^B.

M : A N : B

h|M,N |i : A ^B
^I

The elimination rules correspond to the projections from a pair to its first
and second elements to get the individual proofs back out from a pair M .

M : A ^B

fstM : A
^E1

M : A ^B

sndM : B
^E2
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Hence the conjunction A ^B proposition corresponds to the (lazy) product
type A N B. And, indeed, product types in functional programming lan-
guages have the same property that conjunction propositions A ^B have.
Constructing a pair h|M,N |i of type A N B requires a program M of type A
and a program N of type B (as in ^I). Given a pair M of type ANB, its first
component of type A can be retrieved by the projection fst M (as in ^E1),
its second component of type B by the projection sndM (as in ^E2).

Truth. Constructively, we think of a proof of > true as a unit element that
carries no information.

h| |i : >
>I

Hence > corresponds to the (lazy) unit type with one element that we
haven’t encountered yet explicity, but is the nullary version of the lazy
product, also written as >. There is no elimination rule and hence no further
proof term constructs for truth. Indeed, we have not put any information
into h| |i when constructing it via >I , so cannot expect to get any information
back out when trying to eliminate it.

Implication. Constructively, we think of a proof of A�B true as a function
which transforms a proof of A true into a proof of B true.

We now use the notation of �-abstraction to annotate the rule of implica-
tion introduction with proof terms.

u : A
u

...
M : B

�u.M : A�B
�Iu

The hypothesis label u acts as a variable, and any use of the hypothesis
labeled u in the proof of B corresponds to an occurrence of u in M . Notice
how a constructive proof of B true from the additional assumption A true to
establish A�B true also describes the transformation of a proof of A true to
a proof of B true. But the proof term �u.M explicitly represents this trans-
formation syntactically as a function, instead of leaving this construction
implicit by inspection of whatever the proof does.
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As a concrete example, consider the (trivial) proof of A�A true:

A true
u

A�A true
�Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(�u. u) : A�A
�Iu

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with the identity function id(u) = u
or id = (�u. u).

Constructively, a proof of A�B true is a function transforming a proof
of A true to a proof of B true. Using A � B true by its elimination rule
�E, thus, corresponds to providing the proof of A true that A � B true is
waiting for to obtain a proof of B true. The rule for implication elimination
corresponds to function application.

M : A�B N : A

M N : B
�E

What is the meaning of A � B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A!B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction �u.M and application M N . Form-
ing a functional abstraction �u.M corresponds to a function that accepts
input parameter u of type A and produces M of type B (as in �I). Using a
function M : A!B corresponds to applying it to a concrete input argument
N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.

As a second example we consider a proof of (A ^B)� (B ^A) true.

A ^B true
u

B true
^E2

A ^B true
u

A true
^E1

B ^A true
^I

(A ^B)� (B ^A) true
�Iu
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When we annotate this derivation with proof terms, we obtain the swap
function which takes a pair hM,Ni and returns the reverse pair hN,Mi.

u : A ^B
u

snd u : B
^E2

u : A ^B
u

fst u : A
^E1

h|snd u, fst u|i : B ^A
^I

(�u. h|snd u, fst u|i) : (A ^B)� (B ^A)
�Iu

Disjunction. Constructively, we think of a proof of A _ B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A+B that either store something of type A or something of type
B. The two introduction rules correspond to the left and right injection into
a sum type.

M : A

l ·M : A _B
_I1

N : B

r ·N : A _B
_I2

When using a disjunction A _B true in a proof, we need to be prepared to
handle A true as well as B true, because we don’t know whether _I1 or _I2
was used to prove it. The elimination rule corresponds to a case construct
which discriminates between a left and right injection into a sum types.

M : A _B

u : A
u

...
N : C

w : B
w

...
P : C

case M (l · u ) N | r · w ) P ) : C
_Eu,w

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is N , while the scope of
the variable w is P .

Falsehood. There is no introduction rule for falsehood (?). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of ? to stand for an expression of any type when wrapped in a case
with no alternatives. There can be no valid reduction rule for falsehood,
which means during computation of a valid program we will never try to
evaluate a term of the form case M ( ).

M : ?
case M ( ) : C

?E
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Interaction Laws. This completes our assignment of proof terms to the
logical inference rules. Now we can interpret the interaction laws we intro-
duced early as programming exercises. Consider the following distributivity
law:

(L11a) (A� (B ^ C))� (A�B) ^ (A� C) true

Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B ^ C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:

�u. h|(�w. fst (uw)), (�v. snd (u v))|i

The following deduction provides the evidence:

u : A� (B ^ C)
u

w : A
w

uw : B ^ C
�E

fst (uw) : B
^E1

�w. fst (uw) : A�B
�Iw

u : A� (B ^ C)
u

v : A
v

u v : B ^ C
�E

snd (u v) : C
^E2

�v. snd (u v) : A� C
�Iv

h|(�w. fst (uw)), (�v. snd (u v))|i : (A�B) ^ (A� C)
^I

�u. h|(�w. fst (uw)), (�v. snd (u v))|i : (A� (B ^ C))� ((A�B) ^ (A� C))
�Iu

Programs in constructive propositional logic are somewhat uninteresting
in that they do not manipulate basic data types such as natural numbers,
integers, lists, trees, etc. We introduce such data types later in this course,
following the same method we have used in the development of logic.

Summary. To close this section we recall the guiding principles behind the

assignment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true

is a bijection.
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8 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain
how proofs are to be executed, and which results may be returned by a
computation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction written M �! M 0 and read
“M reduces to M 0”. In the second step, a computation then proceeds by a
sequence of reductions M �! M1 �! M2 . . ., according to a fixed strategy,
until we reach a value which is the result of the computation.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduction
rules as the constructors and the proof terms corresponding to the elimination
rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst h|M,N |i �! M
snd h|M,N |i �! N

These (computational) reduction rules directly corresponds to the proof
term analogue of the logical reductions for the local soundness detailed in
Section 11. For example:

M : A N : B

h|M,N |i : A ^B
^I

fst h|M,N |i : A
^E1

�! M : A

Truth. The constructor just forms the unit element, h| |i. Since there is no
destructor, there is no reduction rule.
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Implication. The constructor forms a function by �-abstraction, while
the destructor applies the function to an argument. The notation for the
substitution of N for occurrences of u in M is [N/u]M . We therefore write
the reduction rule as

(�u.M)N �! [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term. Again, this
computational reduction directly relates to the logical reduction from the
local soundness using the substitution notation for the right-hand side:

u : A
u

...
M : B

�u.M : A�B
�Iu

N : A

(�u.M)N : B
�E

�! [N/u]M

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

case l ·M (l · u ) N | r · w ) P ) �! [M/u]N
case r ·M (l · u ) N | r · w ) P ) �! [M/w]P

The analogy with the logical reduction again works, for example:

M : A

l ·M : A _B
_I1

u : A
u

...
N : C

w : B
w

...
P : C

case l ·M (l · u ) N | r · w ) P ) : C
_Eu,w

�! [M/u]N

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood. There is no computation rule and we will not
try to evaluate case M ( ).

This concludes the definition of the reduction judgment. Observe that
the construction principle for the (computational) reductions is to investigate
what happens when a destructor is applied to a corresponding constructor.
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This is in correspondence with how (logical) reductions for local soundness
consider what happens when an elimination rule is used in succession on
the output of an introduction rule (when reading proofs top to bottom).

9 Summary of Proof Terms

Judgments.

M : A M is a proof term for proposition A, see Figure 2
M �! M 0 M reduces to M 0, see Figure 3

10 Summary of the Curry-Howard Correspondence

The Curry-Howard correspondence we have elaborated in this lecture has
three central components:

• Propositions are interpreted as types

• Proofs are interpreted as programs

• Proof reductions are interpreted as computation

This correspondence goes in both directions, but it does not capture every-
thing we have been using so far.

Proposition Type

A ^B ⌧ N �
A�B ⌧ ! �
A _B ⌧ + �
> >
? 0

? A⌦B
? 1

?? ⇢↵. ⌧

For A ⌦ B and 1 we obtain other forms of logical conjunction and truth
that hav the same introduction rules as A ^B and >, respectively, but other
elimination rules:

A⌦B

A
u

B
w

...
C

C
⌦Eu,w 1 C

C
1E
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Constructors Destructors

M : A N : B

h|M,N |i : A ^B
^I

M : A ^B

fst M : A
^E1

M : A ^B

snd M : B
^E2

h| |i : >
>I

no destructor for >

u : A
u

...
M : B

�u.M : A�B
�Iu

M : A�B N : A

M N : B
�E

M : A

M · l : A _B
_I1

N : B

N · r : A _B
_I2

M : A _B

u : A
u

...
N : C

w : B
w

...
P : C

case M (l · u ) N | r · w ) P ) : C
_Eu,w

no constructor for ?
M : ?

case M ( ) : C
?E

Figure 2: Proof term assignment for natural deduction
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fst h|M,N |i �! M
snd h|M,N |i �! N

no reduction for h| |i
(�u.M)N �! [N/u]M

case (l ·M) (l · u ) N | r · w ) P ) �! [M/u]N
case (r ·M) (l · u ) N | r · w ) P ) �! [M/w]P

no reduction for case M ( )

Figure 3: Proof term reductions

These are logically equivalent to existing connectives (A⌦B ⌘ A ^B and
1 ⌘ >), so they are not usually used in a treatment of intuitionistic logic, but
their operational interpretations are different (eager vs. lazy).

As for general recursive types ⇢↵. ⌧ , there aren’t any good propositional
analogues on the logical side in general. The overarching study of type
theory (encompassing both logic and its computational interpretation) treats
the so-called inductive and coinductive types as special cases. Similarly, the
fixed point construction fixx. e does not have a good logical analogue, only
special cases of it do.

11 Harmony

This is bonus material only touched upon in lecture. It elaborates on

how proof reduction arises in the study of logic.

In the verificationist definition of the logical connectives via their intro-
duction rules we have briefly justified the elimination rules. We now study
the balance between introduction and elimination rules more closely.

We elaborate on the verificationist point of view that logical connectives
are defined by their introduction rules. We show that for intuitionistic
logic as presented so far, the elimination rules are in harmony with the
introduction rules in the sense that they are neither too strong nor too weak.
We demonstrate this via local reductions and expansions, respectively.

In order to show that introduction and elimination rules are in harmony
we establish two properties: local soundness and local completeness.
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Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of an elimination than one
that first introduces and then eliminates the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.
Local completeness shows that the elimination rules are not too weak: there
is always a way to apply elimination rules so that we can reconstitute a
proof of the original proposition from the results by applying introduction
rules. This is witnessed by a local expansion of an arbitrary given derivation
into one that introduces the primary connective.

Connectives whose introduction and elimination rules are in harmony in
the sense that they are locally sound and complete are properly defined from
the verificationist perspective. If not, the proposed connective should be
viewed with suspicion. Another criterion we would like to apply uniformly
is that both introduction and elimination rules do not refer to other propo-
sitional constants or connectives (besides the one we are trying to define),
which could create a dangerous dependency of the various connectives
on each other. As we present correct definitions we will occasionally also
give some counterexamples to illustrate the consequences of violating the
principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the notation

D
A true

=)R
D0

A true

for the local reduction of a deduction D to another deduction D0 of the same
judgment A true. In fact, =)R can itself be a higher level judgment relating
two proofs, D and D0, although we will not directly exploit this point of
view. Similarly,

D
A true

=)E
D0

A true

is the notation of the local expansion of D to D0.

Conjunction. We start with local soundness, i.e., locally reducing an elim-
ination of a conjunction that was just introduced. Since there are two elimi-
nation rules and one introduction, we have two cases to consider, because
there are two different elimination rules ^E1 and ^E2 that could follow the
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^I introduction rule. In either case, we can easily reduce.

D
A true

E
B true

A ^B true
^I

A true
^E1 =)R

D
A true

D
A true

E
B true

A ^B true
^I

B true
^E2 =)R

E
B true

These two reductions justify that, after we just proved a conjunction A ^B
to be true by the introduction rule ^I from a proof D of A true and a proof
E of B true, the only thing we can get back out by the elimination rules is
something that we have put into the proof of A ^ B true. This makes ^E1

and ^E2 locally sound, because the only thing we get out is A true which
already has the direct proof D as well as B true which has the direct proof E .
The above two reductions make ^E1 and ^E2 locally sound.

Local completeness establishes that we are not losing information from
the elimination rules. Local completeness requires us to apply eliminations
to an arbitrary proof of A ^B true in such a way that we can reconstitute a
proof of A ^B from the results.

D
A ^B true

=)E

D
A ^B true

A true
^E1

D
A ^B true

B true
^E2

A ^B true
^I

This local expansion shows that, collectively, the elimination rules ^E1 and
^E2 extract all information from the judgment A ^ B true that is needed
to reprove A ^ B true with the introduction rule ^I . Remember that the
hypothesis A ^B true, once available, can be used multiple times, which is
very apparent in the local expansion, because the proof D of A ^B true can
simply be repeated on the left and on the right premise.

As an example where local completeness fails, consider the case where
we “forget” the second/right elimination rule ^E2 for conjunction. The
remaining rule is still locally sound, because it proves something that was
put into the proof of A ^B true, but not locally complete because we cannot
extract a proof of B from the assumption A ^ B. Now, for example, we
cannot prove (A ^B)� (B ^A) even though this should clearly be true.
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Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we can
only substitute for assumptions that are not discharged in the subproof we
are considering. The substitution principle then reads as follows:

If

A true
u

E
B true

is a hypothetical proof of B true under the undischarged hypoth-
esis A true labelled u, and

D
A true

is a proof of A true then

D
A true

u

E
B true

is our notation for substituting D for all uses of the hypothesis
labelled u in E . This deduction, also sometime written as [D/u]E
no longer depends on u.

Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

A true
u

E
B true

A�B true
�Iu D

A true

B true
�E =)R

D
A true

u

E
B true

The conditions on the substitution operation is satisfied, because u is intro-
duced at the �Iu inference and therefore not discharged in E .
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Local completeness is witnessed by the following expansion.

D
A�B true

=)E

D
A�B true A true

u

B true
�E

A�B true
�Iu

Here u must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hypothe-
ses. Also, in order to show local soundness we have two possibilities for the
introduction rule, in both situations followed by the only elimination rule.

D
A true

A _B true
_IL

A true
u

E
C true

B true
w

F
C true

C true
_Eu,w

=)R

D
A true

u

E
C true

D
B true

A _B true
_IR

A true
u

E
C true

B true
w

F
C true

C true
_Eu,w

=)R

D
B true

w

F
C true

An example of a rule that would not be locally sound is

A _B true

A true
_E1?

and, indeed, we would not be able to reduce

B true

A _B true
_IR

A true
_E1?

In fact we can now derive a contradiction from no assumption, which means
the whole system is incorrect.

> true
>I

? _> true
_IR

? true
_E1?
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Local completeness of disjunction distinguishes cases on the known
A _B true, using A _B true as the conclusion.

D
A _B true

=)E

D
A _B true

A true
u

A _B true
_IL

B true
w

A _B true
_IR

A _B true
_Eu,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to the notation of natural deduction:
the above represents the step from using the knowledge of A _B true and
eliminating it to obtain the hypotheses A true and B true in the two cases.

Truth. The local constant > has only an introduction rule, but no elimina-
tion rule. Consequently, there are no cases to check for local soundness: any
introduction followed by any elimination can be reduced, because > has no
elimination rules.

However, local completeness still yields a local expansion: Any proof of
> true can be trivially converted to one by >I .

D
> true

=)E > true
>I

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of ? true so that
we can reintroduce a proof of ? true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
? true

=)E

D
? true

? true
?E

Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A�? which is often
abbreviated as ¬A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.
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Exercises

Exercise 1 One proposition is more general than another if we can instantiate
the propositional variables in the first to obtain the second. For example,
A� (B�A) is more general than A� (?�A) (with [?/B]), (C ^D)� (B�
(C ^D)) (with [C ^D/A], but not more general than C � (D � E).

For each of the following proof terms, give the most general proposition
proved by it. (We are justified in saying “the most general” because the
most general proposition is unique up to the names of the propositional
variables.)

1. �u.�w.�k. w (u k)

2. �w. h(�u.w (` · u)), (�k. w (r · k))i

3. �x. (fstx) (sndx) (sndx)

4. �x.�y.�z. (x z) (y z)

Exercise 2 Write out a proof term for each of the following propositions. As
you know from this lecture, this is the same as writing a program of the
translated type in our program language without the use of fixed points.

1. (A ^ (A�?))�B

2. (A _ (A�?))� (((A�?)�?)�A)
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Lecture Notes on
Parametricity

15-814: Types and Programming Languages
Frank Pfenning

Lecture 16
Tuesday, October 27, 2020

1 Introduction

Disclaimer: The material in this lecture is a redux of presenta-
tions by Reynolds [Rey83], Wadler [Wad89], and Harper [Har16,
Chapter 48]. The quoted theorems have not been checked against
the details of our presentation of the inference rules and opera-
tional semantics.

As discussed in the previous lecture, parametric polymorphism is the
idea that a function of type 8↵. ⌧ will “behave the same” on all types � that
might be used for ↵. This has far-reaching consequences, in particular for
modularity and data abstraction. As we will see in the next lecture, if a client
to a library that hides an implementation type is parametric in this type, then
the library implementer or maintainer has the opportunity to replace the
implementation with a different one without risk of breaking the client code.

The informal idea that a function behaves parametrically in a type vari-
able ↵ is surprisingly difficult to capture technically. Reynolds [Rey83] real-
ized that it must be done relationally. For example, a function f : 8↵.↵! ↵
is parametric if for any two types ⌧ and �, and any relation between values
of type ⌧ and �, if we pass f related arguments it will return related results.
As an example, let’s consider some (unknown) function

· ` f : 8↵.↵! ↵! ↵

and assume it parametric in its type argument. We have

f [bool] : bool ! bool ! bool

f [nat] : nat ! nat ! nat
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Now consider a relation R such that false R 0 and true R n for n > 0. If

f [bool] false true 7!⇤
false

then it must also be the case that, for example,

f [nat] 0 17 7!⇤ 0

On the other hand, from the indicated behavior and relation we cannot
immediately make a statement about

f [nat] 42 0

But we can pick a different relation! Let false S 42 and true S 0 (and no other
values are related). From the relation S and parametricity we conclude

f [nat] 42 0 7!⇤ 42

We can see that parametricity is quite powerful, since we can tell a lot about
the behavior of f without knowing its definition

What Reynolds showed is that in a polymorphic �-calculus with prod-
ucts and Booleans, all expressions are parametric in this sense.

We begin by recalling extensional equality and then a new form of
equality based on the idea of parametricity called logical equality.

2 Extensional Equality

In Lecture 8 we defined an extensional equality between expressions. We
repeat it here, with a few additional cases. First, expressions are simply
evaluated to values that are then compared with a more specialized relation.

Expressions: e ⇡ e0 : ⌧ iff e 7!⇤ v, e0 7!⇤ v0 with v, v0 values, and v ⇠ v0 : ⌧
or both e and e0 diverge.

For positive types (eager pairs, sums, unit) we compare the structure of
the values (which are observable), while for negative types (functions, lazy
pairs) we apply the destructor and then compare the results.

Functions: v ⇠ v0 : ⌧1 ! ⌧2 iff for all v1 : ⌧1 we have v v1 ⇡ v0 v1 : ⌧2.

Pairs: v ⇠ v0 : ⌧1 ⇥ ⌧2 iff v = hv1, v2i, v0 = hv01, v02i and v1 ⇠ v01 : ⌧1 and
v2 ⇠ v02 : ⌧2.
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Units: v ⇠ v0 : 1 iff v = h i and v0 = h i (which is always the case, by the
canonical forms theorem).

Sums: v ⇠ v0 :
P

i2I(i : ⌧i) iff v = k · vk and v0 = k · v0k and vk ⇠ v0k : ⌧k for
some k 2 I .

Lazy Pair: v ⇠ v0 : ⌧1 N ⌧2 iff fst v ⇡ fst v0 : ⌧1 and snd v ⇡ snd v0 : ⌧2

We didn’t state this explicitly, but these can be extended to polymorphic and
recursive types, since of recursive types as positive and universal quantifica-
tion as negative.

Universal Quantification: v ⇠ v0 : 8↵. ⌧ iff for all closed � we have v [�] ⇡
v0[�] : [�/↵]⌧ .

Recursion: v ⇠ v0 : ⇢↵. ⌧ iff v = fold v1 and v0 = fold v01 and v1 ⇠ v01 :
[⇢↵. ⌧/↵]⌧ .

These last two cases are different from the earlier ones in that the types do
not get smaller, something that will occupy us shortly. Also, it seems at least
possible we may get into a chain of reasoning

v ⇠ v0 : 8↵. ⌧ ! ⌧ iff . . . iff v ⇠ v0 : 8↵. ⌧ ! ⌧

so the equality may somehow not be well-defined.

3 Logical Equality

The notion of extensional equality (and the underlying Kleene equality) are
almost sufficient, but it is insufficient when we come to parametricity. The
problem is that we want to compare expressions not at the same, but at
related types. This means, for example, that in comparing e and e0 and type
8↵. ⌧ we cannot apply e and e0 to the exact same type �. Instead, we must
apply them to related types. This in turn means that the two expressions we
are comparing may not have the same type but related types. The notion
of equality we derive from this is called logical equality because it is based
on logical relations [Sta85], one of the many connections between logic and
computation. We write

e ⇡ e0 2 J⌧K

if the expressions e and e0 stand in the relation designated by ⌧ . This is a
slight abuse of notation because, as we will see, ⌧ can be more than just a
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type. Also, we no longer require that e and e0 should have type ⌧ . For the
reason explained above, they may not have the same type. Furthermore,
they may not even be well-typed anymore which allows a richer set of
applications for logical equality. We also have a second relation, designated
by [⌧ ] that applies only to values. We write v ⇠ v0 2 [⌧ ] if the values v and v0

are related by [⌧ ]. We define

Expressions: e ⇡ e0 2 J⌧K iff e 7!⇤ v and e0 7!⇤ v0 and v ⇠ v0 2 [⌧ ].

We assume here, to keep the development simple, that all expressions termi-
nate. In fact, logical relations can be used to prove exactly that. The clauses
for the positive types remain essentially the same as for extensional equality,
where we restrict recursive types to be purely positive.

Pairs: v ⇠ v0 2 [⌧1 ⇥ ⌧2] iff v = hv1, v2i and v0 = hv01, v02i for some v1, v2, v01,
v02 and v1 = v01 2 [⌧1] and v2 = v02 2 [⌧2].

Unit: v ⇠ v0 2 [1] iff v = h i = v0.

Sums: v ⇠ v0 2 [
P

i2I(i : ⌧i)] iff v = k · vk and v0 = k · v0k for some k, vk and
v0k with vk = v0k 2 [⌧k].

Recursion: v ⇠ v0 2 [⇢↵+. ⌧+] iff v = fold v1 and v0 = fold v01 and v1 = v01 2
[[⇢↵+. ⌧+/↵+]⌧+].

To be explicit, we define the purely positive types as

⌧+ ::= ⌧+1 ⇥ ⌧+2 | 1 |
X

i2I
(i : ⌧+i ) | ⇢↵+. ⌧+ | ↵+

Even though the type becomes larger in the last clause, the definition is not
circular because the values we are comparing get smaller. In fact, we can
prove that v ⇠ v0 2 [⌧+] iff v = v0. So the clauses for positive types are
mostly useful if negative types are embedded in them.

The case for lazy pairs mirrors what we had before, using the destructors.

Lazy Pairs: v ⇠ v0 2 [⌧1N⌧2] iff fst v ⇡ fst v0 2 J⌧1K and snd v ⇡ snd v0 2 J⌧2K

In some circumstances we can use an equivalent formulation where we
require v and v0 to be a lazy pairs of two related expressions.

The definition becomes different when we come to universal quantifica-
tion, where we need to be careful to (a) avoid circularity in the definition,
and (b) capture the idea behind parametricity. We write R : � $ �0 for a
relation between values v : � and v0 : �0, and v R v0 if R relates v and v0. In
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some situations when we would like to reason about parametricity using
logical relations, we may need to put some conditions on R, but here we
think of it as an arbitrary relation on values. We then define

Universal Quantification: v ⇠ v0 2 [8↵. ⌧ ] iff for all closed types � and �0

and relations R : � $ �0 we have v[�] ⇡ v0[�0] 2 J[R/↵]⌧K

(R) v ⇠ v0 2 [R] iff v R v0.

The second clause here is a new base case in the definition of [⌧ ], in addition
to the type 1. It is needed because we substitute an arbitrary relation R for
the type variable ↵ in the clause for universal quantification. So when we
encounter R we just use it to compare v and v0.

We have taken a big conceptual step, because what we write as type ⌧
actually now contains relations instead of type variables, as well as ordinary
type constructors.

For functions, we apply them to related arguments and check that their
results are again related.

Functions: v ⇠ v0 2 [⌧1 ! ⌧2] iff for all v1 ⇠ v01 2 [⌧1] we have v v1 ⇡ v0 v01 2
J⌧2K

The quantification structure should make it clear that logical equality in
general is difficult to establish. It requires a lot: for two arbitrary types and
an arbitrary relation between values, we have to establish properties of e
and e0. It is an instructive exercise to check that

⇤↵.�x. x ⇠ ⇤↵.�x. x 2 [8↵.↵! ↵]

To check: ⇤↵.�x. x ⇠ ⇤↵.�x. x 2 [8↵.↵! ↵]
This holds if (⇤↵.�x. x) [�] ⇡ (⇤↵.�x. x)�0 2 JR!RK

for arbitrary �, �0 and R : � $ �0

This holds if �x. x ⇠ �x. x 2 [R!R]
This holds if (�x. x) v1 ⇡ (�x. x) v01 2 JRK for arbitrary v1 ⇠ v01 2 [R]
This holds if v1 ⇠ v01 2 [R], which is true by assumption

There is nothing wrong with this proof, but let’s turn this reasoning around
and present it in the “forward” direction, just to see it in a different form.

