
Lecture Notes on
Garbage Collection

15-417/817: HOT Compilation
Frank Pfenning

Lecture 19
April 1, 2025

1 Introduction

Already at the inception of linear logic, Girard and Lafont [1987] developed a semantics that ex-
plicates garbage collection. The typing rules were intuitionistic and using recursive types rather
than the exponential modality that featured in Girard’s more definitive, classical account [1987].

We can account for garbage collection (or its lack) for adjoint natural deduction only in a some-
what approximate manner [Jang et al., 2024] because the heap is not explicitly represented. Sax,
however, makes it quite explicit in a simple and elegant manner. This was exploited by Gupta
[2023] who analyzed garbage collection for a mixed linear/nonlinear language based on Sax, also
considering so-called multilinear types. The basic language can be described in the adjoint setting
as one with two modes U and L with U > L and σ(U) = {W,C} and σ(L) = { }. An impor-
tant aspect of the dynamic was reference counting, which has gained currency through it usage in
several widely used languages including Rust. It should be noted, however, that in the parallel
setting there is a price to pay for reference counting, namely that it turns a reader (which normally
does not need to worry about race conditions) into a writer when it has to increment the reference
count. This increment is potentially subject to race conditions.

In this lecture we cover some basics, first for a copying collector then for reference counting
memory management.

2 Revisiting the Dynamics

We begin by revisiting the dynamics for Sax in light of the adjoint refinements. We recall it from
Lecture 7 for the linear case, with a small update for the shifts. However, this dynamics is only

LECTURE NOTES APRIL 1, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/lectures/07-negatives.pdf

Garbage Collection L19.2

correct if all modes are linear; we will update it shortly.

Commands P,Q ::= write c S
| read c S
| cut (x : A) P Q
| id a b
| call F d b1 . . . bn

Storables S ::= v | K

Small values v ::= (a, b) (⊗,→)
| () (1, [⊥])
| k(a) (⊕,N)
| ⟨a⟩ (↓, ↑)

Continuations K ::= (x, y) ⇒ P (⊗,→)
| () ⇒ P (1, [⊥])
| {ℓ(xℓ) ⇒ Pℓ}ℓ∈L (⊕,N)
| ⟨x⟩ ⇒ P (↓, ↑)

Passing a small value to a continuation is now a more symmetric relationship, but the essence is
the same as before.

v ▷◁ K = K ▷◁ v = v ▷K

where
(a, b) ▷ (x, y) ⇒ P (x, y) = P (a, b)
() ▷ () ⇒ P = P
k(a) ▷ {ℓ(xℓ) ⇒ Pℓ(xℓ)}ℓ∈L = Pk(a) (k ∈ L)
⟨a⟩ ▷ ⟨x⟩P (x) = P (a)

and

proc (write c S) −→ cell c S
cell c S, proc (read c S′) −→ proc (S ▷◁ S′)
proc (cut (x : A) P (x) Q(x)) −→ proc P (a), proc Q(a) (a fresh)
cell b S, proc (id a b) −→ cell a S

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

Recall that we have a configuration consisting of executing processes and memory cells.

Configurations C ::= proc P | cell a S | · | C1, C2

Also recall that multiset rewriting rules of the form that specifies the semantics are interpreted by
matching the left-hand side against a part of the configuratin and replacing it by the right-hand
side. This means that the dynamics shown above only work for the linear or affine cases. If a
mode admits contraction, a cell might have multiple readers, so removing it when it is read will
lead to a failure of the progress theorem.

In order to account for this, we introduce another aspect of multiset rewriting. Components
of a configuration can be ephemeral (that is, they are removed during an application of a rewrite
rule) and persistent (that is, they remain in the configuration). The only semantic objects that can
be persistent are cells, and we write !cell a S for them. The notation using the exponential from
linear logic is not a coincidence (see Cervesato and Scedrov [2009], Watkins et al. [2002], Cervesato
et al. [2002] for its origins).

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.3

Before rewriting the rules we make one further change: when a fresh cell is allocated we actu-
ally create an object cell a □ do indicate an unwritten cell. In the case of a parallel implementation,
this can be “seen” by a reading thread, which may then have to block until the cell is written.

Configurations C ::= proc P | cell a □ | !cell a S | · | C1, C2

cell c □, proc (write c S) −→ !cell c S
!cell c S, proc (read c S′) −→ proc (S ▷◁ S′)
proc (cut (x : A) P (x) Q(x)) −→ cell a □, proc P (a), proc Q(a) (a fresh)
!cell b S, cell a □, proc (id a b) −→ !cell a S

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

At this point, unfortunately, we have thrown out the baby with the bath water! In the adjoint
setting, modes that do not admit contraction (that is, linear or affine modes) nevertheless will
have persistent cells. In order to capture this distinction we annotate addresses with their mode
and write

!mcell cm S =

{
!cell cm S provided C ∈ σ(m)
cell cm S provided C ̸∈ σ(m)

Configurations and transitions then track modes.

