
10-708: Probabilistic Graphical Models, Spring 2020

Lecture 20: Reinforcement Learning and Control Through Inference in GM

Lecturer: Eric P. Xing Scribe: Ankur Deka, Zuxin Liu, Yash Belhe, Tejus Gupta, Rohit Jena

1 Control as Inference Recap

Figure 1: Reinforcement learning framework

Reinforcement learning is usually modeled as a Markov Decision Process(MDP), just as Fig. 1 shows. A
typical MDP has 4 major components:

• The initial state distribution: s0 ∼ p0(s)

• Transition probability: st+1 ∼ p(st+1|st, at)

• Policy: at ∼ π(at|st)

• Reward: rt = r(st, at)

To represent the MDP with graphical model, we introduce an auxiliary variable O to define the distribution
over optimal trajectories. The graphical model representation is shown in Fig. 2. We have:

• The initial state distribution: s0 ∼ p0(s)

• Transition probability: st+1 ∼ p(st+1|st, at)

• Policy: at ∼ π(at|st)

• Reward: rt = r(st, at)

• Optimality: p(Ot = 1|st, at) = exp(r(st, at))

The introduced auxiliary variable O allows us to model sub-optimal behavior and can be used to solve inverse
reinforcement learning problem. The graphical model representation of RL provides us an alternative to solve
control and planning problems via inference algorithms.

In the classical RL setup, we have the following equations for value function and Q-function:

1

2 Lecture 20: Reinforcement Learning and Control Through Inference in GM

Figure 2: Graphical model representation of RL

Vπ(s) := Eπ
T∑
k=0

[
γkrt+k+1 | st = s

]
(1)

Qπ(s, a) := Eπ
T∑
k=0

[
γkrt+k+1 | st = s, at = a

]
(2)

where γ is the discount factor, which represents the importance of rewards in future states.

The optimal value function (Bellman optimality) are:

V∗(s) := max
π

Vπ(s) = max
a

∑
s′

p(s′|s, a)[r(s, a) + γV∗(s
′)] (3)

Q∗(s, a) := max
π

Qπ(s, a) =
∑
s′

p(s′|s, a)[r(s, a) + γmax
a′

Q∗(s
′, a′)] (4)

The above Bellman update procedure can also be illustrated by Fig. 3.

Figure 3: Backup diagrams for v∗ and q∗

Given the optimal value function Q∗(s, a), the optimal policy can be represented by:

π∗(a | s) := δ

(
a = argmax

a
Q∗(s, a)

)
(5)

Let Vt(st) = log βt(st), Qt(st, at) = log βt(st, at). Denote τ = (s1, a1, . . . , sT , aT) as the full trajectory. Denote
p(τ) = p(τ | O1:T). Running inference in the graphical model as the Fig. 2 shows, we can compute:

p(τ | O1:T) ∝ p(st)
T∏
t=2

p(st+1 | st, at)× exp(

T∑
t=1

r(st, at)) (6)

Lecture 20: Reinforcement Learning and Control Through Inference in GM 3

Also, we know the following softmax relation:

V (st) = log

∫
exp(Q(st, at) + log p(at | st))dat (7)

We can also get:

p(at | st,O1:T) = exp(Qt(st, at)− Vt(st)) (8)

where we usually call At(st, at) = Qt(st, at)− Vt(st) as the advantage function.

The objective that the inference procedure want to optimize is the following KL divergence:

−DKL(p̂(τ) || p(τ)) =

T∑
t=1

E(st,at)∼p̂(st,at) [r(st, at)] + Est∼p̂(st) [H(π(at | st))] (9)

where H(π(at | st)) is the entropy of the policy. The first term is just the standard RL objective, while the
second entropy term is used for regularization.

For deterministic dynamics, we can get this objective directly. For stochastic dynamics, we obtain it from the
evidence lower bound.

2 Policy Gradients

In this section, we’ll be looking at directly optimizing the standard RL objective function Eτ∼pθ(τ) [
∑
t r (st,at)].

Here, θ are the parameters of our policy function i.e πθ (a|s), so this amounts to finding the optimal policy
function.

Let’s first start off by defining the probability distribution over trajectories. The probability of any trajectory
τ is given by:

pθ(τ) = pθ (s1,a1, . . . , sT ,aT) = p (s1)

T∏
t=1

πθ (at|st) p (st+1|st,at) (10)

Now, the optimal value of θ is that which maximizes our expected reward, i.e:

θ? = arg max
θ
Eτ∼pθ(τ)

[∑
t

r (st,at)

]
(11)

Now, we define the objective function J(θ) as

J(θ) = Eτ∼pθ(τ)

[∑
t

r (st,at)

]
(12)

Hence, the optimal θ is just that θ which maximizes the objective function

θ? = arg max
θ
J(θ) (13)

4 Lecture 20: Reinforcement Learning and Control Through Inference in GM

We can estimate this objective function by drawing trajectories τ ∼ pθ(τ) and computing a Monte-Carlo
estimate of this expectation

J(θ) = Eτ∼pθ(τ)

[∑
t

r (st,at)

]
≈ 1

N

∑
i

∑
t

r (si,t,ai,t) (14)

Now, we simply perform gradient ascent on the objective function J(θ) to optimize it.