Let �, �0, R : � $ �0 be arbitrary Assumption
v1 R v01 for some arbitrary v1 and v01 Assumption
v1 ⇠ v01 2 [R] By defn. of ⇠ at [R]
(�x. x) v1 ⇡ (�x. x) v01 2 JRK By defn. of ⇡ at JRK
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�x. x ⇠ �x. x 2 [R!R] By defn. of ⇠ at [R!R]
since v1 and v01 were arbitrary

(⇤↵.�x. x) [�] ⇡ (⇤↵.�x. x) [�0] 2 JR!RK By defn. of ⇡ at JR!RK
⇤↵.�x. x ⇠ ⇤↵.�x. x By defn. of ⇠ at [8↵.↵! ↵]

since �, �0, and R were arbitrary

Conversely, we can imagine that knowing that two expressions are para-
metrically equal is very powerful, because we can instantiate this with
arbitrary types � and �0 and relations between them. The parametricity theo-

rem now states that all well-typed expressions are related to themselves. This
property holds in a language without general recursive types and general
fixed point expressions.

Theorem 1 (Parametricity [Rey83]) If · ; · ` e : ⌧ then e ⇡ e 2 J⌧K

We will not go into the proof of this theorem, but just explore its con-
sequences. Besides the original paper, there are a number of proofs in the
literature including in the textbook [Har16, Chapter 48] in a language and
formalization that’s quite similar to ours. We do not go into detail under
which conditions it might be restored in the presence of recursive types and
fixed point expressions (see, for example, Ahmed [Ahm06]).

4 Some Useful Properties

In a couple of places we may use the following properties, which follow
directly from small-step determinism (sequentiality) and the definition of
J⌧K.

(Closure under Expansion) If e ⇡ e0 2 J⌧K and e0 7!⇤ e and e00 7!⇤ e0 then
e0 ⇡ e00 2 J⌧K.

(Closure under Reduction) If e ⇡ e0 2 J⌧K and e 7!⇤ e0 and e0 7!⇤ e00 then
e0 ⇡ e00 2 J⌧K.

Also, the call-by-value strategy entails the following properties for reasoning
about logical equality.

(Closure under Application) If e1 ⇡ e01 2 J⌧2 ! ⌧1K and e2 ⇡ e02 2 J⌧2K then
e1 e2 ⇡ e01 e

0
2 2 J⌧1K.

(Closure under Type Application) If e ⇡ e0 2 J8↵. ⌧K and R : � $ �0 then
e[�] ⇡ e0[�0] 2 J[R/↵]⌧K.
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5 Exploiting Parametricity

Parametricity allows us to deduce information about functions knowing
only their (polymorphic) types. For example, with only terminating func-
tions, the type

f : 8↵.↵! ↵

implies that f behaves like the identity function! We express this first by
proving

f [�0] v0 7!⇤ v0 for all types �0 and values v0 : �0

Later, we prove this property in a second form, namely that f is logically
equivalent to the polymorphic identity.

For simplicity, assume f is a value. By the parametricity theorem, we
have

f ⇡ f 2 J8↵.↵! ↵K

By definition of J�K and the fact that f is a value, we obtain

f ⇠ f 2 [8↵.↵! ↵]

By definition of [8↵.�], this entails that

f [⌧ ] ⇡ f [⌧ 0] 2 JR!RK

for any ⌧ , ⌧ 0, and R : ⌧ $ ⌧ 0. In view of the property we want to show, we
pick ⌧ = ⌧ 0 = �0 and R0 such that v0 R0 v0. That is, R0 : �0 $ �0 relates
only v0 to itself and not any other values. This mean we have

f [�0] ⇡ f [�0] 2 JR0 !R0K

Next, by definition of J�K we find f [�0] 7!⇤ f�0 for some value f�0 and

f�0 ⇠ f�0 2 [R0 !R0]

By definition of [_ ! _] this means that for any value v such that v ⇠ v 2
[R0] we have f�0 v ⇡ f�0 v 2 [R0]. We pick v = v0 because v0 R0 v0 and
consequently also

v0 ⇠ v0 2 [R0]

Therefore we conclude

f�0 v0 ⇡ f�0 v0 2 JR0K
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Again, by definition of J�K we know that f�0 v0 7!⇤ w for some w with

w ⇠ w 2 [R0]

which in turn is the case if and only if

w R0 w

by the definition of [R0]. But R0 was chosen so it relates only v0 to v0, so we
conclude that

w = v0

Unwinding the chain of evaluations under our call-by-value strategy we
find

f [�0] v0 7!⇤ f�0 v0 7!⇤ w = v0

and our theorem is proved.
Out next goal is to show that any value f : 8↵.↵ ! ↵ is (logically)

equivalent to the identity function

f ⇠ ⇤↵.�x. x 2 [8↵.↵! ↵]

Let’s prove this. Unfortunately, the first few steps are the “difficult” direction
of the parametricity.

By definition, this means to show that

For every pair of types � and �0
and relation R : � $ �0

, we have

f [�] ⇡ (⇤↵.�x. x) [�0] 2 JR!RK

Now fix arbitrary �, �0 and R. Because (⇤↵.�x. x) [�0] 7! �x. x, our desired
conclusion holds if f [�] 7!⇤ f� for some value f� and

f� ⇠ �x. x 2 [R!R]

Applying the definition of [_ ! _], this is true if

For all v ⇠ v0 2 [R] we have f� v ⇡ (�x. x) v0 2 JRK

So assume v ⇠ v0 2 [R]. It remains to show that

f� v 7!⇤ w for some w with w ⇠ v0 2 [R].

By the previous argument (starting from the parametricity of f ) we know
that f� v 7!⇤ v, so determinism gives us w = v. Then w R v0 follows from
v R v0 and w = v.

Let’s summarize the reasoning.
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To show: f ⇠ ⇤↵.�x. x 2 [8↵.↵! ↵]
True, if f [�] ⇡ (⇤↵.�x. x) [�0] 2 JR!RK for arbitrary �, �0, R : � $ �0

True, if f� ⇠ �x. x 2 [R!R] for f [�] 7!⇤ f�
True, if f� v ⇡ (�x. x) v0 2 JR!RK for arbitrary v ⇠ v0 2 [R]
True, if w ⇠ v0 2 [R] for f� v 7!⇤ w
Holds, since f� v 7!⇤ v (by prior theorem) and determinism imply w = v

Similar proofs show, for example, that f : 8↵.↵! ↵! ↵ must be equal
to the first or second projection function. It is instructive to reason through
the details of such arguments. At the beginning of the next lecture we
explore additional consequences of parametricity, so-called “theorems for

free” [Wad89].

Exercises

Exercise 1 Prove that 8↵.↵! ↵ ⇠= 1. You may use the results of Section 3
and Section 5.

Exercise 2 Prove, using parametricity, that there cannot be a closed value
f : 8↵.↵.

Exercise 3 Prove, using parametricity, that if we have f : 8↵.↵!↵!↵ for a
value f then either f ⇠ ⇤↵.�x.�y. x 2 [8↵.↵!↵!↵] or f ⇠ ⇤↵.�x.�y. y 2
[8↵.↵! ↵! ↵].

Exercise 4 Prove, using parametricity, that 8↵.↵! ↵! ↵ ⇠= 2.
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 17
Thursday, October 29, 2020

1 Introduction

Since we have moved from the pure �-calculus to functional programming
languages we have added rich type constructs starting from functions,
disjoint sums, eager and lazy pairs, recursive types, and parametric poly-
morphism. The primary reasons often quoted for such a rich static type
system are discovery of errors before the program is ever executed and the
efficiency of avoiding tagging of runtime values. There is also the value of
the types as documentation and the programming discipline that follows the
prescription of types. Perhaps more important than all of these is the strong
guarantees of data abstraction that the type system affords that are sadly
missing from many other languages. Indeed, this was one of the original
motivation in the development of ML (which stands for MetaLanguage)
by Milner and his collaborators [GMM+78]. They were interested in de-
veloping a theorem prover and wanted to reduce its overall correctness to
the correctness of a trusted core. To this end they specified an abstract type

of theorem on which the only allowed operations are inference rules of the
underlying logic. The connection between abstract types and existential
types was made made Mitchell and Plotkin [MP88].

In this lecture we will first explore some more consequences of Reynolds’s
parametricity theorem that are used in modern compilers and then move
towards questions of data abstraction and modularity.
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2 Theorems for Free!

A slightly different style of application of parametricity is laid out in Philip
Wadler’s Theorems for Free! [Wad89]. Let’s see what we can derive from

f : 8↵.↵! ↵

for a value f . First, parametricity tells us

f ⇠ f 2 [8↵.↵! ↵]

This time, we pick types ⌧ and ⌧ 0 and a relation R which is in fact a function

R : ⌧ ! ⌧ 0. Then
f [⌧ ] ⇡ f [⌧ 0] 2 JR!RK

which means that f [⌧ ] 7!⇤ f⌧ and f [⌧ 0] 7!⇤ f⌧ 0 with

f⌧ ⇠ f⌧ 0 2 [R!R]

Now, for arbitrary values v : ⌧ and v0 : ⌧ 0, v R v0 actually means Rv 7!⇤ v0.
Using the definition of ⇠ at function type we get

f⌧ v ⇡ f⌧ 0 (Rv) 2 JRK

but this in turn means

R (f⌧ v) 7!⇤ w and f⌧ 0 (Rv) 7!⇤ w for some value w

Wadler summarizes this by stating that for any function R : ⌧ ! ⌧ 0,

R � f [⌧ ] = f [⌧ 0] �R

that is, f commutes with any function R. If ⌧ is non-empty and we have
v0 : ⌧ and choose ⌧ 0 = ⌧ and R = �x. v0 we obtain

R (f [⌧ ] v0) 7!⇤ v0
f [⌧ ] (Rv0) 7!⇤ f [⌧ ] v0

so we find f [⌧ ] v0 7!⇤ v0 which, since v0 was arbitrary, is another way of
saying that f behaves like the identity function.
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3 Parametricity on Lists

For more interesting examples, we extend the notion of logical equivalence
to lists. Since lists are inductively defined, we can call upon a general theory
to handle them, but since we haven’t discussed this theory we give the
specific definition. Here, we think of lists defined with

list ⌧ = ⇢↵. (nil : 1) + (cons : ⌧ ⇥ ↵)

even though type constructors like list haven’t been formally introduced into
our language. Then we use a shorthand notation for lists, that is, elaborate
the left-hand side into the right-hand side:

[e1, . . . , en] , fold cons · he1, . . . fold cons · hen, fold nil · h iii

We then extend the notion of logical equalities to values of list type induc-

tively over the structure of the list, which reduces the type of the relation
because each element has a smaller type.

e ⇠ e0 : list ⌧ iff e 7!⇤ [v1, . . . , vn], e0 7!⇤ [v01, . . . , v
0
n] and vi ⇠ v0i : ⌧

for all 1  i  n.

Then we have, for example, a polymorphic map function:

map : 8↵. 8�. (↵! �)! list ↵! list �
map = ⇤↵.⇤�. fix m.�f.�l.

case l ( foldnil · h i ) foldnil · h i
| fold cons · hx, l0i ) fold cons · hf x,m f l0 )

The map function then satisfies (for f : ⌧ ! ⌧ 0):

map [⌧ ] [⌧ 0] f [v1, . . . , vn] = [f v1, . . . , f vn]

where equality here is Kleene equality (both sides reduce to the same value).
The example(s) are easier to understand if we isolate the special case list R
for a relation R : ⌧ ! ⌧ 0 which is actually a function. In this case we obtain

v ⇡ v0 2 [list R] for an R : ⌧ ! ⌧ 0 iff (map [⌧ ] [⌧ 0]R) v = v0.

Returning to examples, what can the type tell us about a function

f : 8↵. list ↵! ↵ list ↵ ?

If the function is parametric, it should not be able to examine the list ele-
ments, or create new ones. However, it should be able to drop elements,
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duplicate elements, or rearrange them. We will try to capture this equation-
ally, just following our nose in using parametricity to see what we end up
at.

We start with

f ⇠ f 2 [8↵. list ↵! list ↵] by parametricity.

Now let R : ⌧ ! ⌧ 0 be a function. Then f [⌧ ] 7!⇤ f⌧ , f [⌧ 0] 7!⇤ f⌧ 0 , and

f⌧ ⇠ f⌧ 0 2 [list R! list R] by definition of ⇡.

Using the definition of ⇠ on function types, we obtain

For any values l : list ⌧ and l0 : list ⌧ 0 with l (R list) l0 we have

f⌧ l (R list) f⌧ 0 l0

By the remark on the interpretation of R list when R is a function, this
becomes

If (map [⌧ ] [⌧ 0]R) l = l0 then (map [⌧ ] [⌧ 0]R) (f l) = f l0

or, equivalently,

(map [⌧ ] [⌧ 0]R) (f [⌧ ] l) = f [⌧ 0] ((map [⌧ ] [⌧ 0]R) l).

In short, f commutes with map R. This means we can either map R over the
list and then apply f to the result, or we can apply f first and then map R
over the result. This implies that f could not, say, make up a new element v0
not in l. Such an element would occur in the list returned by the right-hand
side, but would occur as Rv0 on the left-hand side. So if we have a type with
more than one element we can choose R so that Rv0 6= v0 (like a constant
function) and the two sides would be different, contradicting the equality
we derived.

We can use this equation of improve efficiency of code. For example,
if we know that f might reduce the number of elements in the list (for
example, skipping every other element), then mapping R over the list after
the elements have been eliminated is more efficient than the other way
around. Conversely, if f may duplicate some elements then it would be
more efficient to map R over the list first and then apply f . The equality we
derived from parametricity allows this kind of optimization.

We have, however, to be careful when nonterminating functions may
be involved. For example, if R diverges on an element v0 then the two
sides may not be equal. For example, f might drop v0 from the list l so the
right-hand side would diverge while the left-hand side would have a value.
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Here are two other similar results provided by Wadler [Wad89].

f : 8↵. (↵ list) list! ↵ list
(map [⌧ ] [⌧ 0]R) (f [⌧ ] l) = f [⌧ 0] ((map [list ⌧ ] [list ⌧ 0] (map [⌧ ] [⌧ 0]R)) l)

f : 8↵. (↵! bool)! ↵ list! ↵ list
(map [⌧ ] [⌧ 0]R) (f [⌧ ] (�x. p (Rx)) l) = f [⌧ 0] p ((map [⌧ ] [⌧ 0]R) l)

These theorems do not quite come “for free”, but they are fairly straightfor-
ward consequences of parametricity, keeping in mind the requirement of
termination.

4 Signatures and Structures

Data abstraction in today’s programming languages is usually enforced
at the level of modules (if it is enforced at all). As a running example we
consider a simple module providing an implementation of a counter with
constant new and functions inc and dec to increment and decrement the
counter. We will consider two implementations and their relationship. One
is using numbers in unary form (type nat) and numbers in binary form (type
bin), and we will eventually prove that they are logically equivalent. We are
making up some syntax (loosely based on ML) to specify interfaces between
a library and its client.

Below we name CTR as the signature that describes the interface of a
module.

CTR = {
type ctr

new : ctr

inc : ctr ! ctr

dec : ctr ! 1 + ctr

}

The value new will be a counter with initial value 0. The decrement function
dec returns an optional counter with the new value, where we consider the
predecessor of 0 to be undefined (returning l · h i). This provides the only
means for the client to observe the value of a counter. The implementations
are straightforward so we elide them for now, and just assume we have type
nat and bin and suitable functions on them.
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NatCtr : CTR = {
type ctr = nat

new = zero

inc = succ

dec = pred

}

An interesting aspect of this definition is that, for example, zero : nat while
the interface specifies new : ctr. But this is okay because the type ctr is in
fact implemented by nat in this version. Next, we show the implementation
using numbers in binary representation. This time, we define some of the
functions directly in the module, assuming e : bin represents 0, and we have
suitable functions plus1 and minus1 on binary numbers already defined.

BinCtr : CTR = {
type ctr = nat

new = e

inc = plus1

dec = minus1

}

Now what does a client look like? Assume it has an implemention C : CTR.
It can then “open” or “import” this implementation to use its components,
but it will not have any knowledge about the type of the implementation.
For example, we would write

open C : CTR

isZero : ctr ! bool

isZero = �x. case dec x ( l · h i ) true

| r · _ ) false )

but not

open C : CTR

isZero : ctr ! bool

isZero = �n. case (unfold n) ( zero · h i ) true

| succ · _ ) false )

because the latter supposes that the library C : CTR implements the type ctr

by nat, which it may not.
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5 Formalizing Abstract Types

We will write a signature such as

CTR = {
type ctr

new : ctr

inc : ctr ! ctr

dec : ctr ! 1 + ctr

}

in abstract form as

9↵. ↵|{z}
new

⇥ (↵! ↵)| {z }
inc

⇥ (↵! 1 + ↵)| {z }
dec

where the name annotations are just explanatory and not part of the syntax.
Note that ↵ stands for ctr which is bound here by the existential quantifier.

Now what should an expression

e : 9↵.↵⇥ (↵! ↵)⇥ (↵! 1 + ↵)

look like? It should provide a concrete implementation type (such as nat or
bin) for ↵, as well as an implementation of the three functions. We obtain
this with the following rule

� ` � type � ` e : [�/↵]⌧

� ` h�, ei : 9↵. ⌧
tp/exists

Besides checking that � is indeed a type with respect to all the type variables
declared in �, the crucial aspect of this rule is that the implementation e is at
type [�/↵]⌧ .

For example, to check that new, inc, and dec are well-typed we substitute
the implementation type for ↵ (namely nat in one case and bin in the other
case) before we proceed to check the definitions.

The pair h�, ei is sometimes referred to as a package, which is opened up
by the destructor. This destructor is often called open, but for uniformity
with all analogous cases, and to support general pattern matching, we’ll
write is as a case.

Types ⌧ ::= . . . | 9↵. ⌧
Expressions e ::= . . . | h�, ei | case e (h↵, xi ) e0)
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The elimination form provides a new name ↵ for the implementation types
and a new variable x for the (eager) pair making up the implementations.

� ` e : 9↵. ⌧
(↵ 62 dom(�) [ FTV(�) [ FTV(⌧ 0))
�,↵ type, x : ⌧ ` e0 : ⌧ 0

� ` case e (h↵, xi ) e0) : ⌧ 0
tp/casee

The fact that the type ↵ must be new is explicit here in the conditions that
it does not already appear in � or ⌧ 0. Such a condition is often left implicit,
relying on the well-formedness presuppositions of the judgments. For
example, the presupposition that � may not contain any repeated variables
means that if we happened to have used the name ↵ before then we can
just rename it and then apply the rule. It is crucial for data abstraction
that this variable ↵ is new because we cannot and should not be able to
assume anything about what ↵ might stand for, except the operations that
are exposed in ⌧ and are accessible via the name x. Among other things, ↵
may not appear in ⌧ 0.

To be a little more explicit about this (because it is critical here), whenever
we write � ` e : ⌧ we make the following presuppositions:

1. All the variables and type variables in � are distinct.

2. � ctx

3. � ` ⌧ type

where the validity of context is defined by the following rules:

(·) ctx
ctx/emp

� ctx

(�,↵ type) ctx
ctx/tpvar

� ctx � ` ⌧ type

(�, x : ⌧) ctx
ctx/var

With these presuppositions the condition on ↵ in the tp/casee rule is
automatically satisfied. Whenever we write a rule we assume this presup-
positions holds for the conclusion and we have to make sure they hold for
all the premises. Let’s look at case/exists again in this light.

1. We assume all variables in � are distinct, which also means they are
distinct in the first premise. In the second premise they are distinct
because that’s how we interpret �,↵ type, x : ⌧ , which may include an
implicit renaming of the type variable ↵ or the variable x bound in the
the expression h↵, xi ) e0.
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2. By presupposition (from the conclusion), � ctx, which means that there
are no free type variables in it, but variables declared in it can occur to
their right. But what about ⌧? Actually, it is okay (and in fact mostly
needed) for ↵ to appear in ⌧ .

3. By presupposition (from the conclusion), � ` ⌧ 0 type. This covers
the second premise. Often, this rule is given with an explicit premise
� ` ⌧ 0 type to emphasize ⌧ 0 must be independent of ↵. Indeed, the
scope of ↵ is the type of x and the expression e0.

We also see that the client e0 is parametric in ↵, which means that it cannot
depend on what ↵ might actually be at runtime. It is this parametricity
that will allow us to swap one implementation out for another without
affecting the client as long as the two implementations are equivalent in an
appropriate sense.

The dynamics is straightforward and not very interesting.

v value

h�, vi value
val/exists

e 7! e0

h�, ei 7! h�, e0i
step/pack1

e0 7! e00

case e0 (h↵, xi ) e1) 7! case e00 (h↵, xi ) e1)
step/casee0

case h�, vi (h↵, xi ) e) 7! [�/↵, v/x]e
step/casee/pack

In a language with variadic sums and pattern matching, we would extend
the language of patterns.

Patterns p ::= x | hp1, p2i | h i | i · p | fold p | h↵, pi

The hypothetical open construct now corresponds a pattern match, with the
scope of the openend module extending to the end of the case expression.
For example, we can test an implementation of CTR by creating a fresh
counter and then verifying that incrementing it followed by a decrement has
a well-defined answer. In the definition of test we exploit general pattern
matching so an exception is raised if a decrement of zero was attempted.

test : CTR ! 1
test = �c. case c ( h↵, hnew, hinc, deciii )

case dec (inc new) ( r · _ ) h i ) )
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Note that the case opens the package (representing the module) and matches
against its components so it can refer to them in the body of the function.
The following two expressions will evaluate to unit (instead of raising an
exception) if the implementation is correct (to the very limited extent that is
tested here).

test NatCtr

test BinCtr
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15-814: Types and Programming Languages
Frank Pfenning

Lecture 18
Tuesday, November 3, 2020

1 Introduction

In this lecture we prove that we can replace the unary implementation of
counters with the binary one without breaking any clients (or vice versa).
This is a consequence of parametricity, and the definition of logical equality
we developed in the previous two lectures, extended to existential types.

2 Existential Types and Parametricity

We have said that the client of a module (expressed as having an existential
type) is parametric in the implementation type. Let’s recall the crucial rules.

� ` � type � ` e : [�/↵]⌧

� ` h�, ei : 9↵. ⌧
tp/exists

� ` e : 9↵. ⌧ �,↵ type, x : ⌧ ` e0 : ⌧ 0

� ` case e (h↵, xi ) e0) : ⌧ 0
tp/casee

The client here is e0 in the tp/casee rule. From typing judgment for e0 in the
second premise we can infer

�,↵ type, x : ⌧ ` e0 : ⌧ 0

�,↵ type ` �x. e0 : ⌧ ! ⌧ 0
tp/lam

� ` ⇤↵.�x. e0 : 8↵. ⌧ ! ⌧ 0
tp/tplam

to see that, indeed, �x. e0 is parametric in ↵ and therefore also e0.
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3 Logical Equality for Existential Types

We extend our definition of logical equivalence to handle the case of exis-
tential types. Following the previous pattern for parametric polymorphism,
we cannot talk about arbitrary instances of the existential type, but we must
instantiate it with a relation between the two given implementation types.

Recall from Lecture 16:

(8) v ⇠ v0 2 [8↵. ⌧ ] iff for all closed types � and �0 and relations R : � $ �0

we have v [�] ⇡ v0 [�0] 2 J[R/↵]⌧K

(R) v ⇠ v0 2 [R] iff v R v0.

We add

(9) v ⇠ v0 2 [9↵. ⌧ ] iff v = h�, v1i and v0 = h�0, v01i for some closed types
�, �0 and values v1, v01, and there is a relation R : � $ �0 such that
v1 ⇠ v01 2 [[R/↵]⌧ ].

In our example, we ask if

NatCtr ⇠ BinCtr 2 [CTR]

which unfolds into demonstrating that there is a relation R : nat $ bin such
that

hzero, hsucc, predii ⇠ he, hinc, decii 2 [R⇥ (R!R)⇥ (R! 1 +R)]

Since logical equality at type ⌧1 ⇥ ⌧2 just decomposes into logical equality at
the component types, this just decomposes into three properties we need to
check. The key step is to define the correct relation R.

For reference, the complete implementation can be found in exists.cbv.
In Listing 1 we show the implementation NatCtr and BinCtr in LAMBDA.
The concrete syntax for an existential type 9↵. ⌧ is ?a.tau, and a package
h�, ei is written as ([sigma],e). This notation means that, uniformly,
types occurring in expressions are enclosed in square brackets.