Configurations C ::= proc P | cell am □ | !mcell am S | · | C1, C2

cell cm □, proc (write cm S) −→ !mcell cm S
!mcell cm S, proc (read cm S′) −→ proc (S ▷◁ S′)
proc (cut (x : Am) P (x) Q(x)) −→ cell am □, proc P (a), proc Q(a) (a fresh)
!mcell bm S, cell am □, proc (id am bm) −→ !mcell am S

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

In this dynamics, cells or linear or affine mode are deallocated as soon as they are read, while
others remain. Some of these may no longer be accessible from the initial destination that will hold
the result of the overall computation. A natural garbage collector will therefore start at the initial
destination and either move the reachable cells to a new heap (a copying collector) or mark them as
being in use (a mark-and-sweep collector). One difficulty is what to do with running processes. In a
sequential setting, any heap address directly referenced from the runtime stack must be preserved
(either by copying or by marking). In the parallel setting there may be thread-local or task-local
stack that track this information. Gupta [2023] maintained an explicit environment η for each
running parallel processes. This environment can be used to track the “live” locations. One can
also run a garbage collector concurrently with the program to mitigate efficiency issues.

At the level of the semantics above, we need an operation usedP , and similarly for contin-
uations usedK and small values used v that adds the addresses used in P or K to the set of
reachable addresses.

One question is what to do about processes whose destination is no longer being read. For
example, we might have a process computing P with destination d, but there is no longer a reader
for d. With futures, such processes nevertheless need to be computed down to final configurations
consisting only of cells. Under a different semantics like that for speculations Harper [2016] it
could be possible to garbage-collect and kill such processes.

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.4

3 Statics with Reference Counting

An alternative to the traditional kind of garbage collection hinted at in the previous section, we
can also consider reference counting. The idea is that each cell maintains a count of how many
references there are to it. A cell is deallocated if its reference count becomes zero. This requires
the program to take full account of all references to the heap. This can be accomplished using
explicit structural rules as mapped out in the last lecture. Another obstacle are circular data struc-
tures, but in our pure language they cannot arise. Finally, we need to consider interactions with
optimizations such as reuse. These can be managed because they are detected and maintained
statically.

In the context of adjoint ND and Sax, a key step is to make structural rules explicit. We do
this at the level of Sax, because it is a concern about the heap, which is explicit in Sax but not in
ND. The goal is to define a typing for Sax in which structural rules are explicit, and variables
(that stand for addresses) are treated entirely linearly everywhere. Our strategy to get there is to
exploit the additive formulation of typing. Intuitively, whenever a variable x (legally) occurs on
both sides of join operation Ξ1 ; Ξ2 we should create two aliases for this variable. This is the only
place where aliasing will be required. The possibility of weakening is tested in two places: when
computing Ξ \ xm where xm is not in Ξ and for Ξ1 ⊔ Ξ2 when a variable xm is used in one context
but not the other.

The new constructs in our language are alias x as (y, z) ; P and drop x ; P . We check them
with the following rules, which are written assuming precise linear contexts ∆ (regardless of the
modes in them).

(C ∈ σ(m)) ∆, y : Am, z : Am ⊢ P :: δ

∆, x : Am ⊢ alias x as (y, z) ; P :: δ
alias

(W ∈ σ(m)) ∆ ⊢ P :: δ

∆, x : Am ⊢ drop x ; P :: δ
drop

We call the two systems “adjoint Sax with implicit structural rules” (what we have studied so far)
and “adjoint Sax is explicit structural rules” (what we create for the purpose of reference counting
memory management). We do not fully formalize how to translate the implicit to the explicit sys-
tems, but proceed by showing prototypical examples and informal explanations. A more rigorous
treatment can be found in the work of Gupta [2023] and some further references cited therein.

We start with the identity.

b : Am ∈ Γ

Γ ⊢ id a b :: (a : Am) / (b : Am)
id

Here, no translation is necessary. The command id a b is linear in b independently of the mode m.

a : Am ∈ Γ b : Bm ∈ Γ

Γ ⊢ write c (a, b) :: (c : Am ⊗Bm) / (a : Am) ; (b : Bm)
⊗X

Here, we see a use of the join operator. This means, if a = b (which is possible if C ∈ σ(m)), then
we need to apply contraction just before. So the tranlsation is just write c (a, b) if a ̸= b and is
alias a (a1, a2) ; write c (a1, a2) if a = b.

c : Am ⊗Bm ∈ Γ (m ≥ r) Γ, x : Am, y : Bm ⊢ P :: (d : Dr) / Ξ

Γ ⊢ read c (x, y) ⇒ P :: (d : Dr) / (Ξ \ xm \ ym) ; (c : Am ⊗Bm)
⊗L

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.5

First, we recall that Ξ \ xm removes x from Ξ if it occurs. If it doesn’t occur, then it is an error
unless W ∈ σ(m). This means we have to make a first transformation to

read c (x, y) ⇒ drop x ; P

if x does not occur in Ξ. Similarly, we would drop y if it is not in Ξ, and both if neither occurs in
Ξ. We want to drop unused variables as early as possible, so we would do this at the beginning of
P rather than the end.

In addition, we also have to consider the possible occurrences of c in Ξ, which means that c
was used again in P . In that case, we have to alias c before the read, as in

alias c (c1, c2) ; read c1 (x, y) ⇒ [c2/c]P

where [c2/c]P substitutes the fresh c2 for c in P . Here, the strategy is to alias as late as possible
(just before we need to share), again for simplicity and efficiency.

For pattern matching, we give here the binary version where A⊕B ≜ ⊕{π1 : A, π2 : B}. Then
we have two axioms, neither of which has to be concerned with weakening or contraction.

a : Am ∈ Γ

Γ ⊢ write c π1(a) :: (c : Am ⊕Bm) / (a : Am)
⊕X1

b : Bm ∈ Γ

Γ ⊢ write c π2(b) :: (c : Am ⊕Bm) / (b : Bm)
⊕X2

The left rule introduces some new considerations.

c : Am ⊕Bm ∈ Γ m ≥ r Γ, x : Am ⊢ P1 :: (d : Dr) / Ξ1 Γ, y : Bm ⊢ P2 :: (d : Dr) / Ξ2

Γ ⊢ read c (π1(x) ⇒ P1 | π2(y) ⇒ P2) :: (d : Dr) / (Ξ1 \ xm) ⊔ (Ξ2 \ ym)
⊕L

We see that we may need to explicitly drop xm from P1 and ym from P2. Then we take the least
upper bound of the results. For each variable wk that occurs in Ξ1 but not Ξ2, we have to drop
wk explicitly (ideally at the beginning of P2). Typechecking fails (or should have failed before)
if wk does not permit weakening. The symmetric remark applies for variables in Ξ2 but not Ξ1.
Contraction (that is, aliasing) is not involved in this rule.

4 Dynamics with Reference Counting

With the above transformations we have arrived at explicit Sax, where all variables are used lin-
early, with explicit appeals to aliasing (to model contraction) and dropping (to model weakening).

How do we reflect this change back into the dynamics with explicit reference counting? We
annotate each cell in the dynamics with a reference count. These reference counts are not “tran-
sitive” but only count direct references. For example, there might be 5 references to the head of a
list, but only 1 for all the cells in the tail of the list.

Because typing is now essentially linear, all cells in the dynamics are ephemeral and carry a
reference count n ≥ 0.

Configurations C ::= proc P | celln a □ | celln a S | · | C1, C2

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.6

Creating an alias is quite straightforward. It doesn’t matter if a cell has been written or not—we
can always increase its reference count. We use the notation celln c S□ to indicate either celln c S
or celln c □. We also introduce a new semantic object inc c that increment the reference count of c.

proc (alias c (x, y) ; P (x, y)) −→ inc c, proc P (c, c)

celln+1 c S
□, inc c −→ celln+2 c S

□

Dropping a reference to a cell is more complex, because the reference count might hit zero. Using
another new semantic object dec c, we specify

proc (drop c ; P) −→ dec c, proc P

When the reference count hits 0, we need to deallocate the cell, but we also need to decrease the
reference count for everything that the storable in the continuation refers to. We write free S for
the free addresses in a storable S. For continuations, this should not include the address written
by S. In a realistic implementation, we’d have to make sure this can be computed efficiently,
especially if S is a continuation K. This was partially addressed by Gupta [2023] using explicit
environments.

We add a new semantic object dec c with the intent that it should decrease the reference count
of c.

celln+2 c S
□, dec c −→ celln+1 c S

□

cell1 c S, dec c −→ {dec a | a ∈ free S}

Note that cell1 c □, dec c blocks: we shouldn’t deallocate a cell that hasn’t been written yet because
its writer would no longer have a valid destination. It can, however, be deallocated as soon as it
is written.