4 Defining a Relation Between Implementations

The relation R : nat $ bin we seek needs to relate natural numbers in
two different representations. It is convenient and general to define such
relations by using inference rules. In particular, this will allow us to prove
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1 decl pred : nat -> 1 + nat
2 defn pred = \n. case n of ( fold ’zero () => ’l ()
3 | fold ’succ m => ’r m )
4

5 decl dec : bin -> 1 + bin
6 defn dec = $dec. \x.
7 case x
8 of ( fold ’b0 y => case dec y % 2y-1 = 2(y-1)+1
9 of ( ’l () => ’l ()

10 | ’r z => ’r (b1 z) )
11 | fold ’b1 y => ’r (b0 y) % (2y+1)-1 = 2y
12 | fold ’e () => ’l () )
13

14 type CTR = ?a. a * (a -> a) * (a -> 1 + a)
15

16 decl NatCtr : CTR
17 defn NatCtr = ([nat], zero, succ, pred)
18

19 decl BinCtr : CTR
20 defn BinCtr = ([bin], e, inc, dec)

Listing 1: Binary counters as an abstract type

properties by rule induction. An alternative approach would be to define
such relations as functions, but because representations are often not unique
this is not quite as general.

Once we have made this decision, the relation could be based on the
structure of x : bin or on the structure of n : nat. The latter may run into
difficulties because each number actually corresponds to infinitely many
numbers in binary form: just add leading zeros that do not contribute to its
value. Therefore, we define it based on the binary representation. In order
to define it concisely, we use a representation function for (mathematical)
natural numbers k into our language of values defined by

0 = fold zero · h i
n+ 1 = fold succ · n

We also write binary number representations in compressed form with the
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least significant bit first:1

0x = fold b0 · x
1x = fold b1 · x
e = fold e · h i

Recall the ambiguity that e, 0e, 00e etc. all represent the natural number 0.
We then define:

0 R e
Re

k R x

2k R 0x
R0

k R x

2k + 1 R 1x
R1

As usual, we consider n R x to hold if and only if we can derive it using
these rules.

5 Verifying the Relation

Because our signature exposes three constants, we now have to check three
properties:

zero ⇠ e 2 [R]
succ ⇠ inc 2 [R!R]
pred ⇠ dec 2 [R! 1 +R]

We already have by definition that v ⇠ v0 2 [R] iff v R v0. For convenience,
we also define the notation e R e0 to stand for e ⇡ e0 2 JRK, which means
that e 7!⇤ v and e0 7!⇤ v0 with v R v0

Lemma 1 zero ⇠ e 2 [R].

Proof: Since 0 = zero and e = e this is just the contents of rule Re. ⇤

Lemma 2 succ ⇠ inc 2 [R!R].

Proof: By definition of logical equality, this is equivalent to showing

For all values n : nat and x : bin with n R x we have (succ n) R
(inc x).

1In lecture, we used the notation b0x, b1x and e to stand for the corresponding values,
but that is somewhat ambiguous since b0 and b1 were previously defined as function in our
language rather than as functions at the metalevel as we need here.
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Since R is defined inductively by a collection of inference rules, the natural
attempt is to prove this by rule induction on the given relation, namely
n R x.

Case: Rule

0 R e
Re

with n = 0 and x = e. We have to show that (succ 0) R (inc e)

succ 0 7!⇤ 1 By defn. of succ
inc e 7!⇤ 1e By defn. of inc
1 R 1e By rules R1 and Re

Case: Rule
k R y

2k R 0y
R0

where x = 0y and n = 2k. To prove is (succ 2k) R (inc 0y).

succ 2k 7!⇤ 2k + 1 By defn of succ
inc 0y 7!⇤ 1y By defn. of inc
k R y Premise in this case
2k + 1 R 1y By rule R1

Case: Rule
k R y

2k + 1 R 1y
R1

where n = 2k + 1 and x = 1y. To show: (succ 2k + 1) R (inc 1y).

succ 2k + 1 7!⇤ 2k + 2 By defn. of succ
inc 1y 7!⇤ b0 (inc y) 7!⇤ 0z where inc y 7!⇤ z By defn. of inc and b0
Remains to show: 2k + 2 R 0z
k R y Premise in this case
(succ k) R (inc y) By ind. hyp.
k + 1 R z By defn. of R and succ
2(k + 1) R 0z By rule R0

2k + 2 R 0z By arithmetic

⇤
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In order to prove the relation between the implementation of the prede-
cessor function we write out the interpretation of the type 1 +R.

v ⇠ v0 2 [1 +R] iff (v = l · h i and v0 = l · h i)
or (v = r · v1 and v0 = r · v01 and v1 R v01.

Lemma 3 pred ⇠ dec 2 [R! 1 +R]

Proof: By2 definition of logical equality, this is equivalent to showing

For all values n : nat and x : bin with n R x we have pred n ⇡
dec x 2 J1 +RK.

We break this down into two properties, based on n.

(i) For all 0 R x we have pred 0 ⇡ dec x 2 J(l : 1)K.

(ii) For all k + 1 R x we have pred k + 1 ⇡ dec x 2 J(r : R)K.

For part (i), we note that pred 0 7!⇤ l · h i, so all that remains to show is
that dec x 7!⇤ l · h i for all 0 R x. We prove this by rule induction on the
derivation of 0 R x.

Case(i):

0 R e
Re

where x = e. Then dec x = dec e 7!⇤ l · h i.

Case(i):

k R y

2k R 0y
R0

where x = 0y and 2k = 0 and therefore also k = 0. Then

dec 0y 7!⇤ case (dec y) (l · h i ) l · h i | r · z ) r · (b1 z)) By defn. of dec
dec y 7!⇤ l · h i By ind. hyp.
case (dec y) (l · h i ) l · h i | r · z ) r · (b1 z)) 7!⇤ l · h i

2We skipped this part of the proof in lecture.
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Case(i):

k R y

2k + 1 R 1y
R1

This case is impossible since 2k + 1 6= 0.

Now we come to Part (ii). We note that pred k + 1 7!⇤ r · k so what we have
to show is that

(ii)’ For all k + 1 R x we have dec x 7!⇤ r · y with k R y.

We prove this by rule induction on the derivation of k + 1 R x.
Case(ii):

0 R e
Re

is impossible since 0 6= k + 1.

Case(ii):

j R y

2j R 0y
R0

where k + 1 = 2j and x = 0y.

j = j0 + 1 for some j0 Since j > 0 by arithmetic
dec y 7!⇤ r · z with j0 R z By ind. hyp.
dec 0y 7!⇤ r · 1z By defn. of dec
2j0 + 1 R 1z By rule R1

k R 1z By arithmetic

Case(ii):

j R y

2j + 1 R 1y
R1

for k + 1 = 2j + 1 and x = 1y. Then

dec 1y 7!⇤ r · 0y By defn. of dec
j R y Premise in this case
2j R 0y By rule R0

k R 0y By arithmetic

⇤
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6 Concrete Types vs. Abstract Types

An interesting observation about the logical equivalence of the two imple-
mentation of counters is that, had we omitted the decrement operation from
the interface, then universal relation (n U x for all values n : nat and x : bin)
also allows us to prove equivalence. This is because without the decrement
we can create a counter and increment it, but can never observe any of its
properties.

This raises the question how we should more generally observe prop-
erties of elements of abstract type. There is no universal answer: different
applications or libraries require different choices. A particularly frequent
and useful technique is to endow abstract types with a view, realized by a
function called expose or out.

As an example, let’s reconsider the (concrete) type of binary numbers:

bin = (b0 : bin) + (b1 : bin) + (e : 1)

This concrete type allows clients to construct numbers with leading zeros,
which may be undesirable because it complicates certain algorithms (e.g.,
equality of binary numbers). In this case, one solution would be to split the
type bin into positive numbers pos and numbers in standard form std (with
no leading zeros), which we did in Lecture 11, Exercise 1. However, now all
client code has to be aware of these two types and use them appropriately.
Alternatively, we can create an abstract type providing the constructors in
the interface. to start with, we would have

BIN = 9↵. (↵! ↵) % b0
⇥(↵! ↵) % b1
⇥↵ % e
⇥ . . .

The implementation of these constructors can make sure that only numbers
with no leading zeros are ever created. But how do we observe a value of the
abstract type? The technique is to provide a function out : ↵! ⌧ where ⌧
is usually a sum that the client can pattern match against. Here we would
have

BIN = 9↵. (↵! ↵) % b0
⇥(↵! ↵) % b1
⇥↵ % e
⇥(↵! (b0 : ↵) + (b1 : ↵) + (e : 1)) % out
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The result out v where v is a value of the abstract type allows one level of
pattern matching. The value tagged by b0 or b1 is again of abstract type
and we must apply out again. If we want to allow multiple levels of pattern
matching we would need some special syntax to designate out as a view
with a corresponding pattern constructor, say, out�1. Then matching the
value v : ↵ against the pattern out�1 p will evaluate out v 7!⇤ w and match
w against p.

We show the implementation of this abstract type in LAMBDA. In this
example, the out function just has to unfold the recursive type to expose the
sum underneath.

1 type BIN = ?a. (a -> a) % b0 = \n. 2n
2 * (a -> a) % b1 = \n. 2n+1
3 * a % e = 0
4 * (a -> ((’b0 : a) + (’b1 : a) + (’e : 1))) % out
5

6 decl Bin : BIN
7 defn Bin = ([bin], \x. case x of ( fold ’e () => e
8 | _ => b0 x ),
9 \x. b1 x, e, \x. unfold x)

The only other interesting part of this is the constructor corresponding to
the tag b0 ensures that it never constructs 0e but returns e instead, thereby
making the representation unique.

7 Polymorphic Lists

In functional languages lists are usually represented by a so-called type
constructor list : type ! type. That is, for any type ⌧ , we would have

list ⌧ = ⇢�. (nil : 1) + (cons : ⌧ ⇥ �)

We have not introduced type constructors into our language, so we cannot
express this directly. But we can formulate it as an abstract type. Essen-
tially, the implementation is a function which takes an element type ⌧ as an
argument and returns in instance of an existential type for this particular ⌧ .

1 type LIST = !a. ?b. b % nil
2 * (a * b -> b) % cons x l
3 * (b -> (’nil : 1) + (’cons : a * b)) % out l

There is, however, a quirk with the implementation that often comes up
with abstract types. If we have an implementation of lists, for example
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1 decl List : LIST
2 defn List = /\a. ([$list. (’nil : 1) + (’cons : a * list)],
3 fold ’nil (),
4 \p. fold ’cons p,
5 \l. unfold l)

then two different uses of this, e.g., List [nat] and List [nat] are incompatible
because there is no way the type checker can know that the different abstract
types are actually equal. We summarize this sometimes by saying that
abstract types are generative because every time an implementation of an
abstract type is opened, a fresh type variable is generated to stand for the
implementation type.

This implementation of lists, by the way, is called a functor in languages
in the ML family, because it is a module-level function. We think of it this
way because it is a function that returns an abstract type when given a type.

8 The Upshot

Because the two implementations are logically equal we can replace one
implementation by the other without changing any client’s behavior. This is
because all clients are parametric, so their behavior does not depend on the
library’s implementation.

It may seem strange that this is possible because we have picked a
particular relation to make this proof work. Let us reexamine the tp/casee
rule:

� ` e : 9↵. ⌧ �,↵ type, x : ⌧ ` e0 : ⌧ 0

� ` case e (h↵, xi ) e0) : ⌧ 0
tp/casee

In the second premise we see that the client e0 is checked with a fresh type ↵
and x : ⌧ which may mention ↵. If we reify this into a function, we find

⇤↵.�x. e0 : 8↵. ⌧ ! ⌧ 0

where ⌧ 0 does not depend on ↵.
By Reynolds’s parametricity theorem we know that this function is

parametric. This can now be applied for any � and �0 and relation R :
� $ �0 to conclude that if v0 ⇠ v00 2 [[R/↵]⌧ ] then (⇤↵�x. e0)[�] v0 ⇡
(⇤↵.�x. e0)[�0] v00 2 J[R/↵]⌧ 0K. But ↵ does not occur in ⌧ 0, so this is just
saying that [�/↵, v0/x]e0 ⇡ [�0/↵, v00/x]e

0 2 J⌧ 0K. So the result of substituting
the two different implementations is equivalent.
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Exercises

Exercise 1 We can represent integers a as pairs hx, yi of natural numbers
where a = x� y. We call this the difference representation and call the repre-
sentation type diff.

nat = ⇢↵. (zero : 1) + (succ : alpha)
diff = nat ⇥ nat

In your answers below you may use constructors zero : nat and succ : nat!nat
to construct terms of type nat. If you need auxiliary functions on natural
numbers, you should define them.

1. Define a function nat2diff : nat! diff that, when given a representation
of the natural number n returns an integer representing n.

2. Define a constant d zero : diff representing the integer 0 as well as func-
tions dplus : diff! diff! diff and dminus : diff! diff! diff representing
addition and subtraction on integers, respectively.

3. Consider the type

ord = (lt : 1) + (eq : 1) + (gt : 1)

that represents the outcome of a comparison (lt = “less than”, eq =
“equal”, gt = “greater than”). Define a function dcompare : diff! diff!
ord to compare the two integer arguments. Again, you may use lt, eq
and gt as constructors.

Exercise 2 We consider an alternative signed representation of integers where

sign = (pos : nat) + (neg : nat)

where pos · x represents the integer x and neg · x represents the integer �x.
In your answers below you may use pos and neg as data constructors, to
construct elements of type sign. Define the following functions in analogy
with Exercise 1:

1. nat2sign : nat ! sign

2. s zero : sign

3. s plus : sign ! sign ! sign
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4. s minus : sign ! sign ! sign

5. s compare : sign ! sign ! ord

Exercise 3 In this exercise we pursue two different implementations of an
integer counter, which can become negative (unlike the natural number
counter in this lecture). The functions are simpler than the ones in Exercise 1
and Exercise 2 so that the logical equality argument is more manageable.
We specify a signature

INTCTR = {
type ictr
new : ictr
inc : ictr ! ictr
dec : ictr ! ictr
is0 : ictr ! bool

}

where new, inc, dec and is0 have their obvious specification with respect to
integers, generalizing the CTR type defined in the last lecture and used in
this one.

1. Write out the definition of INTCTR as an existential type.

2. Define the constants and functions d zero, d inc, d dec and d is0 for the
implementation where type ictr = diff from Exercise 1.

3. Define the constants and functions szero, s inc, s dec and s is0 for the
implementation where type ictr = sign from Exercise 2.

Now consider the two definitions

DiffCtr : INTCTR = hdiff, hd zero, d inc, d dec, d is0ii
SignCtr : INTCTR = hsign, hs zero, s inc, s dec, s is0ii

4. Prove that DiffCtr ⇠ SignCtr 2 [INTCTR] by defining a suitable rela-
tion R : diff $ sign and proving that

hd zero, d inc, d dec, d is0i ⇠ hs zero, s inc, s dec, s is0i
2 [R⇥ (R!R)⇥ (R!R)⇥ (R! bool)]
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Lecture Notes on
Shared Memory Concurrency

15-814: Types and Programming Languages
Frank Pfenning

Lecture 19
Thursday, November 5, 2020

1 Introduction

The main objective of this lecture is to start making the role of memory
explicit in a description of the dynamics of our programming language.
Towards that goal, we take several steps at the same time:

1. We introduce a translation from our source language of expressions to
an intermediate language of concurrent processes that act on (shared)
memory. The sequential semantics of our original language can be
recovered as a particular scheduling policy for concurrent processes.

2. We introduce a new collection of semantic objects that represent the
state of processes and the shared memory they operate on. The pre-
sentation is as a substructural operational semantics [Pfe04, PS09, CS09]

3. We introduce destination-passing style [CPWW02] as a particular style of
specification for the dynamics of programming languages that seems
to be particularly suitable for an explicit store.

We now start to develop the ideas in a piecemeal fashion. This lecture is
based on very recent work, at present under submission [PP20].

2 Representing the Store

Our typing judgment for expressions is

� ` e : ⌧
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By the time we actually evaluate e, all the variables declared in � will have
been replaced by values v (values, because we are in a call-by-value lan-
guage, with variables for fixed point expressions representing an exception
to that rule). Evaluation of closed expressions e proceeds as

e 7! e1 7! e2 7! · · · 7! v

where v (if the computation is finite) represents the final outcome of the
evaluation. A nice property of this formulation of the dynamics is that it
does not require any semantic artifacts: we stay entirely within the language
of expressions (which include values). The K Machine from Lecture 12
introduced continuations as a first dynamic artifact.

The main dynamic artifact we care about in this lecture is a representation
of the store or memory, terms we use interchangeably. In our formulation,
cells can hold only small values W (yet to be defined) and we write

cell c0 W0, cell c1 W1, . . . , cell cn Wn

where all ci are distinct. We read cell c W as “cell c contains W” or “the
memory at address c holds W”. We will shortly generalize this further.

As an example, before we actually see how these arise, let’s consider the
representation of a list. We define

list ↵ ⇠= (nil : 1) + (cons : ↵⇥ list ↵)

Then a list with two values v1 : ⌧ and v2 : ⌧ would be written as an expression

fold (cons · hv1, fold (cons · hv2, fold (nil · h i)i)i) : list ⌧

Our representation of this in memory at some initial address c0 would be

cell c8 h i
cell c7 (nil · c8),
cell c6 (fold c7),
cell c5 ha2, c6i,
cell c4 (cons · c5),
cell c3 (fold c4),
cell c2 ha1, c3i,
cell c1 (cons · c2),
cell c0 (fold c1)

Here, we assume a1 is the address of v1 in memory, and a2 the address of
v2. You can see a list of length n requires 3n + 3 cells. In a lower-level
representation this could presumably be optimized by compressing the
information.
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3 From Expressions to Processes

We translate expressions e to processes P . Instead of returning a value v, a
process P executes and writes the result of computation to a destination d
which is the address of a cell in memory. So we write the translation as

JeK d = P

which means that expression e translates to a process P that computes with
destination d. Given an expression

� ` e : ⌧

its translation P = JeK d will be typed as

� ` P :: (d : ⌧)

In this typing judgment we have made the destination d of the computation
explicit. But the reinterpretation does not end there: we also no longer
substitute values for the variables in �. Instead, we substitute addresses, so
the process P can read from memory at the addresses in � and must write
to the destination d (unless it does not terminate). We will also arrange
that after writing to destination d the process P will immediately terminate.
Explicitly:

c1 : ⌧1, . . . , cn : ⌧n| {z }
read from

` P :: (d : ⌧)| {z }
write to

Because at the moment we are only interested in modeling our pure func-
tional language and not arbitrary mutation of memory, we require that all
the ci and d are distinct.

For each process P that is executing we have a semantic object

proc d P

which means that P is executing with destination d. We do not make the
cells that P may read from explicit because it would introduce unnecessary
clutter.

4 Allocation and Spawn

Given the logic explained in the preceding sections, there is a single construct
in our language of processes that accomplishes two things: (a) it allocates a
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new cell in memory, and (b) it spawns a process whose job it is to write to
this cell. We may also have a single initial cell c0 to hold the outcome of the
overall computation. We write this as

Process P ::= x P ; Q | . . .

where the scope of x includes both P and Q. More specifically, a new
destination c is created, P is spawned with destination c, and Q can read
from c (once its value has been written. We formalize this as

C, proc d (x P ; Q) 7! C, proc c ([c/x]P ), proc d ([c/x]Q) (c fresh)

Here C represents the remaining configuration, which includes the represen-
tation of memory and other processes that may be executing. The freshly
allocated cell at address c is uninitialized to start with. It represents a point
of synchronization between P and Q, because Q can only read from it after
P has written to it. Except for this synchronization point, P and Q can now
evolve independently.

From a typing perspective, we can see that the type of two occurrences
of the cell x must match.

� ` P :: (x : ⌧) �, x : ⌧ ` Q :: (d : �)

� ` x P ; Q :: (d : �)
cut

This rule is called cut because of this name for the corresponding logical rule
in the sequent calculus

� ` A �, A ` C

� ` C
cut

where A acts as a lemma in the proof of C from �.
The configuration is not intrinsically ordered, so the process with des-

tination d can occur anywhere in a configuration. Nevertheless, we follow
a convention writing a configuration (or part of a configuration) so that
a cell c precedes all the processes that may read from c or other cells that
contain c. Because we do not have arbitrary mutation of store there cannot
be any cycles (although we have to carefully reconsider this point when we
consider fixed point expressions).

Since all of our rules only operate locally on a small part of the configu-
ration, we generally omit C to stand for the remainder of the configuration.
But we always have to remember that we remove the part of the configura-
tion matching the left-hand side of a transition rule and then we add in the
right-hand side.
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5 Copying

Before we get into the constructors and destructors for specific types in our
source language of expressions, let’s consider the translation of variables.
We write

JxK d = d x

The intuitive meaning of the process expression d x is that it copies the
contents of the cell at address x to address d. Thereby, this process has
written to its destination d and terminates.

cell c W, proc d (d c), 7! cell c W, cell d W

In this rule the cell c should have been written to already, and we just copy
its value (which is small) to d.

The typing rule just requires that c and d have the same type (otherwise
copying would violate type preservation).

�, c : ⌧ ` (d c) :: (d : ⌧)
id

From a logical perspective, it explains that the antecedent A entails the
succedent A in the sequent calculus, usually called the identity rule.

�, A ` A
id

6 The Unit Type

Recall the constructor and destructor for the unit type 1.

Expressions e ::= h i | case e (h i ) e0) | . . .

The unit element is already a small value, so it can be written directly to
memory. Our notation for this is d.h i.

Jh iK d = d.h i
proc d (d.h i) 7! cell d h i

� ` d.h i :: (d : 1)
1R
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The way we evaluate case e (h i ) e0) is to first evaluate e and then match
the resulting value against the pattern h i. Actually, we know by typing this
will be the only possibility.

Jcase e (h i ) e0)K d = x JeKx ;
case x (h i ) Je0K d)

Note here how the process executing JeKx will write to a fresh destination
c (substituted for x) and the case c destructor will read the value of c from
memory when it becomes available. We then continue with the evaluation
of e0 to fill the original destination d.

cell c h i, proc d (case c (h i ) P )) 7! cell c h i, proc d P

We see here that we need to replicate the cell c that we read on the right-hand
side of the rule because there may be other processes that may want to read
c. Because this is a frequent pattern, we mark cells that have a value as
persistent by writing !cell c W . It means this object, once created, persists
from then on. In particular, if it occurs on the left-hand side of a transition
rule it is not removed from the configuration. We now rewrite our rules with
this notation:

proc d (d.h i) 7! !cell d h i
!cell c h i, proc d (case c (h i ) P )) 7! proc d P

The typing rule for this case construct is straightforward.

c : 1 2 � � ` P :: (d : ⌧)

� ` case c (h i ) P ) :: (d : ⌧)
1L

We name these rules 1R (the type 1 occurring in the succedent) and 1L (the
type 1 occurring among the antecedents) according to the traditions of the
sequent calculus.

7 Eager Pairs

Eager pairs are another positive type and therefore quite analogous to the
unit type. To evaluate an eager pair he1, e2i we have to evaluate e1 and e2
and then form the pair of their values. The corresponding process Jhe1, e2iK d
allocates two new destinations, d1 and d2 and launches two new processes,
one to compute and write the value of e1 to d1 and the other to write the
value of e2 to d2. Without waiting for these two finish, we already can form
the pair hd1, d2i and write it to the original destination d.
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Jhe1, e2iK d = x1  Je1K d1 ;
x2  Je2K d2 ;
d.hx1, x2i

There is a lot of parallelism in this translation: not only can the translations
of e1 and e2 can proceed in parallel (without possibility of interference),
but any process waiting for a value in the cell d will be able to proceed
immediately, before either of these two finish. In the previously introduced
parallel pairs on the midterm the synchronization point is earlier, namely
when the pair of the values of e1 and e2 is formed.

Jcase e (hx1, x2i ) e0)K d = x JeKx ;
case x (hx1, x2i ) Je0K d)

In the rule just above we note that the occurrences of x1 and x2 in e0 will be
translated using the rule for variables.

The new process construct d.hc1, c2i simply writes the pair hc1, c2i to
destination d and case reads the pair from memory and matches it against
the pattern hx1, x2i.

proc c (c.hc1, c2i) 7! !cell c hc1, c2i
!cell c hc1, c2i, proc d (case c (hx1, x2i ) P )) 7! proc d ([c1/x1, c2/x2]P )

Typing rules generalize the unit types in interesting ways. We start with
d.hd1, d2i. This writes to d, which must therefore have type ⌧1 ⇥ ⌧2. It must
be able to read destinations d1 and d2 which must have types ⌧1 and ⌧2,
respectively.

c1 : ⌧1 2 � c2 : ⌧2 2 �

� ` d.hc1, c2i :: (d : ⌧1 ⇥ ⌧2)
⇥R0

We use the superscript 0 because this is a nonstandard rule—the usual rule of
the sequent calculus has 2 premises, while this rule only checks membership
in the typing context. Note that c1 and c2 could be equal if ⌧1 = ⌧2.

The rule for the new case construct mirrors the usual rule for expressions,
but using destinations.

c : ⌧1 ⇥ ⌧2 2 � �, x1 : ⌧1, x2 : ⌧2 ` P :: (d : �)

� ` case c (hx1, x2i ) P ) :: (d : �)
⇥L
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We close this section with the corresponding logical rules.

� ` 1
1R0

1 2 � � ` C

� ` C
1L

A,B 2 �

� ` A⇥B
⇥R0

A⇥B 2 � �, A,B ` C

� ` C
⇥L

All the types considered in this lecture are positive types, so they are “eager”
in the sense that a value only contains other values and that the destructors
are case constructs.

8 Summary

Since we have changed our notation a few times, we summarize the transla-
tion and the transition rules.

JxK d = d x

Jh iK d = d.h i
Jcase e (h i ) e0)K d = d1  JeK d1 ;

case d1 (h i ) Je0K d)

Jhe1, e2iK d = d1  Je1K d1 ;
d2  Je2K d2 ;
d.hd1, d2i

Jcase e0 (hx1, x2i ) e0)K d = d0  Je0K d0 ;
case d0 (hx1, x2i ) Je0K d)

proc d0 (x P ; Q) 7! proc d ([d/x]P ), cell d _, proc d0 ([d/x]Q) (d fresh)
(alloc/spawn)

!cell c W, proc d (d c), cell d _ 7! cell d W (copy)

proc d (d.h i), cell d _ 7! !cell d h i (1R0)
!cell c h i, proc d (case c (h i ) P )) 7! proc d P (1L)

proc d (d.hc1, c2i), cell d _ 7! !cell d hc1, c2i (⇥R0)
!cell c hc1, c2i, proc d (case c (hx1, x2i ) P )) 7! proc d ([c1/x1, c2/x2]P ) (⇥L)
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9 Streamlining the Positive Types

In the presentation of this lecture we notice commonality between the cases
and we can refactor it so all positive (eager) types are treated uniformly. We
define (omitting 9↵. ⌧ for simplicity):

Positive types ⌧ ::= 1 | ⌧1 ⇥ ⌧2 |
P

i2I(i : ⌧i) | ⇢↵. ⌧
Small values V ::= h i | ha1, a2i | i · a | fold a
Continuations K ::= (h i ) P ) | (hx1, x2i ) P ) | (i · xi ) Pi)i2I | (fold x) P )
Processes P ::= x P ; Q (allocate/spawn)

| c d (copy)
| d.V (write)
| case c K (read/match)

Configurations C ::= proc d P | !cell c V | · | C1, C2

We only have four transition rules for configurations, in addition to explain-
ing how values are matched against continuations.

proc d (x P ; Q) 7! proc c ([c/x]P ), proc d ([c/x]Q)
!cell c V, proc d (d c) 7! !cell d V

proc d (d.V ) 7! !cell d V
!cell c V, proc d (case c K) 7! proc d (V . K)

h i . (h i ) P ) = P
hc1, c2i . (hx1, x2i ) P ) = [c1/x1, c2/x2]P

k · c . (i · xi ) Pi)i2I = [c/xk]Pk

fold c . (fold x) P ) = [c/x]P

10 Example: Writing a Value

A closed value in the our language of expressions is translated to a program
that will create a representation of this value in memory. As such, memory
and the contents of the its cells is observable since it represents the outcome
of the computation. As an example, consider

bin = ⇢bin. (b0 : bin) + (b1 : bin) + (e : bin)
one = fold b1 · fold e · h i

We work out the translation of JoneK in stages.
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JoneK c0 = x1  Jb1 · fold e · h iKx1 ;
x0.(fold b1)

= x1  ( x2  Jfold e · h iKx2 ;
x1.(b1 · x2) ) ;

c0.(fold x1)

= x1  ( x2  ( x3  Je · h iKx3 ;
x2.(fold x3) ) ;

x1.(b1 · x2) ) ;
c0.(fold x1)

= x1  ( x2  ( x3  ( x4  Jh iKx4 ;
x3.(e · x4) ) ;

x2.(fold x3) ) ;
x1.(b1 · x2) ) ;

c0.(fold x1)

= x1  ( x2  ( x3  ( x4  x4.h i ;
x3.(e · x4) ) ;

x2.(fold x3) ) ;
x1.(b1 · x2) ) ;

c0.(fold x1)

This program will allocate four fresh cells, say, c1, . . . , c4, for x1, . . . , x4 and
fill them with the indicated small values, in no particular order. The resulting
final configuration will be

proc c0 (JoneK c0)
7!⇤ !cell c4 h i, !cell c3 (e · c4), !cell c2 (fold · c3), !cell c1 (b1 · c2), !cell c0 (fold · c1)

The following law of associativity (not justified here, because we do not
have a simple theory of process equivalence) allows us to rewrite this process
into a more readable form. In order to apply the equivalence, some restric-
tions need to be placed on variable occurrences, so we indicate permissible
references to variables for each process in parentheses.

x (y  P (y) ; Q(x, y)) ; R(x) ⌘ y  P (y) ; (x Q(x, y) ; R(x))

Applying this multiple times to re-associate the cuts to the left we get

JoneK c0 = x4  x4.h i ;
x3  x3.(e · x4) ;
x2  x2.(fold x3) ;
x1  x1.(b1 · x2) ;
c0.(fold x1)
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11 Preservation and Progress

In order to understand preservation and progress, we should understand
the typing of configurations. Recall that we have the following judgments:

Small values � ` V : ⌧

Processes � ` P :: (d : ⌧)

where the context � contains destinations or addresses of cells even at
runtime. That is, values V are not necessarily closed as they were in our
expression language, but may reference other cells.

When we type a configuration, we write

� ` C :: �

where both � and � contain types for addresses. The ones in � can be used
in C, which means they can be read by processes or references in cells. The
addresses in � are provided by the configuration, which means they may be
written by a process in C, defined by a cell in C, or they already occur in �.
With this understanding we obtain the following rules.

� ` P :: (c : ⌧)

� ` proc c P :: (�, c : ⌧)
tp/proc

� ` V : ⌧

� ` cell c V :: (�, c : ⌧)
tp/cell

� ` (·) :: �
tp/empty

� ` C1 :: �1 �1 ` C2 :: �2

� ` (C1, C2) :: �2

tp/join

We see the rules are arranged so that � ` C :: � implies that � ✓ �. In the
preservation theorem we need to account for the possibility that a new cell
is allocated which would then appear in �0 with its type but not in �.

While configurations are not explicitly ordered, a typing derivation
imposes some ordering constraints. In particular, a cell (or the writer of a
cell), always precedes a reader of a cell in the left-to-right order of the typing
derivation.x

In this lecture we only state progress and preservation; we may come
back later to prove them when our language is complete.

Theorem 1 (Preservation) If � ` C :: � and C 7! C0 then � ` C :: �0 for some
�0 ◆ �.
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To state progress, we should reflect on what plays the role of a value in our
usual formulation of progress. But it turns out to be easy: it is a configuration
consisting entirely of cells and no processes. We call such a configuration
final. Clearly, such a configuration cannot take a step. The usual notion of
a closed expression that we start with is replace by a configuration that does
not rely (that is, may read from) and external addresses.

Theorem 2 (Progress) If · ` C :: � then either C 7! C0 or C is final.
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Lecture Notes on
Negative Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 20
Tuesday, November 10, 2020

1 Introduction

We continue the investigation of shared memory concurrency by adding
negative types. In our language so far they are functions ⌧ ! �, lazy pairs
⌧ N �, and universal types 8↵. ⌧ .

2 Review of Positives

We review the types so far, with a twist: we annotate every address that
we write to with a superscriptW and every address we read from with a
superscriptR.

Processes P ::= x P ; Q allocate/spawn
| xW  yR copy
| xW .h i | case xR (h i ) P ) (1)
| xW .hy, zi | case xR (hy, zi ) P ) (⇥)
| xW .(j · y) | case xR (i · y ) Pi)i2I (+)
| xW .fold y | case xR (fold y ) P ) (⇢)

Small Values V ::= h i | ha1, a2i | j · a | fold a

Configurations C ::= · | C1, C2 | proc d P | !cell c V

The configurations are unordered and we think of “,” as an associative and
commutative operator with unit “.”. Since we have changed our notation a
few times, we summarize the translation and the transition rules.
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JxK d = dW  xR

Jh iK d = dW .h i
Jcase e (h i ) e0)K d = x JeKx ;

case xR (h i ) Je0K d)

Jhe1, e2iK d = x1  Je1Kx1 ;
x2  Je2Kx2 ;
dW .hx1, x2i

Jcase e (hx1, x2i ) e0)K d = x JeKx ;
case xR (hx1, x2i ) Je0K d)

Jj · eK d = x JeKx ;
dW .(j · x)

Jcase e (i · x) ei)i2IK d = x JeKx ;
case xR (i · x) JeiK d)i2I

Jfold eK d = x JeKx ;
dW .(fold x)

Jcase e (fold y ) e0)K d = x JeKx ;
case xR (fold y ) Je0K d)

To show the computation rules for configurations we refactor the specifi-
cations, separating out continuations K.

Continuations K ::= (h i ) P ) | (hx1, x2i ) P ) | (i · xi ) Pi)i2I | (fold x) P )
Processes P ::= x P ; Q (allocate/spawn)

| c d (copy)
| dW .V (write)
| case cR K (read/match)

We only have four transition rules for configurations, in addition to explain-
ing how values are matched against continuations.

proc d (x P ; Q) 7! proc c ([c/x]P ), proc d ([c/x]Q) (c fresh)
!cell c V, proc d (d c) 7! !cell d V

proc d (d.V ) 7! !cell d V
!cell c V, proc d (case c K) 7! proc d (V . K)
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h i . (h i ) P ) = P
hc1, c2i . (hx1, x2i ) P ) = [c1/x1, c2/x2]P

k · c . (i · xi ) Pi)i2I = [c/xk]Pk

fold c . (fold x) P ) = [c/x]P

3 Functions

As the first negative type we consider function ⌧ ! �. How do we translate
an abstraction �x. e? The translation must actually take two arguments: one
is the original argument x, the other is the destination where the result of
the functional call should be written to. And the process J�x. eK d must write
the translation of the function to destination d.

Before we settle on the syntax for this, consider how to translate function
application.

Je1 e2K d = x1  Je1Kx1 ;
x2  Je2Kx2 ;

How should we complete this translation?
We know that after Je1Kx1 has completed the cell x1 will contain a func-

tion of two arguments. The first argument is the original argument, which we
find in x2 after Je2Kx2 has completed. The second argument is the destination
for the result of the function application, which is d. So we get:

Je1 e2K d = x1  Je1Kx1 ;
x2  Je2Kx2 ;
xR1 .hx2, di

This looks just like eager pairs, except that we read from x1 instead of writing
to it. To retain the analogy, we write the translation of a function using case,
but writing the (single) branch of the case expression to memory.

J�x. eK d = case dW (hx, yi ) JeK y)

The transition rules for these new constructs just formalize the explanation.

proc d (case dW (hx, yi ) P )) 7! !cell d (hx, yi ) P ) (!R)
!cell c (hx, yi ) P ), proc d (cR.hc1, di) 7! proc d ([c1/x, d/y]P ) (!L0)

As an example, we consider the expression (�x. x) h i.
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J(�x. x) h iK d0 = x1  J�x. xKx1 ;
x2  Jh iKx2 ;
xR1 .hx2, d0i

= x1  case xW1 (hx, yi ) JxK y) ;
x2  xW2 .h i ;
xR1 .hx2, d0i

= x1  case xW1 (hx, yi ) yW  xR) ;
x2  xW2 .h i ;
xR1 .hx2, d0i

Let’s execute the final process from with the initial destination d0.

proc d0 (x1  case xW1 (. . .) ; x2  xW2 .h i ; . . .)
7! proc d1 (case dW1 (hx, yi ) yW  xR)),

proc d0 (x2  xW2 .h i ; dR1 .hx2, d0i)
7!2 !cell d1 (hx, yi ) yW  xR),

proc d2 (dW2 .h i),
proc d0 (dR1 .hd2, d0i)

7!2 !cell d1 (hx, yi ) yW  xR),
!cell d2 h i,
proc d0 (dW0  dR2 ) (from [d2/x, d0/y](yW  xR))

7! !cell d1 (hx, yi ) yW  xR),
!cell d2 h i
!cell d0 h i

In the final configuration we have cell d0 holding the final result h i, which
is indeed the result of evaluating (�x. x) h i. We also have some newly
allocated intermediate destinations d1 and d2 that are preserved, but could
be garbage collected if we only retain the cells that are reachable from the
initial destination d0 which now holds the final value.

4 Store Revisited

In our table of process expression, two things stand out. One is that functions
are exactly like pairs, except that the role of reads and writes are reversed.
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The other is that a cell may now contain something of the form (hy, zi ) P ).

Processes P ::= x P ; Q allocate/spawn
| xW  yR copy
| xW .h i | case xR (h i ) P ) (1)
| xW .hy, zi | case xR (hy, zi ) P ) (⇥)
| xW .(j · y) | case xR (i · y ) Pi)i2I (+)
| xW .fold(y) | case xR (fold(y)) P ) (⇢)

| xR.hy, zi | case xW (hy, zi ) P ) (!)

We can refactor this into a more uniform presentation, even though not
all of the syntactically legal forms have corresponding types in the current
language.

Processes P ::= x P ; Q allocate/spawn
| xw  yR copy
| xW .V | case xR K (1,⇥,+, ⇢)
| xR.V | case xW K (!)

Small values V ::= h i | ha1, a2i | i · a | fold a
Continuations K ::= (h i ) P ) | (hx1, x2i ) P ) | (i · xi ) Pi)i2I | (fold x) P )

Cell contents W ::= V | K

Configurations C ::= · | C1, C2 | proc d P | !cell c W

There is now a legitimate concern that the contents of cells in memory is
no longer “small”, because a program P could be of arbitrary size. At a
lower level of abstraction, continuations would probably be implemented
as closures, that is, a pairs consisting of an environment and the address of
code to be executed. The translation to get us to this form is called closure
conversion, which we might discuss in a future lecture. For now, we are
content with the observation that, yes, we are violating a basic principle of
fixed-size storage and that it can be mitigated (but is not completely solved)
through the introduction of closures.

In our example of (�x. x) h i the continuation has the form (hx, yi )
yW  xR) which is a closed process. This can be directly compiled to a
function that takes two addresses x and y and writes the contents of x into
y. So at least in this special case the contents of the cell d1 could simply be
the address of this piece of code.

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020



L20.6 Negative Types

The symmetry between eager pairs (positive) and functions (negative)
stems from the property that in logic we have A ` B � C if and only if
A⇥B ` C (where ⇥ is a particular form of conjunction). Or, we can chalk it
up to the isomorphism ⌧ ! (�! ⇢) ⇠= (⌧ ⇥ �)! ⇢: an arrow on the right
behaves like a product on the left.

One can ask if similarly symmetric constructors exists for 1, +, and ⇢
and the answer is yes. It turns out that lazy records are symmetric to sums
and there is a type ? that is symmetric to 1 (see Exercises 1 and 2). There
may even be a lazy analogue of recursive types that exhibits the same kind
of symmetry and maybe useful to model so-called corecursive types (see
Exercise 3).

We postpone discussion on the typing of process expression, cells, and
configurations until the next lecture when we consider analogues of the
progress and preservation theorems.

5 Typing

Before writing an example, it may be helpful to revisit the typing in its fac-
tored form. We separate out the positives, since the typing for the negatives
is not quite as uniform as one might expect.

To type the contents of cells directly, we have the judgment � ` V : ⌧ for
positive ⌧ .

� ` h i : 1
val/unit

y : ⌧ 2 � z : � 2 �

� ` hy, zi : ⌧ ⇥ �
val/prod

(j 2 I) y : ⌧j 2 �

� ` j · y :
P

i2I(i : ⌧i)
val/sum

y : [⇢↵. ⌧/↵]⌧ 2 �

� ` fold y : ⇢↵. ⌧
val/fold

Process typing for the positives is now unified, but we still separate out
the negative with some special-purpose rules. For positive types ⌧ we also
have a judgment to verify that a value V : ⌧ is matched against a suitable
continuation, � ` ⌧ .K :: (z : �).

� ` V : ⌧

� ` xW .V :: (x : ⌧)
write/pos

x : ⌧ 2 � � ` ⌧ .K :: (z : �)

� ` case xR K :: (z : �)
read/pos

LECTURE NOTES TUESDAY, NOVEMBER 10, 2020



Negative Types L20.7

� ` P :: (z : �)

� ` 1 . (h i ) P ) :: (z : �)
m/unit

�, x1 : ⌧1, x2 : ⌧2 ` P :: (z : �)

� ` ⌧1 ⇥ ⌧2 . (hx1, x2i ) P ) : (z : �)
m/prod

(for all i 2 I) �, y : ⌧i ` Pi :: (z : �)

� `
P

i2I(i : ⌧i) . (i(y)) Pi) :: (z : �)
m/sum

�, y : [⇢↵. ⌧/↵]⌧ ` P :: (z : �)

� ` ⇢↵. ⌧ . (fold(y)) P ) :: (z : �)
m/rho

For the negative types (here only functions), we have somewhat more
specific rules. They arise, because for the type ⌧ ! � the types ⌧ and � are
on different sides of the turnstile.

x : ⌧ ! � 2 � y : ⌧ 2 �

� ` xR.hy, zi :: (z : �)
read/arrow

�, y : ⌧ ` P :: (z : �)

� ` case xW (hy, zi ) P ) :: (x : ⌧ ! �)
write/arrow

6 Example: A Pipeline

As a simple example for concurrency in this language we consider setting
up a (very small) pipeline. We consider a sequence of bits

bits = ⇢↵. (b0 : ↵) + (b1 : ↵) + (e : 1)

(which also happen to be isomorphic to binary numbers). We assume there
is a process flip : bits! bits that just flips every bit. We will write this during
the next lecture; for this lecture the goal is to compose two such processes in
a pipeline.

Assume there is a cell

!cell flip Kflip : bits! bits

This means that Kflip = (hx, yi ) P ) where x : bits is address of the argu-
ment and y : bits is the destination for the result.

Then we can compose two of these as

Kflip2 = hx, zi )
y  flipR.hx, yi
flipR.hy, zi

In the picture below we see the two flip processes running, after the code for
kflip2 has executed but neither of these has taken any action yet. The process
on the left reads from x and writes to y while the process on the right reads
from y and writes to z. The destinations y and z have been allocated but
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have not yet been written to. Cell x contains the sample input, which is the
memory representation of fold (b0 · fold (e · h i)).

The left process now reads along x and allocates and writes along y. After it
runs for a few steps, we might reach the following situation:
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The green part here is the new part compared to the previous configuration.
It should be clear how each of the two processes translates into a proc
object, while each filled cell corresponds to a cell object. The empty cells are
addresses that have been allocated, but not yet written to, so they are not
explicit in the configuration.

The two processes also run in parallel, which is how they form a pipeline.
For example, after a few more steps we might reach the configuration (with
the purple part being new):

The right process here lags behind the left one, which is possible since the
semantics here is not synchronous. A cell can be read as soon as it is filled,
but it may not be read immediately while other computations take place.

If we knew that the left process was the only reader along x (and any
cells reachable from it) we could “garbage-collect” the cells that are no
longer accessible and the situation would look as follows (assuming here
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some process not shown could read the output z).

In the next lecture we will write the code for flip that can exhibit the shown
behavior. In a future lecture we will consider a type system that tracks if
cells have unique readers which will allow the eager deallocation of cells
that have been read.

Exercises

Exercise 1 For lazy records (as a generalization of lazy pairs) we introduce
the following syntax in our language of expressions:

Types ::= . . . | Ni2I(i : ⌧i)
Expressions ::= . . . | h|i) ei|ii2I | e · j

1. Give the typing rules and the dynamics (stepping rules) for the new
constructs.

2. Extend the translation JeK d to encompass the new constructs. Your
process syntax should expose the duality between eager sums and
lazy records.

3. Extend the transition rules of the store-based dynamics to the new
constructs. The translated form may permit more parallelism than the
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original expression evaluation, but when scheduled sequentially they
should have the same behavior (which you do not need to prove).

4. Show the typing rules for the new process constructs.

Exercise 2 Explore what the rules and meaning of ? as the formal dual of
1 in the process language should be, including whichever of the following
you find make sense. If something does not make sense somehow, please
explain.

1. Write out the new forms of process expressions.

2. Provide the store-based dynamics for the new process expressions.

3. Show the typing rules for the new process expressions.

4. Reverse-engineer new functional expressions in our original language
so they translate to your new process expression. Show the rules for
typing and stepping the new constructs.

5. Summarize and discuss what you found.

Exercise 3 In our expression language the fold e constructor for elements
of recursive type is eager. Explore a new lazy ravel e constructor which has
type �↵. ⌧ , providing:

1. Typing rules for ravel and a corresponding destructor (presumably an
unravel or case construct).

2. Stepping rules for the new forms of expressions.

3. A translation from the new forms of expressions to processes, extend-
ing the language of processes as needed

4. Typing rules for the new forms of processes.

5. Transition rules for the new forms of processes.
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These reference rules depart from the lecture notes in two minor points: (1) typing of cells is simplified

by reducing it to the typing of processes that would write such a cell, and (2) in the dynamics we do not

use persistent cells, but explicitly carry ephemeral cells from the left-hand side to the right-hand side of

each rule that reads from memory.

Abstract Syntax

Types ⌧ ::= ⌧1! ⌧2 | Ni2I(i : ⌧i) | ⌧1 ⇥ ⌧2 | 1 |
P

i2I(i : ⌧i) | ⇢↵. ⌧
Contexts � ::= · | �, x : ⌧ (all variables distinct)

Processes P ::= x P ; Q allocate/spawn

| xw  yR copy

| xW .V | case xR K (1,⇥,+, ⇢)
| xR.V | case xW K (!,N)

Small values V ::= h i | ha1, a2i | i · a | fold a
Continuations K ::= (h i ) P ) | (hx1, x2i ) P ) | (i · xi ) Pi)i2I | (fold x) P )

Cell contents W ::= V | K

Configurations C ::= · | C1, C2 | proc d P | cell c W

Judgments

� ` P :: (z : �) process P reads from � and writes to z : �
� ` C :: � configuration C reads from � and writes to �
� ` C final configuration C is final (consists only of cells)

Theorems
Preservation. If � ` C :: � and C 7! C 0

then � ` C 0 :: �0
for some �0 ◆ �.

Progress. If · ` C :: � then either C 7! C 0
for some C 0

or C final.

Statics, Allocate and Copy

� ` P :: (x : ⌧) �, x : ⌧ ` Q :: (z : �)

� ` (x P ; Q) :: (z : �)
tp/alloc

y : ⌧ 2 �

� ` x y :: (x : ⌧)
tp/copy
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Statics, Positive Types

� ` xW .h i :: (x : 1)
w/unit

x : 1 2 � � ` P :: (z : �)

� ` case xR (h i ) P ) :: (z : �)
r/unit

y : ⌧ 2 � z : � 2 �

� ` xW .hy, zi :: (x : ⌧ ⇥ �)
w/pair

x : ⌧1 ⇥ ⌧2 2 � �, x1 : ⌧1, x2 : ⌧2 ` P :: (z : �)

� ` case xR (hx1, x2i ) P ) : (z : �)
r/pair

(j 2 I) y : ⌧j 2 �

� ` xW .(j · y) :: (x :
P

i2I(i : ⌧i))
w/tag

x :
P

i2I(i : ⌧i) 2 � �, y : ⌧i ` Pi :: (z : �) (8i 2 I)

� ` case xR (i · y ) Pi)i2I :: (z : �)
r/tag

y : [⇢↵. ⌧/↵]⌧ 2 �

� ` xW .(fold y) :: (x : ⇢↵. ⌧)
w/fold

x : ⇢↵. ⌧ 2 � �, y : [⇢↵. ⌧/↵]⌧ ` P :: (z : �)

� ` case xR (fold y ) P ) :: (z : �)
r/fold

Statics, Negative Types

�, y : ⌧ ` P :: (z : �)

� ` case xW (hy, zi ) P ) :: (x : ⌧ ! �)
w/fun

x : ⌧ ! � 2 � y : ⌧ 2 �

� ` xR.hy, zi :: (z : �)
r/fun

� ` Pi :: (zi : ⌧i) (for all i 2 I)

� ` case xW (i · zi ) Pi)i2I :: (x : Ni2I(i : ⌧i))
w/record

x : Ni2I(i : ⌧i) 2 � j 2 I

� ` xR.(j · z) :: (z : ⌧j)
r/record

Statics, Configurations

� ` P :: (c : ⌧)

� ` proc c P :: (�, c : ⌧)
tp/proc

� ` cW .V :: (c : ⌧)

� ` cell c V :: (�, c : ⌧)
tp/cell/val

� ` case cW K :: (c : ⌧)

� ` cell c K :: (�, c : ⌧)
tp/cell/cont

� ` (·) :: �
tp/empty

� ` C1 :: �1 �1 ` C2 :: �2

� ` (C1, C2) :: �2

tp/join

� ` (·) final
fin/empty

� ` C final

� ` (C, cell c W ) final
fin/cell
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Dynamics

proc d (x P ; Q) 7! proc c ([c/x]P ), proc d ([c/x]Q) (alloc/spawn, c fresh)
cell c W, proc d (dW  cR) 7! cell c W, cell d W (copy)

proc d (dW .V ) 7! cell d V (write: ⇥, 1,+, ⇢)
cell c V, proc d (case cR K) 7! cell c V, proc d (V . K) (read: ⇥, 1,+, ⇢)

proc d (case dW K) 7! cell d K (write: !,N)
cell c K, proc d (cR.V ) 7! cell c K, proc d (V . K) (read: !,N)

h i . (h i ) P ) = P
hc1, c2i . (hx1, x2i ) P ) = [c1/x1, c2/x2]P

j · c . (i · xi ) Pi)i2I = [c/xj]Pj

fold c . (fold x) P ) = [c/x]P
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Lecture Notes on
Concurrent Programming

15-814: Types and Programming Languages
Frank Pfenning

Lecture 21
Thursday, November 12, 2020

1 Introduction

In this lecture we explore concurrent programming in our language of
processes through two different examples: a pipeline (as started in the last
lecture) and fork/join parallelism with map/reduce. Before we get to these, a
small example to get used to the representation of functions in the concurrent
language.