Continuing, the rule for writing is straightforward.

celln+1 c □, proc (write c S) −→ celln+1 c S

Any references in the storable S are transferred from the process to the cell it is written to. And
since the writer’s reference does not count, the reference count for the cell c remains unchanged.

For reading, if this is the last reference to a cell, the reference to the free addresses in S is trans-
ferred from the cell to the continuation process. Otherwise, we have to increment the reference
count of all free addresses in S, because the cell c persists, and the continuation process now also
has a reference.

cell1 c S, proc (read c S′) −→ proc (S ▷◁ S′)

celln+2 c S, proc (read c S′) −→ celln+1 c S, proc (S ▷◁ S′), {inc a | a ∈ free(S)}

For cut, we introduce a fresh cell with initial reference count 1.

proc (cut x P (x) Q(x)) −→ cell1 a □, proc P (a), proc Q(a) (a fresh)

Identity behaves like a read followed by a write.

cell1 b S, celln a □, proc (id a b) −→ celln a S

cellm+2 b S, celln a □, proc (id a b) −→ cellm+1 b S, celln a S, {inc c | c ∈ free(S)}

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.7

Finally, a call is neutral regarding the reference count because the references b are passed to the
body of the invoked procedure.

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

In comparison to the dynamics from Section 2 we lose something, in particular in a truly par-
allel semantics: reading now actually creates some race conditions because the reference count
needs to be updated atomically. We delegate this to an increment process, but this is just kicking
the can down the road. The rules can be simplified under a sequential semantics, and in particular
the race conditions disappear. Another gain we make is that the dynamics no longer cares about
modes. Cells are always ephemeral and are deallocated essentially when the are no longer refer-
enced by the running program. However, linear and affine cells have always have reference count
1. The latter may lead to a cascading reference count decrement. The absence of circularity in the
memory prevents one of the deeper problems with diverging, or keeping unreferenced memory
from being deallocated.

proc (alias c (x, y) ; P (x, y)) −→ inc c, proc P (c, c)

proc (drop c ; P) −→ dec c, proc P

celln+1 c □, proc (write c S) −→ celln+1 c S

cell1 c S, proc (read c S′) −→ proc (S ▷◁ S′)

celln+2 c S, proc (read c S′) −→ celln+1 c S, proc (S ▷◁ S′), {inc a | a ∈ free(S)}

proc (cut x P (x) Q(x)) −→ cell1 a □, proc P (a), proc Q(a) (a fresh)

cell1 b S, celln a □, proc (id a b) −→ celln a S

cellm+2 b S, celln a □, proc (id a b) −→ cellm+1 b S, celln a S, {inc c | c ∈ free(S)}

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

celln+1 c S
□, inc c −→ celln+2 c S

□

celln+2 c S
□, dec c −→ celln+1 c S

□

cell1 c S, dec c −→ {dec a | a ∈ free S}

Figure 1: Summary of Reference Counting Dynamics

References

Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency through
linear logic. Information and Computation, 207(10):1044–1077, October 2009.

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent logical frame-

LECTURE NOTES APRIL 1, 2025

Garbage Collection L19.8

work II: Examples and applications. Technical Report CMU-CS-02-102, Department of Com-
puter Science, Carnegie Mellon University, 2002. Revised May 2003.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig, R. Kowalski,
G. Levi, and U. Montanari, editors, Proceedings of the International Joint Conference on Theory and
Practice of Software Development, volume 2, pages 52–66, Pisa, Italy, March 1987. Springer-Verlag
LNCS 250.

Aditi Gupta. Ergometric multilinear futures. Honors thesis, Computer Science Department,
Carnegie Mellon University, May 2023. URL http://www.cs.cmu.edu/˜fp/courses/
15417-s25/misc/Gupta23.pdf.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
second edition, April 2016.

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint natural deduction.
In Jakob Rehof, editor, 9th International Conference on Formal Structures for Computation and De-
duction (FSCD 2024), pages 15:1–15:23, Tallinn, Estonia, July 2024. LIPIcs 299. Extended version
available as https://arxiv.org/abs/2402.01428.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical frame-
work I: Judgments and properties. Technical Report CMU-CS-02-101, Department of Computer
Science, Carnegie Mellon University, 2002. Revised May 2003.

LECTURE NOTES APRIL 1, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Gupta23.pdf
http://www.cs.cmu.edu/~fp/courses/15417-s25/misc/Gupta23.pdf
https://arxiv.org/abs/2402.01428

	Introduction
	Revisiting the Dynamics
	Statics with Reference Counting
	Dynamics with Reference Counting