2 Simple Functions

We want to define a process

curry : ((⌧ ⇥ �)! ⇢)! (⌧ ! (�! ⇢))

Its implementation will immediately write a continuation to memory.

JcurryK d = case dW (hf, gi ) )

So the real essence of this function is in the continuation

Kcurry = (hf, gi ) P )

where P reads from f : (⌧⇥�)!⇢ and writes to g : ⌧!(�!⇢). The result is
immediately a �-expression, which means that as a process we write another
continuation to memory.

Kcurry = (hf, gi ) case gW (hx, hi ) ))
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Here x : ⌧ , the argument to g. Again, we write a function, this time one that
takes y : � and a destination r : ⇢ for the final result.

Kcurry = (hf, gi ) case gW (hx, hi ) case hW (hy, ri ) )))

At this point we have x and y in hand, so we can pair them up and pass the
pair to f . But, wait! We cannot actually construct a pair and pass it. Instead,
we need to allocate a cell to hold the pair hx, yi and pass its address p to g.
In addition, we also have to pass an address as the destination of f , but that
is just r. That is:

Kcurry = hf, gi ) case gW (hx, hi ) case hW (hy, ri )
p pW .hx, yi ;
fR.hp, ri))

Similarly, we start for a function in the other direction:

Kuncurry : (⌧ ! (�! ⇢))! ((⌧ ⇥ �)! ⇢)

Kuncurry = hg, fi ) case fw (hp, ri ) )

Now we have p : ⌧ ⇥� and the destination r : ⇢. We read out the component
from the cell at address p.

Kuncurry = hg, fi ) case fw (hp, ri ) case pR (hx, yi ) ))

Now we need to pass x : ⌧ to g, but we also need a destination. The one we
have (r : ⇢) does not work, so we need to allocate a new one, call it h.

Kuncurry = hg, fi ) case fw (hp, ri ) case pR (hx, yi )
h gR.hx, hi ;

))

At this point we can just read the function at h : �! ⇢ and pass it y : � and
the destination r : ⇢.

Kuncurry = hg, fi ) case fw (hp, ri ) case pR (hx, yi )
h gR.hx, hi ;
hR.hy, ri))

Neither of these processes has much intrinsic concurrency, but the argu-
ments, for example, to f and g are addresses, and the value to be stored at
these addresses may not yet have been written. We can see that neither x nor
y are read by these functions, just passed through. As mentioned previously,
this is the characteristic of futures.
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3 A Bit-Flipping Pipeline

More interesting from the concurrency point of view is the bit-flipping
pipeline. Recall from the last lecture the type of sequences of bits

bits = ⇢↵. (b0 : ↵) + (b1 : ↵) + (e : 1)

We start by writing an ordinary function flip : bits! bits that flips the input
bits from 0 to 1 and vice versa.

flip : bits! bits
flip = fix flip.�x. case x ( fold (b0 · x0)) fold (b1 · (flip x0))

| fold (b1 · x0)) fold (b0 · (flip x0))
| fold (e · u)) fold (b1 · fold (e · u)) )

In the remainder of this section we make a small syntactic simplification
which makes the code much shorter without loss of information content:
we skip reading and writing the fold messages. We can think of the types as
“silently unfolded”, or postulate an elaboration pass over the program that
inserts suitable fold constructors and fold patterns. The flip function then
would look like

flip : bits! bits
flip = fix flip.�x. case x (b0 · x0 ) b1 · (flip x0)

| b1 · x0 ) b0 · (flip x0)
| e · u) b1 · (e · u) )

Instead of translating this function we write it directly to a process. For this
purpose we have to decide how to handle recursion. There seem to be two
solutions:

1. We add a process fix f. P which transitions to [fix f. P/f ]P . This
is entirely straightforward but requires process substitution in the
dynamics.

2. We allow recursively defined processes

!cell flip Kflip

where Kflip refers back to its own cell with address flip to encode a
recursive call.
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We choose the latter option, for variety, even though it would require more
complicated typing rules for configurations.

It remains to define Kflip.

Kflip = hx, yi ) case x (b0 · x0 )
| b1 · x0 )
| e · u) )

In the first branch, we have to allocate a fresh cell y0 for the output and make
a recursive call to fill it. We can also write b1 · y0 to y.

Kflip = hx, yi ) case x (b0 · x0 ) y0  flipR.hx0, y0i ;
yW .(b1 · y0)

| b1 · x0 )
| e · u) )

The branch for b1 is symmetric to the first one.

Kflip = hx, yi ) case x (b0 · x0 ) y0  flipR.hx0, y0i ;
yW .(b1 · y0)

| b1 · x0 ) y0  flipR.hx0, y0i ;
yW .(b0 · y0)

| e · u) )

In the last case, we allocate a new cell to hold e · u and share u : 1 between
the input and the output. Alternatively, we could avoid the inner allocation
and just share x itself, or we could copy u also.

Kflip = hx, yi ) case x (b0 · x0 ) y0  flipR.hx0, y0i ;
yW .(b1 · y0)

| b1 · x0 ) y0  flipR.hx0, y0i ;
yW .(b0 · y0)

| e · u) y0  y0W .(e · u)
yW .(b1 · y0) )

As shown in the last lecture, we can compose two flip processes into a
pipeline as follows:

Kflip2 = hx, zi )
y  flipR.hx, yi
flipR.hy, zi
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You may look back at the diagrams to visualize how the two processes work
together, effectively communicating via the shared location y, which then
becomes y0, y00, etc. as the computation progresses and recursive calls are
mad in both of them.

Under a sequential interpretation, where x  P ; Q waits until P has
written to destination x before Q starts executing, all recursive calls in flip
would have to be finished before the first bit of output is written. When
we compose two, the inner one has to finish entirely, writing out the whole
sequence of bits before the outer one can start. This is the behavior of the
functional �x. flip (flipx) where the intermediate destination y and the final
destination z remain unnamed.

4 Map/Reduce

As a second example with significant concurrency we consider the popular
mapreduce. We use a function f to map over a tree, reducing it to a value. In
many applications the tree may not be explicit, but emerge dynamically from
the way the data are distributed. As a consequence we require our function
f to be associative and have a unit z, which may stand in for the absence
of data. See Exercise 3 for a version where trees are represented differently.
We define tree as a family of types, indexed by the type of element, even
though we have not formally introduced this into our language.

tree ↵ = ⇢t. (node : t⇥ ↵⇥ t) + (leaf : 1)

We can picture the action of mapreduce as an iteration over this kind of tree.
We supply a function f to “replace” every node and constant z to stand in
for every leaf, as pictured in green in the image below.

We can read off the type
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mapreduce : [8↵. 8�.] (� ⇥ ↵⇥ �! �)⇥ � ⇥ tree ↵! �

As before, we imagine a cell !cell mapreduce Kmapreduce and define Kmapreduce.
We have put the type quantifiers on ↵ and � in brackets because we haven’t
explicitly considered how to handle these in our concurrent language. In-
stead, we think of mapreduce as a family of functions indexed by ↵ and
�.

Kmapreduce = hhf, z, ti, yi )

Here we have f : � ⇥ ↵ ⇥ �! �, z : �, and t : tree ↵, with the destination
y : �. We have taken a small shortcut here by using pattern matching: in
fully official syntax, the right-hand side would start as

Kmapreduce = hp, yi ) case p (hf, qi ) case q (hz, ti ) ))

but this is more verbose and more difficult to read. Back to the previous
version. We start with a case analysis over t: is it a leaf or a node? If it is a
leaf, we just copy z to the destination y.

Kmapreduce = hhf, z, ti, yi )
case tR ( leaf · h i ) yW  zR

| node · hl, x, ri ) )

Here, l is the address of the left subtree, x is the element at the node, and
r is the address of the right subtree. Now we need to make two recursive
calls, on the left and right subtrees. In order to make these calls we need to
allocate two new cells y1 and y2 to receive the values of these calls and pass
them as destinations.

Kmapreduce = hhf, z, ti, yi )
case tR ( leaf · h i ) yW  zR

| node · hl, x, ri )
y1  mapreduceR.hhf, z, li, y1i ;
y2  mapreduceR.hhf, z, ri, y2i ;

)

Note that these two recursive calls proceed concurrently. Finally, we have to
invoke the function f on the results from these recursive calls and x, and
pass the result to y.
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Kmapreduce = hhf, z, ti, yi )
case tR ( leaf · h i ) yW  zR

| node · hl, x, ri )
y1  mapreduceR.hhf, z, li, y1i ;
y2  mapreduceR.hhf, z, ri, y2i ;
fR.hhy1, x, y2i, yi )

Again, we have used a short-hand here. In official syntax we have to allocate
pairs to hold the first argument to f , so the last line would expand to:

p1  pW1 .hx, y2i ;
p2  pW2 .hy1, p1i ;
fR.hp2, yi

In any case, we can see that no synchronization on y1 or y2 occurs until the
function f actually needs their values.

5 Recovering Sequentiality

Originally, we thought of our concurrent process language as the result
of translating our expression language LAMBDA. However, the result of
the translation behaves significantly differently from the source due the
pervasive concurrency.

We could just say that we schedule the different processes for taking
step in a way that exactly mimics left-to-right sequential execution. Or
we can manipulate the translation to enforce sequentiality. Since only cut
(an allocate followed by a spawn) creates a new thread of control, this is
our main lever to work with. For example, we could have a sequential cut
x( P ;Q which runs P to completion before starting Q. Its semantics might
be:

proc d (x( P ;Q) 7! proc c ([c/x]P ), susp c d ([c/x]Q)

with a new semantics object wait with the rule

!cell c W, susp c d Q 7! proc d Q

where the new semantic object susp c d Q represents a suspected process,
waiting for the cell c to be written to. Since writing to c is the last action of
a process with destination c, this will prevent Q from computing until P
has finished. Moreover, Q will never have to synchronize on c because it is
guaranteed to have already been written to.
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It is then easy to prove, by induction on transition sequences, that there
is at most one (unsuspended) process in a configuration if we start with just
one process. Also, the concurrent semantics can simulate the sequential one
by always making particular choices, but not the other way around.

In a language with both sequential and concurrent cut we can work
mostly sequentially and occasionally spawn a process to run concurrently.
This is the idea behind futures where the expression future e immediately
returns a destination d that the evaluation of e eventually writes to. Attempts
to read the future will block until the value has been written.

Exercises

Exercise 1 Consider the translation

Jfix f. eK d = case dW (hx, yi ) [d/f ]JeK y)

in which d is written to but also (potentially) read from in the translation of
[d/f ]JeK y. Execution of this process may therefore create circular references
in the configuration.

(i) Give an example where the translation behaves incorrectly with respect
to the dynamics of the expression fix f. e in LAMBDA.

(ii) Give an example where circular references arise but behave correctly
with respect to the dynamics in the source.

(iii) From your examples, conjecture a restriction of the general translation
so the result behaves correctly.

(iv) Devise new typing rules for processes and configurations such that (a)
the translation above is well-typed, as a process, and (b) the typing of
configurations is preserved by transitions, and (c) the progress theorem
continues to be true. You do not need to prove these properties, but it
may be helpful to sketch the proof to yourself to make sure your rules
are correct.

Exercise 2 When translating functional fixed point expression to recursively
defined processes, we need to account for the fact that processes may be
invoked in multiple places with different destinations. We there introduce
the notation x. P for a process with variable destination x and (x. P )(d) for
its instantiation to a particular destination. We then translate:
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Jfix f. eK d = (x. rec f. JeKx)(d)
where JfK c = f(c) for every occurrence of f in e.

We also extend the dynamics with the rule

proc d ((x. rec f. P )(d)) 7! proc d ([(x. rec f. P )/f ][d/x]P )

(i) Give typing rules for the new forms of processes.

(ii) Provide an implementation of the flip process using this representation
of recursion.

(iii) Illustrate the key transition steps in the computation of flip, showing
the plausibility of this translation.

Exercise 3 Consider the type of tree where the information is kept only in
the leaves:

shrub ↵ = ⇢t. (branch : t⇥ t) + (bud : ↵)

(i) Write a version of mapreduce that operates on shrubs and exhibits
analogous concurrent behavior. You may use similar shortcuts to the
ones we used in our implementation.

(ii) Write processes forth and back to translate between trees and shrubs
while preserving the elements. Do they form an isomorphism? If not,
do you see a simple modification to restore an isomorphism?

Exercise 4 The sequential execution in Section 5 is eager in the sense that in
x( P ; Q, P completes by writing to x before Q starts.

A lazy version, x ( P ; Q would immediately start Q and suspend
P until Q (or some process spawned by it) would try to read from x. We
would still like it to be sequential in the sense that at most one process can
take a step at any time.

Devise a semantics for x ( P ; Q that exhibits the desired lazy behavior
while remaining sequential. You may introduce new semantic objects or
apply some transformation to P and/or Q, but you should strive for the
simplest, most elegant solution to keep the dynamics simple.
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Lecture Notes on
Lazy Records and Mutable Store

15-814: Types and Programming Languages
Frank Pfenning

Lecture 22
Tuesday, November 17, 2020

1 Introduction

We have moved from a semantics directly on expressions to one that makes
memory explicit and supports concurrency (at the discretion of the scheduler
or the language designer). Memory is allocated and then written to at most
once; after that it may be read many times.

In imperative languages we can also mutate the contents of a memory
cell by writing a different value to it. In a functional language, this is
typically segregated, either in a monad (as in Haskell) or via a new type of
mutable references (as in ML). We pursue here the latter approach because
there is a slightly lower conceptual overhead.

Before that, we consider some examples of stream programming, which
is a good example of lazy functional programming which is available to use
most easily via lazy pairs and (more generally) lazy records.

2 Lazy Records and Streams

A lazy record is a generalization of a lazy pair where each alternative has a
different label i. They were introduced in Exercise L20.1 with the syntax

Types ::= . . . | Ni2I(i : ⌧i)
Expressions ::= . . . | h|i) ei|ii2I | e · j

where h|i ) ei|ii2I has type Ni2I(i : ⌧i) if each ei has type ⌧i. Similarly, for
an e of type Ni2I(i : ⌧i) the projection onto j (written e · j) has type ⌧j .
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As an example, consider potentially infinite streams stream ↵ of elements
of some type ↵ may be defined as

stream ↵ = ⇢s. (hd : ↵) N (tl : s)

which then satisfies

stream ↵ ⇠= (hd : ↵) N (tl : stream ↵)

The concrete LAMBDA syntax is quite similar. Since we don’t have type
constructors in the implementation, we just consider streams of natural
numbers which are defined with

1 type stream = $stream. (’hd : nat) & (’tl : stream)

Next we would like to produce an infinite stream of increasing numbers.
The specification is that

up n = n, n+ 1, n+ 2, . . .

which we write as

1 decl up : nat -> stream
2 defn up = $up. \n. fold (| ’hd => n | ’tl => up (succ n) |)

Here we see the concrete syntax (| ’i1 => e1 | ... | ’in => en |)
for a lazy record with fields ’i1 through ’in. Laziness of the records is
crucial here because otherwise the function upn would never terminate.
Indeed, evaluating

1 eval s0 = up zero

just produces (after 2 evaluation steps) a stream we cannot observe:

1 % eval s0 = up zero
2 % 2 evaluation steps
3 decl s0 : stream
4 defn s0 = fold ---

Fortunately, we can write a function to observe the first n elements of a
stream as a list. For this purpose we define lists, restricting ourselves to the
special case of lists of natural numbers.

1 type list = $list. (’nil : 1) + (’cons : nat * list)
2 decl nil : list
3 decl cons : nat -> list -> list
4 defn nil = fold ’nil ()
5 defn cons = \x. \l. fold ’cons (x, l)
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Our specification is now that

take n s = [s1, . . . , sn]

where si is the ith element of the stream. We start by cases over n, and
returning the empty list if n is zero.

1 decl take : nat -> stream -> list
2 defn take = $take. \n. \s.
3 case n
4 of ( fold ’zero () => nil
5 | fold ’succ m => ... )

In the case where n = m+ 1 we would like to create a list of length with the
first element begin the head of the stream (obtained with (unfold s).’hd).
The remainder of the list is the result of a recursive call to take m elements
from the tail of the stream.

1 decl take : nat -> stream -> list
2 defn take = $take. \n. \s.
3 case n
4 of ( fold ’zero () => nil
5 | fold ’succ m => cons ((unfold s).’hd)
6 (take m ((unfold s).’tl)) )

Then, taking the first 5 elements from the stream 0, 1, 2, . . . eis achieved with

1 eval l5 = take _5 (up _0)

which indeed yields the list [0, . . . , 4].
As the next programming puzzle we would like to compute the stream

of Fibonacci numbers, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. The key insight is that we
need to remember two numbers to generate the next one, generalizing the
idea behind up. We specify

fib n k = n, k, n+ k, k + (n+ k), . . .

after which the actual Fibonacci sequence is fib 0 1. We implement this
function by shifting the second argument k to become the first argument in
the recursive call, and the sum n+ k to become the new second argument.

1 decl fib : nat -> nat -> stream
2 defn fib = $fib. \n. \k.
3 fold (| ’hd => n | ’tl => fib k (plus n k) |)
4

5 eval fib_stream = fib _0 _1
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Records here are lazy so, as before, fib_stream is not observable. But we
can test our function by taking the first 10 elements with

1 eval f10 = take (plus _5 _5) fib_stream

There are more examples of stream programming in Exercise 2.

3 Object-Oriented Programming

We can also use lazy records to model some idioms from object-oriented
programming. Consider an object of type stack which can receive two
messages: pushing another element onto the stack, or popping an element
from the stack. In the latter case, the response is either none (the stack is
empty) or some and the element.

1 type stack = $stack. (’push : nat -> stack)
2 & (’pop : (’none : stack)
3 + (’some : nat * stack))

The implementation of the stack maintains a list in the local state: it adds
a new element to the front of the list to implement push and deconstructs
the list to implement pop. Note that the methods of the objects are the
components of a lazy record.

1 decl stack_list : list -> stack
2 defn stack_list = $stack_list. \l. fold
3 (| ’push => \x. stack_list (cons x l)
4 | ’pop => case l
5 of ( fold ’nil () => ’none (stack_list l)
6 | fold ’cons (x,l’) => ’some (x, stack_list l’) )
7 |)
8

9 decl stack_new : stack
10 defn stack_new = stack_list nil

See the file lazy.cbv for a illustrative sequence of push and pop operations.

4 Streams and Functions

An excellent question was raised in lecture, namely if any stream can be
represented by a function of type nat!nat and vice versa. Assuming totality
of the functions involved, we were able to conjecture

nat! nat ⇠= stream
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using the following functions

1 decl forth : (nat -> nat) -> stream
2 decl back : stream -> (nat -> nat)
3

4 % forth f = f 0, f 1, f 2, ...
5 % forth’ f n = f n, f (n+1), f (n+1), ...
6 decl forth’ : (nat -> nat) -> nat -> stream
7 defn forth’ = $forth’. \f. \n.
8 fold (| ’hd => f n | ’tl => forth’ f (succ n) |)
9 defn forth = \f. forth’ f zero

10

11 defn back = $back. \s. \n.
12 case n
13 of ( fold ’zero () => (unfold s).’hd
14 | fold ’succ m => back ((unfold s).’tl) m )

Some small examples in lazy.cbv seemed to confirm the correctness of
these definitions.

5 The Type of Mutable References

Returning to our original goal of this lecture, we now consider mutable
references. We will have to depart from the strong logical basis of our
language, but the notation and concepts we have developed to describe
typing are sufficient to easily capture the statics and dynamics of the new
constructs.

We introduce one new type constructor and three new forms of expres-
sion into our functional language:

Types ⌧ ::= . . . | ref ⌧
Expressions e ::= . . . | ref e | e1 := e2 | !e

Operationally, ref e evaluates e to a value v, then creates a new mutable
reference m and initializes its value to v. An assignment e1 := e2 evaluates e1
to a mutable reference m, then e2 to a value v2 and stores v2 in m. It returns
just the unit element, since its principal task is the effect on m. Finally,
!e (which has nothing to do with ! to denote persistent semantic objects)
evaluates e to a reference m and returns the current value of m. Based on
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this description, we type these new expressions as follows

� ` e : ⌧

� ` ref e : ref ⌧
tp/ref

� ` e1 : ref ⌧ � ` e2 : ⌧

� ` e1 := e2 : 1
tp/assign

� ` e : ref ⌧

� ` !e : ⌧
tp/deref

These rules do not fit the previous patterns of constructor and destructors
because of the rule for mutation tp/assign.

It seems difficult, if not impossible, to specify the semantics of mutable
references directly on expressions in the style we have done before. Fortu-
nately, we already have a semantics with an explicit store so we can update
that. The textbook instead generalizes the small-step semantics for expres-
sion by adding a single store µ and now stepping µ k e 7! µ0 k e0 [Har16,
Chapters 34 & 35].

6 Translation to Our Concurrent Language

We exploit the fact we already have a representation of memory in this
translation, and only two small twists are necessary. Warning: some of what
is below we will later find out is not quite right. We write m for the address
of a mutable cell.

Jref eK d = m JeKm ;
dW .addr(m)

Here, we introduce a new form of value, addr(m) which denotes the address
of a mutable cell, here m. This value is deposited in destination d as required.

Reading from a mutable destination is simple.

J!eK d = x JeKx ;
case xR (addr(m)) dW  mR)

Finally, mutating a cell. At first we might try

Je1 := e2K d = x1  Je1Kx1 ;
x2  Je2Kx2 ;
case xR1 (addr(m)) mW  xR2 ) % bug here!

The problem here is that the translation of e1 := e2 is supposed to write to
destination d, but does not do so. Recall that we decreed that the assignment
should return the unit element, so we might write
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Je1 := e2K d = x1  Je1Kx1 ;
x2  Je2Kx2 ;
case xR1 (addr(m))mW  xR2 ;

d.h i)

However, this requires a version of the copy process that allows a continua-
tion. Let’s write this as mW ( dR2 , and we get

Je1 := e2K d = d1  Je1K d1 ;
d2  Je2K d2 ;
case dR1 (addr(m))mW ( dR2 ;

d.h i)

The new process expression has the dynamics

!cell m W, !cell c W 0, proc d (mW ( cR ; P ) 7! !cellm W 0, proc d P % bug!

Writing this out, however, we notice a second problem: the cell m has to be
ephemeral. If it were persistent, then after this transition m would have two
values: W and W 0.

We can fix this in two ways. Either we make all cells (mutable or not)
ephemeral. This means we have to revisit all the rules so far and make sure
cell are not consumed when they are read but carried over. Alternatively,
we can make only mutable cells ephemeral and keep all others persistent.
Let’s use the first approach. We modify the rules at the end of Section L21.4
by dropping the ! everywhere. Where we match against !cell c W on the
left-hand side, we just replace it by cell c W and repeat it on the right-hand
side. The rule for the new “write” construct becomes

cell m W, cell c W 0, proc d (mW ( cR ; P ) 7! cell m W 0, cell c W 0, proc d P

For the other approach, see Exercise 1.

7 Race Conditions

In the presence of mutable references, sequential computation proceeds as
before, scheduling such that in x  P ; Q the process P completes (and
therefore writes to x) before Q starts. This also means that the read and
write operations on mutable cells have a well-defined order.

Under the concurrent semantics, however, the picture is more compli-
cated. Consider the following expression:

(�x. hx := succ x, hx := succ x, !xii) (ref zero)
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L22.8 Lazy Records and Mutable Store

The value of this expression will be

hh i, hh i, nii

where n 2 {0, 1, 2}. For example, we obtain 0 if !x executes before the
increments. Note also that either increment or dereference of the value might
have to wait until the initialization of the mutable cell with 0 completes
because the body of the function can execute in parallel with the argument.

Despite these difficulties, progress and preservation theorems continue
to hold, but it becomes much more difficult to reason about the correctness of
programs. Similarly, we don’t lose all of parametricity, but logical equality
(and, more generally, logical relations) now require step-indexing [AM01,
TTA+13].

Exercises

Exercise 1 Provide an alternative dynamics for our language with mutable
cells, where regular cells become persistent once written, while mutable
cells are ephemeral. You may have to introduce some new kinds of semantic
objects or some new forms of process expression, or both.

Exercise 2 Write functions on streams as in Section 2 satisfying the specifi-
cations below.

(i) alt : 8↵. stream ↵! stream ↵! stream ↵ which alternates the elements
from the two streams, starting with the first element of the first stream.

(ii) filter : 8↵. (↵! bool)! stream ↵! stream ↵ which returns the stream
with just those elements of the input stream that satisfy the given
predicate.

(iii) map : 8↵. 8�. (↵! �)! (stream ↵! stream �) which returns a stream
with the result of applying the given function to every element of the
input stream.

(iv) diag : 8↵. stream (stream ↵)! stream ↵ which returns a stream consist-
ing of the first element of the first stream, the second element of the
second stream, the third element of the third stream, etc.

You may use earlier functions in the definition of later ones and write
auxiliary functions as needed.

In the LAMBDA implementation, you may choose the special case that
↵ = � = nat. In the absence of type constructors in LAMBDA, define types
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stream = ⇢s. (hd : nat) N (tl : s)
sstream = ⇢ss. (hd : stream) N (tl : ss)

where the first was already present in Section 2) and the second is needed
for part (iv).

Your functions should be such that only as much of the output stream
is computed as necessary to obtain a value of type stream ↵ but not the
components contained in the lazy record. For example, among the three
definitions below of a stream transducer that adds 1 to every element, only
the first definition would be lazy enough. The second definition (succs

0)
would be still terminating, but slighty too eager (for example, we may never
access the element at the head of the resulting stream which would have
been computed unnecessarily), while the third (succs00) would not even be
terminating any more.

succs : stream nat! stream nat

succs = �s. h|hd) succ ((unfold s) · hd), tl) succs ((unfold s) · tl)|i
succs

0 = �s. let x = succ ((unfold s) · hd)
in h|hd) x, tl) succs

0 ((unfold s) · tl)

succs
00 = �s. let s0 = succs” ((unfold s) · tl)

in h|hd) succ ((unfold s) · hd), tl) s0|i

Here we have used let x = e in e0 as syntactic sugar for (�x. e) e0.

Exercise 3 Following the style of object-oriented programming in Section 3
consider the types of queue

queue ↵ = ⇢s. (enq : ↵! queue ↵)
N (deq : (none : queue ↵)

+ (some : ↵⇥ queue ↵))

(i) Write a function

reverse : 8↵. stack ↵! stack ↵

that reverses the elements of the given stack.

(ii) Provide an implementation of queues

queue stacks : 8↵. stack ↵! stack ↵! queue ↵

where a queue is represented by a pair of stacks (see below).
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(iii) Provide an empty queue

queue new : 8↵. queue ↵

One of your stacks should be the input stack. Elements to be enqueued
should be pushed on this input stack. The second stack should be the output

stack. Elements to be dequeued should be taken from the output stack. If
the output stack happens to be empty but some elements remain on the
input stack, reverse the input stack to become the new output stack. This
technique is sometimes called functional queues.

As in Section 3, in the absence of type constructors in LAMBDA you may
specialize the types of stacks and queues to ↵ = nat.

Exercise 4 Streams, as we have defined them in this lecture, do not memoize
their results, which means that if we repeatedly access the tail or head of a
stream it may be recalculated each time. Using mutable references, define
memoizing streams that avoids this recomputation and illustrate it through
some examples.
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1 Introduction

When we make memory explicit we have to face the problem of garbage
collection, that is, freeing memory when it is no longer needed. Ideal would
be to deallocate memory at the time we read from it (the last time). One
particular interesting class of memory cells are those that have exactly one
reader or a unique reference. In that case, we can deallocate when it is read.
The usual rule (written here without persistent objects)

cell c V, proc d (case cR K) 7! cell c V, proc d (V . K)

would then become

cell c V, proc d (case cR K) 7! proc d (V . K)

where we model deallocation of the cell c by not repeating it on the right-
hand side of the rule.

This is not as infrequent as it might seem at first. For example, in our bit
negation pipeline from Lecture 20 all the intermediate cells have a single
reader, namely the second process in the pipeline.

Another class of examples comes from temporary cells in the translation
of functional expressions.

Je1 e2K d = x1  Je1Kx1 ;
x2  Je2Kx2 ;
xR1 .hx2, di
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The destination x1 will be written by the translation Je1Kx1 and is then read
by the last line. But it could not be used beyond that because it can not occur
elsewhere in the program since x1 is fresh and not passed to anywhere.

The situation is different for x2. Even though it is freshly allocated here
it is passed on to the function stored in x1 so it “escapes its lexical scope”
and we cannot deallocate it here.

Methodologically, we might now examine various constructs to see
which destinations we may be able to “deallocate” by not copying them
from the left-hand sides of transition rule to the right. But this is compli-
cated, so first we examine what would be required so that we would never
have to copy cells that are being read from (excluding mutable cells from
consideration for the moment, for simplicity). Essentially, can we delineate
a subsect of the language so that every cell will not only be written to once,
but also read from once. Of course, as you might expect in this course after
all we have been through together, this is expressed as a type system! Every
memory cell will have not only a unique provider (to write it) but also a
unique client (to read from it). We call a type system that enforces this
property linear, after Girard’s linear logic [Gir87].

2 Linear Expressions

Even though our ultimate goal is in the runtime system, we start with
functional expressions. We say a function is linear in one of its arguments if
it uses that argument exactly once. The notion of “usage” here is a dynamic
one; it doesn’t mean that the variable occurs exactly once, as we will see.

�x. x (linear)

This is linear in x and therefore the whole expression is linear.

�x.�y. x (not linear)

This expression is linear in x but not linear in y and therefore not linear.
It’s not linear in y because y is not used, but linearity requires a single use.
Related to linearity is the is the notion of affine. A function is affine in a
variable if it is used at most once. So the function above is affine but not linear.
The notion of affine has recently received a lot of attention because the Rust
programming language treats memory references as affine.

�x. hx, xi (not linear)
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This expression is not linear because x is used twice and hence more than
once. Functions that use their argument at least once are called strict. The
notion of strictness is important because it is useful in the optimization of
call-by-need languages such as Haskell. If we have a function application
e1 e2 and we can tell that e1 denotes a strict function we can safely evaluate
e2 rather than waiting until e1 might need its argument.

�x. if x false x (not linear)

This function is not linear in x. It uses x the first time to decide the condition,
and then again when x is false. However, if x is false this returns x which is
false, so extensionally equal would be

�x. if x false false (linear)

which is linear. These two examples show that linearity is an intensional
property of expressions (how do they compute) and not an extensional
property (what do they compute).

�x.�y. if x y (not y) (linear)

This function is linear: x is used once as subject of the conditional. The
variable y occurs twice, but whenever this expression is executed it is used
exactly once: if y is true then in the first branch, and if y is false then in the
second branch.

�x. (�y.h i)x (not linear)

It shouldn’t be suprising by now that this is not linear, since y is not linear
in h i. But, moreover, the whole expression is not linear in x, even though x
occurs exactly once. That’s because x occurs in a position where it will be
dropped. On the other hand:

�x. (�y. hy, h ii)x (linear)

3 Linear Typing of Expressions

With these examples, we now work through the inference rules for expres-
sions and classify those that are linear. We use a different notation for
functions, eager pairs, sums, etc. since the connectives are subtly different
from the regular ones. Our judgment has the form

� � e : ⌧
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where � is a context of variables, each of which must be used once in e. We
have seen the � notation once before, in Lecture 12 where we used it to type
patterns in which no variables could be repeated. The use of � instead of
� is just stylistic, to help remind ourselves that all the variables should be
linear. We use here the names of the inference rules derived from linear logic
where introductions rules (for constructors) use I while elimination rules
(for destructors) use E.

Linear Functions ⌧ ( �. A function is linear just if its parameter is used
linearly in its body.

�, x : ⌧ � e : �

� � �x. e : ⌧ ( �
(I

When applying a function we have to divide up the variables among those
that occur in the function (�1) and those that occur in the argument (�2).

�1 � e1 : ⌧2 ( ⌧1 �2 � e2 : ⌧2

�1,�2 � e1 e2 : ⌧1
(E

Our usual presupposition regarding contexts kicks in and we implicit require
the dom(�1)\ dom(�2) = ;. The ordering of the variables in � is irrelevant
here. If we wanted to maintain them (say, because there are type variables
present) then we would use a merge operator between the two contexts
instead. Nevertheless, in the direction we usually read the rules it would be
a split operator.

When we look up variables, there cannot be other variables in the context
because they would not be used and therefore not be linear.

x : ⌧ � x : ⌧
hyp

Eager Linear Pairs ⌧ ⌦ �. Eager linear pairs are written as ⌧ ⌦ �. The rules
are straightforwardly patterned after previous rules, keeping in mind that
for the destructor (case), the variables standing for the components of the
pair must be linear.

�1 � e1 : ⌧1 �2 � e2 : ⌧2

�1,�2 � he1, e2i : ⌧1 ⌦ ⌧2
⌦I

� � e : ⌧1 ⌦ ⌧2 �0, x1 : ⌧1, x2 : ⌧2 � e0 : ⌧ 0

�,�0 � case e (hx1, x2i ) e0) : ⌧ 0
⌦E

The nullary version of pairs, the unit is written as 1 and the rules are the
nullary version of the binary rules above (see Section 4).
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Linear Sums ⌧ � �. Actually, we will show the labeled, variadic version
�i2I(i : ⌧i). In the constructor rule �I , there is not much to consider.

� � e : ⌧j

� � j · e : �i2I(i : ⌧i)
�I

For the destructor (case) we need to consider the same as for the conditional
in the last section: only one branch of the case will be taken, so all branches
must be checked with the same linear context.

� � e : �i2I(i : ⌧i) (for all i 2 I) �0, xi : ⌧i � e0i : ⌧
0

�,�0 � case e (i · xi ) e0i)i2I : ⌧ 0
�E

Recursion. The remaining type constructors follow similar patterns so
we omit the details (see Section 4 for a listing). Recursion, however, is
interesting. The computation rule for fixed points is

fix f. e 7! [fix f. e/f ]e

This already departed from the pattern of the other rules. For one, we
substitute an expression (fix f. e) for a variable f in an expression e, while
all the other rules just substitute values for variables. For another, it is not
attached to a particular type constructor and can always be applied.

There are several sources of operational “nonlinearity” in this rule. First,
even if f occurs only once in e, it is replaced by another expression (fix f. e)
containing e, thereby duplicating e. Also, when we define a recursive
function we would like to make multiple recursive calls and still consider
the function linear.

For example, the function that takes a bit string (usually considered just
a binary number) and flips every bit should be linear: each bit of the input
string is read and a corresponding bit written to the output.

bits = ⇢bits. (b0 : bits)� (b1 : bits)� (e : 1)

flip : bits ( bit

flip = �x. case (unfold x) ( b0 · y ) fold (b1 · flip y)
| b1 · y ) fold (b0 · flip y)
| e · y ) fold (e · y) )

Note that there is no recursive call to flip in the third branch and yet we
should consider the function linear. In order to formally represent this,
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we have to nonlinear variables to the context, which can be propagated to
multiple premises of a rule and may be left over in rules with no premises.
Moreover, since the body of the recursively defined expression is duplicated
when it is unwound, it may not depend on any linear variables.

�U, fU : ⌧ � e : ⌧

�U � fix f. e : ⌧
rec

Here, the subscript U means the variable is unrestricted (that is, non necessar-
ily linear), and �U stands for a context where all variables are unrestricted.
The rules for variables, for example, then would become

�U, x : ⌧ � x : ⌧
hyp

�U, xU : ⌧ � x : ⌧
hypU

With these rules (and the straightforward ones for fold and unfold) the flip
function can indeed be checked as linear.

This example is also remarkable because a tiny change in the last branch
of the conditional

flip : bits ( bit

flip = �x. case (unfold x) ( b0 · y ) fold (b1 · flip y)
| b1 · y ) fold (b0 · flip y)
| e · y ) fold (e · h i) ) % bug here!

makes this function now nonlinear: y is not used. Besides the code shown
earlier, we can also fix the problem by using y : 1.

flip : bits ( bit

flip = �x. case (unfold x) ( b0 · y ) fold (b1 · flip y)
| b1 · y ) fold (b0 · flip y)
| e · y ) case y (h i ) fold (e · h i)) )

4 Linear Rule Summary

The syntax for the language of expression does not change, but the language
of types is new.

Linear types ⌧ ::= ⌧1 ( ⌧2 | ⌧1 ⌦ ⌧2 | 1 | �i2I(i : ⌧i) | ⇢↵. ⌧ | ↵

The definition of values and the rules for evaluation remain the same as for
our nonlinear functional language.
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We name the propositional rules I (for introduction, representing a
constructor for a type) and E (for elimination, representing a destructor for
a type). Missing here are the unrestricted variables that would be needed
for recursion.

x : ⌧ � x : ⌧
hyp

�, x : ⌧ � e : �

� � �x. e : ⌧ ( �
(I

�1 � e1 : ⌧2 ( ⌧1 �2 � e2 : ⌧2

�1,�2 � e1 e2 : ⌧1
(E

�1 � e1 : ⌧1 �2 � e2 : ⌧2

�1,�2 � he1, e2i : ⌧1 ⌦ ⌧2
⌦I

� � e : ⌧1 ⌦ ⌧2 �0, x1 : ⌧1, x2 : ⌧2 � e0 : ⌧ 0

�,�0 � case e (hx1, x2i ) e0) : ⌧ 0
⌦E

· � h i : 1
1I

� � e : 1 �0 � e0 : ⌧ 0

�,�0 � case e (h i ) e0) : ⌧ 0
1E

(j 2 I) � � e : ⌧j

� � j · e : �i2I(i : ⌧i)
�I

� � e : �i2I(i : ⌧i) (for all i 2 I) �0, xi : ⌧i � e0i : ⌧
0

�,�0 � case e (i · xi ) e0i)i2I : ⌧ 0
�E

� � ei : ⌧i (for all i 2 I)

� � h|i) ei|ii2I : Ni2I(i : ⌧i)
NI

� � e : Ni2I(i : ⌧i) (j 2 I)

� � e.j : ⌧j
NE

� � e : [⇢↵. ⌧/↵]⌧

� � fold e : ⇢↵. ⌧
⇢I

� � e : ⇢↵. ⌧

� � unfold e : [⇢↵. ⌧/↵]⌧
⇢E

5 Linear Typing of Processes

We didn’t prove preservation and progress for linear types. While they
are still satisfied, they are not satisfying: we haven’t changed any of the
dynamics of programs! Linear types, so far, “don’t buy us anything”.

In this lecture we assign linear types to processes, so that the translation
of a linearly typed functional expression becomes a linearly typed process.
Then we show that executing a linearly typed process does not require a
garbage collector since we can eagerly deallocate cells when they are read.
In other words, the right level of abstraction to benefit from linear typing is
at a level where memory is made explicit.
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Linear typing, though, is too restrictive so what we actually want is a
language that combines linear with nonlinear typing. In this combination,
linearly typed cells are ephemeral, while other cells remain persistent as in
our original semantics for processes. We probably will not have time to cover
such a language in this course, but refer you to a recent draft paper [PP20].
Here, we just present purely linear typing.

Our judgment is
� � P :: (z : �)

where � contains linear variables. The destination z in the succedent is
written to exactly once (as before), but it will also be read exactly once.
Therefore, the rule for spawn/allocate is

� � P :: (x : ⌧) �, x : ⌧ � Q :: (z : �)

�,�0 � x P ; Q :: (z : �)
spawn

In the computation rule, we just create a fresh cell as before.

proc d (x P ; Q) 7! proc c ([c/x]P ), proc d ([c/x]Q) (c fresh)

The rule for variables: one that reads from an ephemeral (linear) cell and
deallocates it.

y : ⌧ � xW  yR :: (x : ⌧)
move

Computationally, this first rule moves while the second one copies.

cell c W, proc d (d c) 7! cell d W (move)

Eager Linear Pairs. As an example for linear typing, we use pairs. In
general, we write linear typing rules as left rules (if the type constructor
appears in the antecedent) and right rules (if the type constructor appears in
the succedent). Note that left rules always read from memory, while right
rules always write to memory.

x1 : ⌧1, x2 : ⌧2 � zW .hx1, x2i :: (z : ⌧1 ⌦ ⌧2)
⌦R0

�, x1 : ⌧1, x2 : ⌧2 � P :: (z : �)

�, x : ⌧1 ⌦ ⌧2 � case xR (hx1, x2i ) P ) :: (z : �)
⌦L

Operationally, the case rule reads from memory and passes it to the continu-
ation. These rules are general for all positive types. The only difference from
before is that the cell that is read is ephemeral and therefore “deallocated”.
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proc d (dW .V ) 7! cell d V (write/pos)
cell c V, proc d (case cR K) 7! proc d (V .K) (read/pos)

where
Values V ::= hd1, d2i | . . .
Conts K ::= (hx1, x2i ) P ) | . . .

with
hd1, d2i . (hx1, x2i ) P ) = [d1/x1, d2/x2]P

Linear Sums. They follow the pattern of the eager pairs, since they are a
positive type.

j 2 I

y : ⌧j � xW .(j · y) :: (x : �i2I(i : ⌧i))
�R0

(for all i 2 I) �, yi : ⌧i � Pi :: (z : �)

�, x : �i2I(i : ⌧i) � case xR (i · yi ) Pi)i2I :: (z : �)
�L

where
j · d . (i · yi ) Pi)i2I = [d/yj ]Pj

Linear functions. Since functions are a negative type, the case constructs
writes a continuation to memory.

�, y : ⌧ � P :: (z : �)

� � case xW (hy, zi ) P ) :: (x : ⌧ ( �)
(R

x : ⌧ ( �, y : ⌧ � xR.hy, zi :: (z : �)
(L0

This time, we have to provide a second set of rules since the roles of values
and continuations are flipped.

proc d (case dW K) 7! cell d K (write/neg)
cell c K, proc d (dR.V ) 7! proc d (V .K) (read/neg)

where the reduction hd1, d2i . (hy, zi ) P ) has already been defined.
The summary of all the rules for linear processes can be found in the

linear rule sheet.
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Recursion. We assume all functions can be mutually recursive and are
defined at the top level and have no other free variables. Then we translate
each definition

func = �x. e

as
!cell func (hx, zi ) JeK z)

where
JfuncK d = (dW  funcR)

Slightly more generally, if we want to allow mutually recursive definitions
for arbitrary negative types constructed at the top level, we would translate
each definition

f = e

to
!cell f K for JeK d0 = case d0 K

Under this view, functions become like constants that are visible throughout
the program, similarly to the specific treatment we have given fixed points.

6 Example: Bit Flipping Revisited

With the treatment of recursion from the end of the previous section, the
(linear) bit flipping program becomes (eliding uses of fold):

flipK = (hx, yi ) case xR (b0 · x0 ) y0  flipR.hx0, y0i
yW .(b1 · y0)

| b1 · x0 ) y0  flipR.hx0, y0i
yW .(b0 · y0)

| e · u) zW .(e · u) ) )

where the initial state of running the program contains

!cell flip flipK

This is now entirely linearly typed, except for the references to flip.
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7 Look Ma, No Garbage!

With linear typing, cells are deallocated as they are used. For example, the
flip program started with a state such as

!cell flip flipK ,
cell c4 h i, cell c3 (e · c4), cell c2 (fold c3),
cell c1 (b0 · c2), cell c0 (fold c1),
proc d0 (flipR.hc0, d0i)

will end with a state

!cell flip flipK ,
cell c4 h i, cell d3 (e · c4), cell d2 (fold d3),
cell d1 (b1 · d2), cell d0 (fold d1)

We have executed here the version that does not explicitly copy the unit
element to a new cell. Note that all cells, except for flip, are reachable from
d0, the initial destination of the call.

In general, if we started with an empty configuration (again, excepting
only the recursive functions), as would be the case for the translation of

Jflip (fold (b0 · (fold (e · h i))))K d0

all cells in the resulting state would be reachable from d0 as shown in this
example.

In order to prove such a result we need to make the typing of config-
urations explicit and then examine the change in configurations during
computation. We have:

Configurations C ::= · | C1, C2 | proc d P | cell c W

where we omit the persistent cells for closed, top-level functions. We imagine
they are defined in a global context. The linear typing judgment then has
the form

� � C :: �0

for a configuration that writes to �0 and reads from �. As before, any
addresses in � not read by a process in C are passed on to �0 to be read by a
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process further on the right.

� � (·) :: �
tp/empty

� � P :: (d : ⌧)

�0,� � proc d P :: (�0, d : ⌧)
tp/proc

� � cW .V :: (c : ⌧)

�0,� � cell c V :: (�0, c : ⌧)
tp/cell/val

� � case cW K :: (c : ⌧)

�0,� � cell c K :: (�0, c : ⌧)
tp/cell/cont

� � C1 :: �1 �1 � C2 :: �2

� � (C1, C2) :: �2

tp/join

8 Progress and Preservation

Progress is essentially unchanged from before.

Theorem 1 If · � C :: � then either C is final (consists only of cells) or C 7! C0

for some C0.

The preservation theorem is the interesting one. In case of linearly typed
processes, the cells defined (or promised to be defined by a process) does
not change throughout the computation!

Theorem 2 If � � C :: �0 and C 7! C0 then � � C :: �0.

Contrast this with the previous statement of preservation where the
output context may grow when a new cell is allocated.

The form of the preservation theorem now means that if we start, for
example, with · � C :: (d0 : 1) then any resulting final configuration C 7!⇤ F
still has the same type. Since there are only ephemeral cells in F , it must
be of the form F 0, cell d0 W for some F 0 and W . Since d0 : 1, it follows by
inversion that W = h i. Moreover, · � F 0 :: (·). Again by inversion we find
F 0 = (·), so the whole configuration consists of just cell d0 h i.

Looking at the typing rules we can see that in general the context � acts
like a frontier for an algorithm to traverse a tree with root d0, the initial
destination. It must eventually be empty which shows that every ephemeral
cell is reachable and no garbage is created.

Exercises

Exercise 1 Write a linear increment function on natural numbers in binary
representation.
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Exercise 2 Recall the definition of a purely positive type, updated to reflect
the notation for linear types.

⌧+ ::= 1 | ⌧+1 ⌦ ⌧+2 | �i2I(i : ⌧
+
i ) | ⇢↵+. ⌧+ | ↵+

Even in the purely linear language, it is possible to copy a value of purely
linear type. Define a family of functions

copy⌧+ : ⌧+ ( (⌧+ ⌦ ⌧+)

such that copy⌧+ v 7!⇤ hv, vi for every v : ⌧+. You do not need to prove this
property, just give the definitions of the copy functions. Your definitions may
be mutually recursive.

Exercise 3 A type isomorphism is linear if the functions Forth and Back are
both linear. For each of the following pairs of types provide linear functions
witnessing an isomorphism if they exist, or indicate no linear isomorphism
exists. You may assume all functions terminate and use either extensional
or logical equality as the basis for your judgment.

1. ⌧ ( (� ( ⇢) and � ( (⌧ ( ⇢)

2. ⌧ ( (� ( ⇢) and (⌧ ⌦ �)( ⇢

3. ⌧ ( (� ⌦ ⇢) and (⌧ ( �)⌦ (⌧ ( ⇢)

4. (⌧ � �)( ⇢ and (⌧ ( ⇢)⌦ (� ( ⇢)

5. (1� 1)( ⌧ and ⌧ ⌦ ⌧

Exercise 4 Write out the following theorems, updated to the purely linear
language (where only recursively defined variables are nonlinear). We
change neither the definition of value nor the rules for stepping from our
previous language that does not employ linearity.

1. Canonical forms for types (, ⌦, 1, �, and ⇢. No proofs are needed.

2. The substitution properties, in a form sufficient needed for preserva-
tion. No proofs are needed.

3. The preservation property for evaluation of closed linear expressions.
Show the proof cases for linear functions.

4. The progress property for closed linear expressions. Show the proof
cases for linear functions.
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5. Where do these properties and their proofs differ when compared to
our language that does not enforce linearity?

Exercise 5 Prove that � � e : ⌧ implies � � JeK d :: (d : ⌧). You only need
to show the cases relevant for functions (�x. e, e1 e2 and variables x).

Exercise 6 Write a linear function inc on the binary representation of natural
numbers.

1. Provide the code as a functional expression.

2. Following the conventions of this lecture, show the result of the trans-
lation into a process expression. You may use the optimization we
presented here. Concretely, define incK and inc so that the program
representation as a configuration would be !cell inc incK .

3. Show the initial and final configuration of computation for increment-
ing the number 1 represented as fold (b1 · (fold (e · h i))).
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Abstract Syntax

Types ⌧ ::= ⌧1 ( ⌧2 | Ni2I(i : ⌧i) | ⌧1 ⌦ ⌧2 | 1 | �i2I(i : ⌧i) | ⇢↵. ⌧
Contexts � ::= · | �, x : ⌧ (all variables distinct)

Processes P ::= x P ; Q allocate/spawn

| xw  yR move

| xW .V | case xR K (1,⌦,�, ⇢)
| xR.V | case xW K ((,N)

Small values V ::= h i | ha1, a2i | i · a | fold a
Continuations K ::= (h i ) P ) | (hx1, x2i ) P ) | (i · xi ) Pi)i2I | (fold x) P )

Cell contents W ::= V | K

Configurations C ::= · | C1, C2 | proc d P | cell c W

Judgments

� � P :: (z : �) process P reads from � and writes to z : �
� � C :: �0

configuration C reads from � and writes to �0

C final configuration C is final (consists only of cells)

Theorems
Preservation. If � � C :: �0

and C 7! C 0
then � � C 0 :: �0

.

Progress. If · � C :: � then either C 7! C 0
for some C 0

or C final.

Statics, Allocate and Move

� � P :: (x : ⌧) �0, x : ⌧ � Q :: (z : �)

�,�0 � (x P ; Q) :: (z : �)
tp/alloc

y : ⌧ � xW  yR :: (x : ⌧)
tp/move
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Statics, Positive Types

· � xW .h i :: (x : 1)
w/unit

� � P :: (z : �)

�, x : 1 � case xR (h i ) P ) :: (z : �)
r/unit

y : ⌧, z : � � xW .hy, zi :: (x : ⌧ ⌦ �)
w/pair

�, x1 : ⌧1, x2 : ⌧2 � P :: (z : �)

�, x : ⌧1 ⌦ ⌧2 � case xR (hx1, x2i ) P ) : (z : �)
r/pair

(j 2 I)

y : ⌧j � xW .(j · y) :: (x : �i2I(i : ⌧i))
w/tag

�, yi : ⌧i � Pi :: (z : �) (for all i 2 I)

�, x : �i2I(i : ⌧i) � case xR (i · yi ) Pi)i2I :: (z : �)
r/tag

y : [⇢↵. ⌧/↵]⌧ � xW .(fold y) :: (x : ⇢↵. ⌧)
w/fold

�, y : [⇢↵. ⌧/↵]⌧ � P :: (z : �)

�, x : ⇢↵. ⌧ 2 � � case xR (fold y ) P ) :: (z : �)
r/fold

Statics, Negative Types

�, y : ⌧ � P :: (z : �)

� � case xW (hy, zi ) P ) :: (x : ⌧ ( �)
w/fun

x : ⌧ ( �, y : ⌧ � xR.hy, zi :: (z : �)
r/fun

� � Pi :: (zi : ⌧i) (for all i 2 I)

� � case xW (i · zi ) Pi)i2I :: (x : Ni2I(i : ⌧i))
w/record

(j 2 I)

x : Ni2I(i : ⌧i) � xR.(j · z) :: (z : ⌧j)
r/record

Statics, Configurations

� � P :: (c : ⌧)

�0,� � proc c P :: (�0, c : ⌧)
tp/proc

� � cW .V :: (c : ⌧)

�0,� � cell c V :: (�0, c : ⌧)
tp/cell/val

� � case cW K :: (c : ⌧)

�0,� � cell c K :: (�0, c : ⌧)
tp/cell/cont

� � (·) :: �
tp/empty

� � C1 :: �1 �1 � C2 :: �2

� � (C1, C2) :: �2

tp/join

(·) final
fin/empty

C final

(C, cell c W ) final
fin/cell
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Dynamics

proc d (x P ; Q) 7! proc c ([c/x]P ), proc d ([c/x]Q) (alloc/spawn, c fresh)
cell c W, proc d (dW  cR) 7! cell d W (move)

proc d (dW .V ) 7! cell d V (write: ⌦, 1,�, ⇢)
cell c V, proc d (case cR K) 7! proc d (V . K) (read: ⌦, 1,�, ⇢)

proc d (case dW K) 7! cell d K (write: (,N)
cell c K, proc d (cR.V ) 7! proc d (V . K) (read: (,N)

h i . (h i ) P ) = P
hc1, c2i . (hx1, x2i ) P ) = [c1/x1, c2/x2]P

j · c . (i · xi ) Pi)i2I = [c/xj]Pj

fold c . (fold x) P ) = [c/x]P
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Lecture Notes on
Message-Passing Concurrency

15-814: Types and Programming Languages
Frank Pfenning

Lecture 24
Tuesday, December 1, 2020

1 Introduction

So far, we have viewed concurrency through the lens of shared memory.
That’s because there is a direct way of translating expressions into processes
that make memory allocation as well as reading and writing explicit. The
usual sequential dynamics can be recovered easily, as pointed out in Section
L21.5 and Exercise L21.4, but concurrency is in fact most natural. Never-
theless computation is quite pure, not covering mutable references, but see
Lecture 22 for an approach to adding this to a call-by-value language.

Communication in shared memory takes the form of writing to and read-
ing from shared cells. However, there are many situations where processes
that execute concurrently do not have a shared address space but need to
communicate with each other via messages. And even if shared memory
is available, message-passing is a useful, perhaps higher-level abstraction
that may prevent certain kinds of errors. For example, the Go concurrency
slogan1 exhorts:

Do not communicate by sharing memory; instead, share memory by

communicating.

So, given our type-based approach, can we model message-passing con-
currency? The answer to this rhetorical question is of course “Yes!” In
fact, the whole approach to concurrency we have taken in this course origi-
nated by examining message-passing concurrency through the lens of linear

1https://golang.org/doc/effective_go.html
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L24.2 Message-Passing Concurrency

logic [CP10, CPT16]. The adaption to shared memory did not come until
later [PP20].

There are different computational models for message-passing concur-
rency, for example, actors [Agh85] or the ⇡-calculus [MPW92]. Our model
resembles the asynchronous ⇡-calculus [Bou92] in that a sender can proceed
immediately, while a recipient blocks until a message is received. Unlike the
asynchronous ⇡-calculus our calculus enforces that message are received
in the order they are sent, which is essential for type soundness (that is,
preservation and progress).

2 Reinterpreting Process Typing

The key step towards message-passing concurrency from where we are
is to reinterpret the typing judgment for processes. With shared-memory
concurrency we have

x1 : ⌧1, . . . , xn : ⌧n| {z }
read from

� P :: (y : �)| {z }
write to

where all variables xi and y stand for addresses in shared memory. The pro-
cess P reads from the xi and writes to y. Linearity ensured that a terminating
process is guaranteed to read all the xi and write to y.

With message-passing concurrency, each variable stands for a channel for

bidirectional communication,

x1 : ⌧1, . . . , xn : ⌧n| {z }
use

may send or recv

� P :: (y : �)| {z }
provide

may send or recv

where the channel y on the right represents a service provided and the
channels xi on the left a service used. We say P is a provider for y and a client

to all xi. It is now the types � and ⌧i that determine whether messages are
sent or received.

The rule to allocate or spawn (called cut under its logical interpreta-
tion) still has the same effect, except that it allocates a fresh private channel

connecting a provider P to its client Q instead of a memory cell.

� � P :: (x : ⌧) �0, x : ⌧ � Q :: (y : �)

�,�0 � (x P ; Q) :: (y : �)
cut

LECTURE NOTES TUESDAY, DECEMBER 1, 2020



Message-Passing Concurrency L24.3

Because the channel x here is shared between P and Q, any type ⌧ prescribes
two complementary actions: one by the provider (say, a send) another one
by the client (say, a corresponding receive).

The dynamics is as before, except we no longer record a distinguished
destination since communication is bidirectional.

proc (x P ; Q) 7! proc ([c/x]P ), proc ([c/x]Q) (c fresh)

In Section 8 we return to the identity rule, which corresponded to moving a
value from one cell to another but now forwards messages from one channel
to another.

3 Tagged Sums Become Internal Choice

Taking the provider’s perspective, constructs associated with positive types
will send a message. Therefore, from the client’s perspective, they will receive.

Intuitively, we think of a sequence of messages on a channel as beads
on a string. While this image is correct, we have to be careful that multiple
messages on a channel arrive in the order they were sent—otherwise, type
safety might fail when consecutive messages have different type. The way
we accomplish this is that every message (except one that closes a channel)
carries a continuation channel for further communication. In an implementa-
tion, this could be achieved with an explicit message queue, which in our
formulation is an emergent structure rather than a primitive.

The tagged sum
P

i2I(i : ⌧i) corresponds to internal choice �i2I(i : ⌧i). A
provider of a channel x : �i2I(i : ⌧i) will send a label j 2 I along x and a
continuation channel of type ⌧j . This is called internal choice because the
provider can choose which label to send.

(j 2 I)

y : ⌧j � x.(j · y) :: (x : �i2I(i : ⌧i))
�R0

Correspondingly, the recipient will branch based on the label received.

�, yi : ⌧i � Pi :: (z : �) (for all i 2 I)

�, x : �i2I(i : ⌧i) � case x (i · yi ) Pi)i2I :: (z : �)
�L

These linear rules are exactly as before. In order to describe the changed
dynamics, we need a second form of semantic object msg c V which means
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that the small value V is a message on channel c. Then we have

proc (c.(j · c0)) 7! msg c (j · c0)
msg c (j · c0), proc (case c (i · yi ) Pi)i2I) 7! proc ([c0/yj ]Pj)

Observe the significance of linearity here: in the second rule, the message is
ephemeral so it is removed from the configuration so that now the next mes-
sage can be received. Meanwhile, the continuation channel c0 is substituted
for yj , which is the placeholder for the continuation channel.

4 Generalizing to Other Types

Before we write out our bit flipping pipeline once again (now in a message-
passing interpretation), we can summarize the possible configurations and
even the transition rules. Small values V are as before, except they are
comprised of channels, not addresses. Continuation processes K are also as
before (see the Lecture 23 Rule Sheet for reference).

Processes P ::= x P ; Q spawn
| x.V send
| case x K receive

Configurations C ::= · | C1, C2 | proc P | msg c V

The dynamics then, so far, consists of only three rules, where we have
speculatively generalized, sending arbitrary V and passing them to arbitrary
K when received.

proc (x P ; Q) 7! proc ([c/x]P ), proc ([c/x]Q) (c fresh)
proc (c.V ) 7! msg c V (send)
msg c V, proc (case c K) 7! proc (V . K) (receive)

In fact, the last two rules will be sufficient for all positive and negative types!
A perhaps unexpected aspect of these rules is that a process that sends

a message terminates. That works out because in programs we create a
continuation channel c0 and a very short-lived process that corresponds to
just a message. This is actually quite similar to the asynchronous ⇡-calculus
where there is no explicit construct for sending a message, just parallel
composition with a process that (intuitively) represents a message.
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5 The Bit-Flipping Pipeline Revisited

In order to consider recursively defined processes, we allow global declara-
tions of f in a fixed signature ⌃ in the form

x1 : ⌧1, . . . , xn : ⌧n � f :: (y : �)
y  f x1 . . . xn = P

where the process expression P is typed with

x1 : ⌧1, . . . , xn : ⌧n � P :: (y : �)

We then add to the language of processes a call

d f c1 . . . cn

which is typed as follows (taking care to allow the concrete arguments to be
different from the names of the parameters):

(x1 : ⌧1, . . . , xn : ⌧n � f :: (y : �)) 2 ⌃

c1 : ⌧1, . . . , cn : ⌧n � f :: (d : �)
call

In the concrete example of the bit-flipping pipeline we have

bits ⇠= (b0 : bits) + (b1 : bits)

where we elide the fold constructor in the examples to simplify the code, as
we have done in recent lectures.

Then the pipeline below

consists of two running processes, both executing flip. The channel y is
a private channel connecting these two processes. We use a small dot to
indicate the channel provided by a process (y for the process on the left and
z for the process on the right).
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x : bits � flip :: (y : bits)
y  flip x = . . . % to be written later

x : bits � flip2 :: (z : bits)
z  flip2 x =
y  (y  flip x)
z  flip y

The first line in the definition of flip2 creates a new channel y, which is
provided by the first flip process and used by the second. Because this
pattern is pervasive, we use a derived notation that combines a cut and
abbreviate x (x f y1 . . . yn) ; Q by x f y1 . . . yn ; Q.

x : bits � flip2 :: (z : bits)
z  flip2 x =
y  flip x
z  flip y

We can quickly verify that this definition is linear: x is used in the first call
to flip which provides y, used in the second call to flip.

Now the code for flip itself receives a bit along channel x, together with
a continuation channel x0.

y  flip x =
case x (b0 · x0 ) . . .

| b1 · x0 ) . . .
)

Before we can send the negated bit b1 along y, we have to create the contin-
uation channel for it. We obtain this from the recursive call, because after
the interaction the flip process has continuation channels x0 and y0 on the
two sides. The handling of b1 is symmetric.

y  flip x =
case x (b0 · x0 ) y0  flip x0 ;

y.(b1 · y0)
| b1 · x0 ) y0  flip x0 ;

y.(b0 · y0)
)
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In pictures:

The configuration shown can make the following transition:

msg x0 (b1 · x00),msg x (b0 · x0), proc (y  flip x), proc (z  flip y)
7!⇤ msg x0 (b1 · x00), proc (y0  flip x0),msg y (b1 · y0), proc (z  flip y)

Because we have concurrent language, the two messages to the two pro-
cesses (in the middle of the picture) can proceed independently:

msg x0 (b1 · x00), proc (y0  flip x0),msg y (b1 · y0), proc (z  flip y)
7!⇤ proc (y00  flip x00),msg y0(b0 · y00), proc (z0  flip y0),msg z (b0 · z0)

6 Lazy Records Become External Choice

In the process language with shared memory, lazy records Ni2I(i : ⌧i) write
a continuation K = (i ·xi ) Pi)i2I to memory. Here, in the message passing
setting, a process providing a channel x : Ni2I(i : ⌧i) receives one of the
labels j 2 I and continuation channel y : ⌧j . It is dual to �i2I(i : ⌧i) in the
sense that it just reverses the role of provider and client. We call it external

choice since the client can make the choice which label j to send.
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As for internal choice, the typing rules remain the same.

� � Pi :: (yi : ⌧i) (for all i 2 I)

� � case x (i · yi ) Pi)i2I :: (x : Ni2I(i : ⌧i))
NR

1em]

(j 2 I)

x : Ni2I(i : ⌧i) � x.(j · y) :: (y : ⌧j)
NL0

Dynamically, the external choice is already handled with the rules

proc (c.V ) 7! msg c V (send)
proc (case c K),msg c V 7! proc (V . K) (receive)

even though the direction of the message flow has changed: it now goes to
the provider from the client.

7 Queues Revisited

Before revisiting queues, let’s summarize the message-passing interpreta-
tion of the various type constructors. Note that the statics is unchanged
from Lecture 23 and the dynamics (excepting only the identity) is presented
in Section 4. Furthermore, each provider action implies a matching comple-
mentary client action.

Type Provider Action Continuation Channel

x : �i2I(i : ⌧i) send label j x0 : ⌧j
x : ⌧1 ⌦ ⌧2 send channel y : ⌧1 x0 : ⌧2
x : 1 send h i none

x : ⇢↵. ⌧ send fold x0 : [⇢↵. ⌧/↵]⌧
x : Ni2I(i : ⌧i) receive label j x0 : ⌧j
x : ⌧1 ( ⌧2 receive channel y : ⌧1 x0 : ⌧2
x : �↵. ⌧ receive fold x0 : [�↵. ⌧/↵]⌧

Here, the corecursive types �↵. ⌧ is a lazy alternative to ⇢↵. ⌧ (see Exercise
L20.3). Here reuses the fold constructor and pattern since it is dual to ⇢↵. ⌧ .

A possible type for queues then is

queue ↵ ⇠= (enq : ↵( queue ↵)
N (deq : (none : 1)

� (some : ↵⌦ queue ↵))
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The elements of the queue are channels of type ↵. Compared the previous
incarnation of queues (Exercise L22.3), we close the channel and terminate
the providing process if there is an attempt to dequeue from the empty
queue. This is expressed in the type 1. In the linear setting, we would
otherwise need a separate choice for the client to deallocate the queue, and
that would only be possible if the queue is empty. We didn’t make this
explicit here, but if we define queue explicitly it would be as a corecursive
type queue = �↵. �q. . . ..

We implement the queue as a bucket brigade, with the first element at the
head of the queue. A new element to be enqueued is then passed all the way
to the back of the queue. A queue with elements x1, . . . xn can be depicted
as follows.

All the channels r1, . . . , rn have type queue ↵. We see we need two kinds of
processes: one, elem x r that holds an element x, and empty marking the end
of the queue.
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We define the elem process.

x : ↵, r : queue ↵ � elem :: (q : queue ↵)
q  elem x r =
case q ( enq · q0 ) case q0 (hy, q00i ) r0  r.(enq · r0) ;

r00  r0.hy, r00i ;
q00  elem x r00 )

| deq · q0 ) q00  q00.hx, ri ;
q0.(some · q00) )

In case the client chooses to enqueue, the transition of the configuration can
be depicted as follows.

As indicated by the green arrows, the messages here flow from right to left
(from client to provider), unlike the bit flipping example where the flowed
from left to right. As indicated in the table at the beginning of this section,
messages of positive type flow from the provider to the client and message
of negative type flow from the client to the provider.

In the case of the dequeue the provider has to respond to the client, so
the direction of message flow changes. Moreover, the process holding the
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element x terminates, since that channel is returned to the client.

We did not have time to write this in lecture, but here is the code for the
empty process.

· � empty :: (q : queue ↵)
q  empty =
case q ( enq · q0 ) case q0 (hy, q00i ) r  empty ;

q00  elem y r )
| deq · q0 ) q00  q00.h i ;

q0.(none · q00) )

The action of the enqueue operation for the empty queue can be depicted
as follows:
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8 Move Becomes Forwarding

The one construct have not discussed yet is x y. In the shared memory
interpretation this either copied the contents of y to x (in the nonlinear
version) or moved the contents of y to x (in the linear version). Here it
forwards messages from one channel to another and terminates.

msg y V, proc (x y) 7! msg x V (positive types)
proc (x y),msg x V 7! msg y V (negative types)

9 Rule Summary

The small values V , continuations K and typing rules can be found in the
Lecture 23 Rule Sheet and remain unchanged.

The statics for configurations consists of the following rules.

� � P :: (c : ⌧)

�0,� � proc P :: (�0, c : ⌧)
tp/proc

� � c.V :: (d : ⌧)

�0,� � msg c V :: (�0, d : ⌧)
tp/msg

� � (·) :: �
tp/empty

� � C1 :: �1 �1 � C2 :: �2

� � (C1, C2) :: �2

tp/join

The dynamics has very few rules, since we have factored out the (unchanged)
passing of a value V to a continuation K.

proc (x P ; Q) 7! proc ([c/x]P ), proc ([c/x]Q) (spawn; c fresh)
proc (c.V ) 7! msg c V (send)
msg c V, proc (case c K) 7! proc (V . K) (receive)
msg d V, proc (c d) 7! msg c V (pos. forward)
proc (c d),msg c V 7! msg d V (neg. forward)
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1 Introduction

We have seen a number of benefits of types as an organizing principle in the
design of programming languages. When statically checked, they provide
the guarantees of type safety (summarized in the properties preservation and
progress) and characterize the results of evaluation (via the canonical forms

theorem). Static typing breaks down the properties of a whole program into
individually checkable properties of the expressions, functions, and modules
making up this program. They also allow us to express data abstraction
and representation independence in a way that it can be enforced by a
type-checker rather than just by convention.

So far, however, the properties that can be expressed in a type are rather
rudimentary when compared to complete specifications. For example, any
unary function on natural numbers has the type nat!nat, including varieties
such as the successor, predecessor, power of two, integer logarithm, etc.

In this lecture we explore how type theory supports the expression of a
whole range of program properties, from simple, recursive, and polymorphic

types we have seen so far to full “functional” program specifications. In
the next lecture we will see how to go even further and capture intensional

properties of programs, such as their computational complexity, entirely
within the type.

A key idea is that of a dependent type, that is, a type that may depend

on a value. General dependent type theory is highly expressive but also
highly complex. It necessarily blends programming with theorem proving,
which should not come as a surprise given our exploration of Types as
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Propositions in Lecture 15. Even an introductory treatment would require
a whole semester’s worth of lectures. Despite this complexity, dependent
type theories and related programming languages are becoming more wide-
spread, including, for example Nuprl [C+86], Coq [BC04], Agda [Nor07],
and Idris [Bra13].

Instead of tackling dependent type theories in their full generality, we
explore dependent refinement types [XP99] that avoid the need for general
theorem proving by restricting dependencies so that type-checking can
be accomplished by a decision procedure. In this way we preserve the
character of a programming language rather than asking the programmer
to also prove their program correct. This comes at a cost: there are many
program properties of interest that we will not be able to express.

2 Arithmetic Refinements

The particular instance of dependent refinement types we consider here are
arithmetic refinements, that is, types may be indexed by arithmetic expressions.
The exact language of arithmetic expressions is somewhat open-ended.
For example, we may want to preserve decidability and restrict ourselves
to Presburger arithmetic which has constants, addition, multiplication by a
constant, and the propositions including conjunction, disjunction, negation,
and quantification. Or we could allow more general expressions and “do
our best” with heuristics for proving arithmetic expressions.

Instead of using integers Z we will use natural numbers N, which is the
same as Z where every variable x is constrained by x � 0. Here are some
examples of arithmetically indexed types we can express:

list ↵ n Lists of length n
bin n Binary numbers of value n
nat n Unary numbers of value n
stack ↵ n Stack with n elements
incstream n Increasing streams of natural numbers � n
tree l u Trees of natural numbers x with l < x < u

In each of these cases, there are two challenges:

1. expressing the type itself so it accurately captures the property we care
about, and

2. giving correct types to the functions that operate on elements of the
type.
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That’s over and above the general challenge to tie together the language,
the type checker, and the decision procedure (or heuristic algorithm) for
deciding the validity of propositions in arithmetic.

3 Example: Lists Indexed by Length

We would like list ↵ n to be a type. So list is now a function that maps
types ↵ and natural numbers n to types. One can formally describe this via
so-called kinds for type constructors or type families as in the system F! [Gir71]
or the Calculus of Constructions [CH88]. We avoid a full formalization of
this since we would like to focus on programming aspects of indexed types.
Let’s start with a type

list ↵ ⇠= (nil : 1) + (cons : ↵⇥ list ↵)

Let’s first consider the cons branch. If the whole list has length n, then the
tail of the list has length n� 1:

list ↵ n ⇠= (nil : 1) + (cons : ↵⇥ list ↵ (n� 1))

We use the color blue to highlight all arithmetic expressions and propositions
that belong to the refinement layer. The above is not quite correct because
a list of length 0 may have a tail of length �1, so we need to enforce the
n � 1 � 0 in case that list is nonempty. We express this with a type in the
form of � ^ ⌧ where � is a proposition from arithmetic. We often refer to �
as a constraint.

list ↵ n ⇠= (nil : 1) + (cons : n > 0 ^ ↵⇥ list ↵ (n� 1))

Finally, in the alternative nil we must constrain n to be 0, since nil always
represents a list of length zero.

list ↵ n ⇠= (nil : n = 0 ^ 1) + (cons : n > 0 ^ ↵⇥ list ↵ (n� 1))

Before we more rigorously express how do handle arithmetic propositions
and types such a � ^ ⌧ , let’s examine how they will be used. Let’s start with
the constructor functions nil and cons. We would like to have

nil : 8↵. list ↵ 0
nil = ⇤↵. fold (nil · h i)
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because nil constructs a list of length 0. Let’s walk through the typing
derivation of this.

...
↵ type ` (nil · h i) : (nil : 0 = 0 ^ 1) + (cons : 0 > 0 ^ ↵⇥ list ↵ (0� 1))

↵ type ` fold (nil · h i) : list ↵ 0
tp/fold

· ` ⇤↵. fold (nil · h i) : 8↵. list ↵ 0
tp/tplam

Note here that at the step where we unfolded the type we substituted 0 for
n, because the second index to list is 0. Using the rule for sums, we find

...
↵ type ` h i : 0 = 0 ^ 1

↵ type ` (nil · h i) : (nil : 0 = 0 ^ 1) + (cons : 0 > 0 ^ ↵⇥ list ↵ (0� 1))
tp/tag

↵ type ` fold (nil · h i) : list ↵ 0
tp/fold

· ` ⇤↵. fold (nil · h i) : 8↵. list ↵ 0
tp/tplam

At this point we have to show that 0 = 0, in general employing assumptions
from the context (although there are none here). This is a new judgment
from arithmetic, so we write it as � |= � true.

...
· |= 0 = 0 true ↵ type ` h i : 1

tp/unit

↵ type ` h i : 0 = 0 ^ 1
tp/and

↵ type ` (nil · h i) : (nil : 0 = 0 ^ 1) + (cons : 0 > 0 ^ ↵⇥ list ↵ (0� 1))
tp/tag

↵ type ` fold (nil · h i) : list ↵ 0
tp/fold

· ` ⇤↵. fold (nil · h i) : 8↵. list ↵ 0
tp/tplam

Fortunately, 0 = 0 is true, so this typing should be valid.
We observe here a new phenomenon, namely a typing rule that does not

change the expression. It is in part this property which makes this system
a system of type refinement rather than a full dependent type theory. In the
general form:

� |= � true � ` e : ⌧

� ` e : � ^ ⌧
tp/and/i

Note that not all the assumptions in � can actually be relevant to the truth
of �, but we will gloss over this detail here.
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Next, there should be counterpart, tp/and/e. Our form of conjunction
should be positive (as we will see shortly), so the elimination should in the
form of a case-like rule. However, this is difficult because we do not want
the expression e to change, but a case rule requires two expressions. Instead,
we build the elimination rule into pattern matching. Recall from Lecture 12:

Expressions e ::= . . . | case e (bs)
Patterns p ::= x | hp1, p2i | h i | i · p | fold p
Branches bs ::= · | (p ) e | bs)

There were two relevant judgments beyond typing of expressions:

Matching: � ` ⌧ . bs : � which expresses a subject of type ⌧ matches the
branches bs, all of which have type �.

Patterns: � � p : ⌧ which expresses that pattern p has type ⌧ .

This latter judgment was an early example of a linear judgment, because we
wanted every variable in � to occur exactly once in p.

� ` e : ⌧ � ` ⌧ . bs : �

� ` case e (bs) : �
case

�0 � p : ⌧ �,�0 ` e : � � ` ⌧ . bs : �

� ` ⌧ . (p ) e | bs) : �
tp/bs/alt

� ` ⌧ . (·) : �
tp/bs/none

x : ⌧ � x : ⌧
pat/var

�1 � p1 : ⌧1 �2 � p2 : ⌧2

�1,�2 � hp1, p2i : ⌧1 ⇥ ⌧2
pat/pair

· � h i : 1
pat/unit

(k 2 I) � � p : ⌧k

� � k · p :
P

i2I(i : ⌧i)
pat/inject

� � p : [⇢↵. ⌧/↵]⌧

� � fold p : ⇢↵. ⌧
pat/fold

We now add to the pattern typing the rule

�,� true � p : ⌧

� � p : � ^ ⌧
pat/and

In analogy with the typing rule for expressions, the pattern p does not
change in this rule.

Now let’s return to the constructor and see if we can type
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cons : 8↵. 8n.↵! list ↵ n! list ↵ (n+ 1)

Already we note that we need a universal quantifier over index expressions.
It’s not difficult to image what the rules for the universal quantifier might
look like:

�, n : N ` e : ⌧

� ` �n. e : 8x. ⌧
tp/nlam

� ` e : 8n. ⌧ � ` t : N
� ` e t : [t/x]⌧

tp/napp

�n. e value
val/nlam

e 7! e0

e t 7! e0 t
step/napp1

(�n. e) t 7! [t/n] e
step/napp/nlam

Here, t ranges over arithmetic terms. This is in effect the extension needed if
we wanted to generalize the Curry-Howard interpretation of intuitionistic
logic to include universal quantification, except that here we committed the
quantification to be over natural numbers. We do not evaluate arithmetic
terms because we think of them as serving the purpose of refined types, not
additional computations. In fact, it is also possible to remove abstraction
over and application to arithmetic terms from the language of expressions,
but this complicates type-checking significantly.

Returning to the cons constructor for lists, here is what are hoping for.

cons : 8↵. 8n.↵! list ↵ n! list ↵ (n+ 1)
cons = ⇤↵.�n.�x.�l. fold (cons · hx, li)

After discharging the abstractions into the context we arrive at the judgment

↵ type, n : N, x : ↵, l : list ↵ n ` fold (cons · hx, li) : list ↵ (n+ 1)

Unfolding the recursive type, this holds if we can show:

↵ type, n : N, x : ↵, l : list ↵ n `
(cons · hx, li) : (nil : . . .) + (cons : n+ 1 > 0 ^ ↵⇥ list ↵ ((n+ 1)� 1))

Selecting the cons alternative of the sum and noting that n : N |= n+ 1 > 0
we arrive at

↵ type, n : N, x : ↵, l : list ↵ n ` l : list ↵ ((n+ 1)� 1)

Clearly, this should hold because for every n : N we have that n = (n+1)�1
and therefore also list ↵ n = list ↵ ((n+ 1)� 1). Here, we think of equality
as meaning the two types are inhabited by exactly the same values (for every
↵ and n).

LECTURE NOTES THURSDAY, DECEMBER 3, 2020



Arithmetic Refinements L25.7

To handle this rigorously, we should allow a rule of type conversion and
some rules to formalize some notion of type equality (see Mini-Project 1.1
or [LBN17]). We should have at least the rule of type conversion and allow
provably equal index terms to be used interchangeably.

� ` ⌧ = ⌧ 0 � ` e : ⌧ 0

� ` e : ⌧
tp/conv

� ` ⌧ = ⌧ 0 � |= t = t0

� ` ⌧ t = ⌧ 0 t0
conv/idx

Different notions of type equality or subtyping are a vast subject, so we
just pragmatically assume we have at least the two rules above to allow
judgments such as the typing of cons and other examples.

4 Checking Recursive Functions

As a generic example of a recursive function, we consider typing the append
function for lists. We repeat the indexed type of lists for reference and the
expected type for append.

list ↵ n ⇠= (nil : n = 0 ^ 1) + (cons : n > 0 ^ ↵⇥ list ↵ (n� 1))

append : 8↵. 8n. 8k. list ↵ n! list ↵ k ! list ↵ (n+ k)

We first write the definition, which is straightforwardly extended from the
usual (unindexed) definition.

append = rec append.⇤↵.�n.�k.�l1.�l2.
case l1 ( fold (nil · h i) ) l2

| fold (cons · hx, l01i) ) cons ↵ ((n� 1) + k) x (append ↵ (n� 1) k l01 l2) )

Here, the recursive call to append is at n� 1 and k because l01 : list ↵ (n� 1).
This means the recursive call

append ↵ (n� 1) k l01 l2 : list ↵ ((n� 1) + k)

so the index argument to cons should be (n� 1) + k. However, for this to be
well-formed we need to know n > 0. Because l1 : list ↵ n, when we match l1
against fold (cons · hx, l0i) we find that

n > 0 true, x : ↵, l0 : list ↵ (n� 1) � fold (cons · hx, l0i) : list ↵ n

and we obtain the necessary assumption n > 0.
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The result of applying the cons constructor will have type ((n�1)+k)+1
and we have

n : N, k : N, n > 0 true |= ((n� 1) + k) + 1 = n+ k true

where n+ k is the required result type.
It remains to check the case of nil. In that case, pattern matching l1

against fold (nil · h i) obtains the information that n = 0. Then l2 : list ↵ k
and n : N, k : N, n = 0 true |= k = 0 + k true gives us the type-correctness of
the first branch.

It is a straightforward variation on this theme to check, for example, that
reverse preserves the length of the list.

5 Contradictory Constraints

Consider the type list ↵ 1. It describes a list with just one element. Conse-
quently, the following case statement should be cover all possible cases:

the : 8↵. list ↵ 1! ↵
the = ⇤↵.�l. case l (fold (cons · hx, fold (nil · h i)i) ) x)

For the sake of argument, say we added a nil branch:

the : 8↵. list ↵ 1! ↵
the = ⇤↵.�l. case l ( fold (cons · hx, fold (nil · h i)i) ) x

| fold (nil · h i) ) e )

Playing through the rules for pattern matching we note that when we reach
e it will be checked with

↵ type, l : list ↵ 1, 0 = 1 true ` e : ↵

Of course, we have no way to return an element of the parameter type ↵.
But we shouldn’t have to since we are in an impossible branch! There is
no value v such that v : list ↵ 1 and v = fold (nil h i). So type-checking this
branch should succeed because it is impossible for it ever to be taken. We
therefore have the rule

� |= ? true

� ` e : ⌧
tp/contra

By such reasoning, when the exhaustiveness of pattern matching is checked
then the absence of impossible branches should not be flagged, just like in
the first definition of the.
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6 Binary Numbers and Singleton Types

Numbers in binary representation present some new challenges. We would
like bin n be the type of binary numbers with value n. Note that the binary
numbers (or unary numbers) as recursive types are different from the natural
numbers N used in the index domain. In a fully dependent type system,
this does not have to be so, but it is more difficult to obtain the power of the
decision procedures for Presburger arithmetic.

Here is the first attempt

bin n ⇠= (e : n = 0 ^ 1)
+ (b0 : even n ^ bin (n/2))
+ (b1 : odd n ^ bin ((n� 1)/2))

But even though even n , 9k. 2k = n can be defined in Presburger arith-
metic, integer division can not (directly). So we introduce an existential
quantifier to span the condition and the recursive occurrence of the type.

bin n ⇠= (e : n = 0 ^ 1)
+ (b0 : 9k. n = 2k ^ bin k)
+ (b1 : 9k. n = 2k + 1 ^ bin k)

If we would like to prevent leading zeros in the representation we can
constrain k (or n) in the case of a bit 0.

bin n ⇠= (e : n = 0 ^ 1)
+ (b0 : 9k. k > 0 ^ n = 2k ^ bin k)
+ (b1 : 9k. n = 2k + 1 ^ bin k)

With the particular restriction we see two phenomena that didn’t exist with
lists:

1. There are values v : bin such that there is no index n such that v : bin n.
In other words, some values (namely those with leading zeros) are no
longer well-typed, sharpening the canonical form theorem.

2. Each type bin n is inhabited by exactly one value, namely the binary
representation of n. We call such a type a singleton type, characterizing
its value precisely.

We do not write any programs over refined binary numbers; see Exercise 1,
but we can state the types of the constructors:
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e : bin 0
b0 : 8n. n > 0 � bin n! bin (2n)
b1 : 8n. bin n! bin (2n+ 1)

We see that the type of b0 requires a constraint implication. Perhaps that is
not so surprising since we have a 9/8 duality but also related ^/� duality.
We complete our language in the next section to include the additional
quantifier.

7 Completing the Language

We summarize the language and supply the rules we have omitted so far.
As mentioned before, the language of arithmetic terms and propositions is
somewhat open-ended but with certain extensions we will lose decidability.

Types ⌧ ::= . . . | � ^ ⌧ | � � ⌧ | 9n. ⌧ | 8n. ⌧
Expressions e ::= . . . | ht, ei | �n. e | e t
Patterns p ::= . . . | hn, pi
Constants c ::= 0 | 1 | . . .
Arith. Terms t ::= c | t1 + t2 | t1 � t2 | c t | . . .
Arith. Props � ::= t1 = t2 | t1 > t2 | �1 ^ �2 | �1 � �2 | > | ? | 9n.� | 8n. �
Contexts � ::= . . . | �, n : N | �,� true

Besides the arithmetic entailment � |= � true we also use the judgment
� ` t : N, which checks that t is well-formed and that � |= t � 0 true.

� |= � true � ` e : ⌧

� ` e : � ^ ⌧
tp/and/i

�,� true � p : ⌧

� � p : � ^ ⌧
pat/and

�,� true ` e : ⌧

� ` e : � � ⌧
tp/imp/i

� ` e : � � ⌧ � |= �

� ` e : ⌧
tp/imp/e

� ` t : N � ` e : [t/n] ⌧

� ` ht, ei : 9n. ⌧
exists/i

�, n : N � p : ⌧

� � hn, pi : 9n.⌧
pat/exists

�, n : N ` e : ⌧

� ` �n. e : 8n. ⌧
forall/i

� ` e : 8n. ⌧ � ` t : N
� ` e t : [t/n]⌧

forall/e

� |= ? true

� ` e : ⌧
tp/contra
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8 Some Additional Types

In this section we represent the encoding of some additional types using
indexed refinement.

incstream n ⇠= 9k. k � n ^ (hd : bin k) N (tl : incstream k)
stack ↵ n ⇠= (push : ↵! stack ↵ (n+ 1))

N (pop : (none : n = 0 ^ 1) + (some : n > 0 ^ ↵⇥ stack ↵ (n� 1)))
tree l u ⇠= (leaf : 1) + (node : 9n. l < n ^ n < u ^ tree l n⇥ bin n⇥ tree n u)

Exercises

Exercise 1 Using the example for natural numbers in binary form, explore
the following functions. Highlight in each case the constraints that would
have to be checked to verify type correctness. Which of these are checkable
in Presburger arithmetic?

(i) Provide the type and write the implementation of the successor func-
tion.

(ii) Provide the type and write the implementation of the predecessor
function on positive numbers.

(iii) Provide the type and write the implementation of the addition func-
tions.

(iv) Provide the type and write the implementation of the exponential
function specified mathematically with exp2(x) = 2x.

Exercise 2 Give a definition for natural numbers in unary form so that every
type nat n is the singleton with the representation of n in unary form. Then
revisit the functions in Exercise 1.

Exercise 3 Write an implementation of stacks as specified in Section 8, per-
haps recycling an earlier implementation, explicit stating the indexed types
for every function you need. Isolate the constraints that have to be checked
in each case and verify that they are true.

Exercise 4 Specify the type of queues with n elements and revisit your
implementation of queues with two stacks. Does it type-check? You may
assume that the stack operations check according to the type in Section 8
and Exercise 3.
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Exercise 5 Consider the ordered trees of natural numbers as specified in Sec-
tion 8. These trees can be seen as an efficient representation of sets of natural
numbers, assuming they are sufficiently balanced (a requirement we ignore
in this exercise).

Attempt each of the following steps with the goal of completing them
all to arrive at an implementation where the ordering invariant of binary
search trees is enforced via type-checking. The ordering invariant states that
for a node with element n, all elements in the left subtree are strictly less
than n and all elements in the right subtree are strictly greater than n.

(i) Provide the type and implementation of empty for the empty binary
search tree.

(ii) Provide the type and write a function lookup to determine if an element
is in a given tree.

(iii) Provide the type and write a function insert to insert an element into a
given tree.

(iv) Write any functions you may need on binary numbers, making sure
they type-check.

(v) Discuss any difficulties or limitations with refinement types you en-
countered in parts (i)–(iii).

Exercise 6 Instead of the ordering invariant from Exercise 5 we may wish to
verify the balance invariant for the case of AVL trees. Specify a different type
of tree with sufficient information to express the balance invariant, write
implementations of lookup and insert (including the necessary rotations to
restore the balance invariant) and explore whether the implementation
type-checks.
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Lecture Notes on
Ergometric Types

15-814: Types and Programming Languages
Frank Pfenning

Lecture 26
Tuesday, December 8, 2020

1 Introduction

In the last lecture we introduced arithmetic refinements to capture some
internal invariants of data structures, including, for example, characterizing
their size. This information is critical to capture computational complexity
of functions or, in our case, processes. The key goal is to capture this
information in types, using the kind of conceptual tools and techniques we
have developed so far.

We carry out our development in the context of message-passing concur-
rency, capturing the total amount of work that a configuration of communi-
cating processes does. This may also be called the sequential complexity of the
program, because it is the complexity if all operations are performed one
at a time. Its counterpart is the span, or the parallel complexity, which arises
from the assumption that all operations that can be done in parallel (on an
abstract machine with arbitrarily many processors), will in fact be done in
parallel. Once both work and span are known one can derive some bounds
on running time based on the number of available processors using Brent’s
Theorem [Bre74]. Because the last true lecture in this course is cancelled
in favor of a seminar, we encourage you to read up on how to think about
parallel complexity in this context [DHP18a]. The development we present
in this lecture is a reformulation of a prior ergometric type system [DHP18b],
close to the one implemented in Rast [DP20].

The ingredients that come together to give a sound ergometric type
system are the following:
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Cost Model: We do not want an abstract type system to depend on the
particulars of a machine or a compiler. Instead we want to parametrize
the ergometric types with a cost model. Depending on the model chosen
by a programmer or language designer, concrete cost may be different
but the type system will remain the same.

Potential: When analyzing code we do not “count up” to track the cost, but
we provide each function or process with some potential q � 0 and
have it “count down” the remaining potential. This simplifies the statics
and the dynamics in the formalization.

Transfer of Potential: A process may decide not to perform some opera-
tions itself, but instead transfer some of its potential to other processes.
This allows us to perform amortized analysis, which is a common and
powerful technique for characterizing the computational complexity
of a function or process.

Linearity: Once potential is invested in processes or data structures, it
is important that it not be duplicated. This is where the nature of
substructural type systems in general and linear ones in particular
comes to the rescue because it prevents just such duplication.

For all these reasons we chose message-passing concurrency as presented in
Lecture 24 as our basis, but it could easily be adapted to linear functional
or linear shared memory code (Lecture 23). For nonlinear programs we
need what we called a quasi-linear type system in Mini-Project 2.1 or sharing
in Resource-Aware ML (RAML, see [HAH12]).

2 Cost Model

The cost model is represented by a transformation from an original process
P to a new process P 0 that insert instances of the construct work w. As an
example, consider the cost model where each send operation costs 1 erg (=
1 unit of work). Then we transform every process x.V to work 1 ; x.V . As
another example, in a model where each call (recursive or not) costs 1 erg,
we would transform each call x f y1 . . . yn to work 1 ; x f y1 . . . yn.

We omit from the cost model the index terms and quantifiers introduced
for expressions in the last lecture. That’s because we think of their purpose
as static, more precisely capturing properties of the data and functions we
work with, rather than dynamic, contributing to the outcome of computation
itself.
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For this lecture we remain within the cost model where every send costs
1 erg. Because every channel is linear, every send is matched by a receive
(except perhaps at the top level), so also counting receives would just double
the cost.

In addition to the predefined costs, the programmer may also insert
work n explicitly. This turns out to be useful in two circumstances. One is
that different branches of a process require different amount work, in which
case the programmer may equalize them. Another is that the programmer
may wish to choose the “free” cost model where all operations are free, and
then insert explicit work w to mark whatever they would like to count.

3 Statics

Isolating work in a separate construct work w has the nice consequence that
we update the rule in a simple and systematic way to track the potential
available to a process. The new judgment has the form

� �q P :: (x : ⌧)

which means that process P with potential q uses the channels in � (accord-
ing to their type) and provides channel x : ⌧ . The rules are derived from
those in the Lecture 23 Rule Set, except that variables are no longer anno-
tated as read or write since we are working in a message-passing setting
here.

The one new rule is the one that consumes potential by doing work.

� �q P :: (x : ⌧)

� �w+q work w ; P :: (x : ⌧)
tp/work

Because w and q must be natural numbers, for this rule to apply there must
be at least w potential available. Otherwise, the process work w ; P cannot
be typed.

The remaining rules are derived in a systematic way from the prior
rules. For rules with zero premises, we require the potential to be 0. This is
because we want to track the potential exactly, instead of an upper bound.
For example:

· �0 x.h i :: (x : 1)
send/unit

y : ⌧ �0 x y :: (x : ⌧)
forward
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The rule that spawns a new process must split the potential between the
two processes.

� �r P :: (x : ⌧) �0, x : ⌧ �q Q :: (z : �)

�,�0 �r+q (x
r P ; Q) :: (z : �)

spawn

In the notation we note the potential that is imparted on the freshly spawned
process. This is not strictly necessary, but it simplifies the dynamics.

For the remaining rules, the potential is preserved to all premises. For
internal choice (�) or external choice (N) this may be surprising at first, but
remember that at runtime exactly one branch will be chosen, based on the
message received. This branch should have the full potential of the case: no
more and no less. Here are two example rules:

�, yi : ⌧i �q Pi :: (z : �) (for all i 2 I)

�, x : �i2I(i : ⌧i) �q case x (i · yi ) Pi)i2I :: (z : �)
recv/label

�, y : ⌧ �q P :: (z : �)

� �q case x (hy, zi ) P ) :: (x : ⌧ ( �)
recv/channel

4 Dynamics

The dynamics is adapted from the one in Lecture 24 on message-passing
concurrency. Process objects carry potential, while messages do not. Since
all the potentials are checked statically, before the program is ever executed,
these potential annotations are strictly necessary, but they play a key role in
the proofs of progress and preservation.

Configurations C ::= procq P | msg c V | C1, C2 | (·)

The rules adapt straightforwardly, with the first rule being new.

procw+q (work w ; P ) 7! procq P

procr+q (x
r P ; Q) 7! procr ([c/x]P ), procq ([c/x]Q) (spawn; c fresh)

proc0 (c.V ) 7! msg c V (send)
msg c V, procq (case c K) 7! procq (V . K) (receive)
msg d V, proc0 (c d) 7! msg c V (pos. forward)
proc0 (c d),msg c V 7! msg d V (neg. forward)
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Note that dynamically a process would not be able to make a transition if
it didn’t have sufficient potential to do the work. Therefore, the progress
theorem expresses that there will always be sufficient potential. The preser-
vation theorem expresses that the overall potential in a configuration plus
the amount of work performed remains invariant. The transitions cannot
create new potential out of thin air, but they also cannot drop any existing
potential. See Exercise 1 for further thoughts.

5 Example: Lists

As a first example we consider the cost of list constructors. We ignore here
the cost of fold, primarily because the prior work [DHP18a, DP20] uses so-
called equirecursive types where a type is considered equal with its unfolding
so no fold message is actually necessary. It is not difficult to update the
examples with such messages.

list ↵ = (nil : 1)� (cons : ↵⌦ list ↵)

A prior, we would expect the empty list to require 2 messages (nil and h i),
which is also the case for cons (cons and x).

First the regular types.

↵ type � nil :: (l : list ↵)
l nil ↵ = l0  l0.h i ;

l.(nil · l0)

↵ type, x : ↵, l : list ↵ � cons :: (k : list ↵)
k  cons ↵ x l = k0  k0.hx, li ;

k.(cons · k0)

Next we apply the cost model. We also annotate the process definitions with
the potential these processes require.

↵ type �2 nil :: (l : list ↵)
l

2 nil ↵ = l0
1 work 1 ; l0.h i ;

work 1 ; l.(nil · l0)

↵ type, x : ↵, l : list ↵ �2 cons :: (k : list ↵)
k

2 cons ↵ x l = k0
1 work 1 ; k0.hx, li ;

work 1 ; k.(cons · k0)

It is easy to verify that the these definitions and types for the definitions are
ergometrically correct.
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6 Exploiting Arithmetic Refinements

In the next example we will assign a type to the append process for two lists.
Clearly, this should be proportional to the size of the first list l1, because
when we reach its end we just forward to the second list l2.

list ↵ n = (nil : n = 0 ^ 1)� (cons : n > 0 ^ ↵⌦ list ↵(n� 1))

We propose the following type

↵ type, n : N,m : N, l1 : list ↵ n, l2 : list ↵ m �2n append :: (k : list ↵ (n+m))

because the append process will have to send two messages (cons and an ele-
ment x) for each element of the list l1 which has length n. Indeed, this is easy
to check. We have annotated lines with the known arithmetic constraints (in
blue) and also the remaining potential (in red).

k
2n append ↵ n m l1 l2 = % 2n
case l1 (nil · h i ) k  l2 % n = 0, 2n = 0

| cons · hx, l01i ) % n > 0, 2n

k0
2(n�1) append ↵ (n� 1) m l01 l2 ; % 2n� 2(n� 1) = 2

k
2 cons ↵ ((n� 1) +m) x k0 ) % 2� 2 = 0

As a second, similar example we consider reverse which calls revapp as an
auxiliary process. revapp moves all the elements from the first list onto the
second (the accumulator), to be returned at the end.

↵ type, n : N,m : N, l : list ↵ n, acc : list ↵ m �2n revapp :: (k : list ↵ (n+m))

k
2n revapp ↵ n m l acc = % 2n
case l (nil · h i ) k  acc % n = 0, 2n = 0

| cons · hx, l0i ) % n > 0, 2n
acc0 2 cons ↵ m x acc ; % 2n� 2

k
2(n�1) append ↵ (n� 1) (m+ 1) l0 acc0 ) % 2n� 2� 2(n� 1) = 0

↵ type, n : N, l : list ↵ n �2n+2 reverse :: (k : list ↵ n)

k
2n+2 reverse ↵ n l = % 2n+ 2

acc 2 nil ↵ ; % 2n

k
2n revapp ↵ n 0 l acc % 0
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7 Transferring Potential

A key operation in amortized analysis is to be able to transfer potential
between functions or processes. For this purpose we need two new type
operators: one to send and one to receive potential (taking the point of view
of the provider). We write .q ⌧ for sending potential q (a positive type) and
/q ⌧ for receiving potential q (a negative type).

Types ⌧ ::= . . . | .q ⌧ | /q ⌧
Small Values V ::= . . . | pot q x
Continuations K ::= . . . | (pot q x) P )

The potential q in the receiving continuation is not a variable: we must be
able to predict statically, via the type, how much potential is being received.
Due to the duality between positive and negative types, we only have one
new small value and one new continuation. However, we need new rules
since the generic ones do not account for potential transfer.

procq (c.(pot q c0)) 7! msg c (pot q c0)
msg c (pot q c0), procr (case c (pot q x) P )) 7! procr+q ([c0/x]P )

The generic rules from Section 4 remain the same.

8 Example: A Binary Counter

Incrementing a binary counter may flip as few as one bit (the lowest, if it is
0) and as many as there are bits in the number (if they are all 1). Amortized
analysis tells us that n increments starting from 0 will flip at most 2n bits. In
this section we have the type-checker prove this for us.

We represent each bit in the binary number by a process, bit0 or bit1, plus
one process emp for the end of the bit string. The client interacts with the
lowest bit, sending it inc messages (eliding other parts of the interface that
may be present). Every message by a process corresponds to exactly one bit
flip, so counting the number of messages as our default cost model does is
appropriate. Ignoring potential transfer, the type would be a an external
choice with just one alternative.

ctr = (inc : ctr) N ()

The key idea of this amortized analysis is that each bit1 process maintains
one unit of potential that it can use to send the carry bit when it is incre-
mented. Furthermore, the client sends not only the increment message, but
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an additional unit of potential. If the lowest bit is a bit0, it is flipped to bit1
and the extra unit stored. If the lowest bit is bit1 it becomes a bit0, sends the
increment message representing the carry, plus the required additional unit
of potential. In code:

ctr = (inc : /1 ctr)

y : ctr �0 bit0 :: (x : ctr)
y : ctr �1 bit1 :: (x : ctr)
· �0 emp :: (x : ctr)

x
0 bit0 y =
case x ( inc · x0 )
case x0 ( pot 1 x00 )

x00
1 bit1 y ) )

x
1 bit1 y =
case x ( inc · x0 )
case x0 ( pot 1 x00 )

y0
1 work 1 ; y.(inc · y0) ;

y00
1 y0.(pot 1 y00) ;

x00
0 bit0 y00 ) )

x
0 emp =
case x ( inc · x0 )
case x0 ( pot 1 x00 )
y

0 emp ;

x00
1 bit1 y ) )

Type-checking these definitions prove our theorem. Every increment mes-
sage costs the clients two units of potential (1 to send the message, and 1 to
be stored as internal potential). Since every increment message corresponds
one bit being flipped, and each message send costs 1 erg, overall there are
less than 2n bits being flipped. More precisely, if the k bits 1 in the represen-
tation, then 2n� k bit will have been flipped (because each of the bits 1 will
store one unit of potential that has not been used yet to flip a bit). Except
for zero, there will always be at least one bit 1 in the counter, so the total
number of bit flips is in fact bounded by 2n� 1 for n > 0.
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Exercises

Exercise 1 Formulate the properties of progress and preservation for the er-
gometric type system, as mentioned at the end of Section 4. Sketch the key
steps in these proofs as they pertain to potential and work.

Exercise 2 Revisit the example of queues, as in Exercise L22.3 and Section
L24.7.

(i) Give an ergometric definition of stacks with push and pop operations.

(ii) Give an ergometric definition of stack reversal.

(iii) Give an ergometric definition of queues with enqueue and dequeue
operations, implemented as a bucket brigade.

(iv) Give an ergometric definitions of queues using two stacks. If this
necessitates additional ergometric types, or new types for processes
such as stack reversal, please state these revised definitions explicitly.
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