In the approximate form of the objective function, there is no explicit dependence of J(θ) on the parameters
θ. This may naively lead us to believe that the ∇θJ(θ) = 0.

This of course is not true, dependence on θ has instead been absorbed into the Monte-Carlo approximation of
the estimation. To make this dependence explicit, we may write ∇θJ(θ) as follows:

∇θJ(θ) = ∇θEτ∼pθ(τ)

[∑
t

r (st,at)

]
(15)

= ∇θ
∫
pθ(τ)

[∑
t

r (st,at)

]
dτ (16)

=

∫
∇θpθ(τ)

[∑
t

r (st,at)

]
dτ (17)

=

∫
[∇θpθ(τ)]

[∑
t

r (st,at)

]
dτ (18)

(19)

Where the second step follows from the definition of the expectation, the third one is due to the linearity
of the integration and the gradient operator and the fourth one from the fact that [

∑
t r (st,at)] does not

depend on θ.

In its current form, ∇θJ(θ) seems hard to compute since there is no obvious Monte-Carlo estimate of this
integral and ∇θpθ(τ) depends on the dynamics of the environment p (st+1|st,at) which we may not know.

However, we can use the log-gradient trick to easily estimate J(θ). More specifically:

∇θ log pθ(τ) =
∇θpθ(τ)

pθ(τ)
(20)

Hence, we can write ∇θpθ(τ) as:

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ) (21)

Lecture 20: Reinforcement Learning and Control Through Inference in GM 5

Now, we can substitute this expansion of ∇θpθ(τ) into our expression for ∇θJ(θ)

∇θJ(θ) = ∇θEτ∼pθ(τ)

[∑
t

r (st,at)

]
(22)

=

∫
[∇θpθ(τ)]

[∑
t

r (st,at)

]
dτ (23)

=

∫
[pθ(τ)∇θ log pθ(τ)]

[∑
t

r (st,at)

]
dτ (24)

(25)

Hence, we have written ∇θJ(θ) in terms of an expectation over pθ(τ)

∇θJ(θ) = Eτ∼pθ(τ)

[
∇θ log pθ(τ)

∑
t

r (st,at)

]
(26)

(27)

Let’s try to evaluate ∇θ log pθ(τ) by first writing out log pθ(τ)

log pθ(τ) = log p (s1) +
∑
t

log πθ (at|st) + log p (st+1|st,at) (28)

Which gives us ∇θ log pθ(τ) as:

∇θ log pθ(τ) =
∑
t

∇θ log πθ (at|st) (29)

Finally, substituting the expression for ∇θ log pθ(τ) into the expression for ∇θJ(θ), we have:

∇θJ(θ) = Eτ∼pθ(τ)

[(∑
t

∇θ log πθ (at|st)

)(∑
t

r (st,at)

)]
(30)

(31)

Once again, we can estimate this expectation using a Monte-Carlo average by drawing sample trajectories
τ ∼ pθ(τ):

∇θJ(θ) ≈ 1

N

N∑
i=1

(∑
t

∇θ log πθ (ai,t|si,t)

)(∑
t

r (si,t,ai,t)

)
(32)

We can now update our estimate of θ by performing gradient ascent:

θ ← θ + α∇θJ(θ) (33)

Looking at this expression, it is evident that the update rule is trying to up-weight those trajectories with
higher total rewards (as

∑
t r (si,t,ai,t) is higher for them) and suppress those trajectories with lower total

rewards (as
∑
t r (si,t,ai,t) is lower for them).

Putting all of these steps together, we have the REINFORCE algorithm:

Algorithm 1 REINFORCE Algorithm

1. sample
{
τ i
}

from πθ (at|st)
2. ∇θJ(θ) ≈

∑
i

(∑
t∇θ log πθ

(
ait|sit

)) (∑
t r
(
sit,a

i
t

))
3. θ ← θ + α∇θJ(θ)

6 Lecture 20: Reinforcement Learning and Control Through Inference in GM

3 Value Based Reinforcement Learning

Instead of explicitly learning the policy of a reinforcement learning agent, we can learn the optimum value
function and retrieve the optimal policy from it. If we the value of Q∗(s, a)∀s, a, we can obtain the opitmal
policy as π(a|s) = δ(a = argmaxa′Q(s, a′)).

3.1 Policy Iteration

Policy iteration iterates over two steps as shown in Algotihm 4. The first step, policy evaluation, iteratively
evaluates the Qπ function of the policy using bellman update.

Qπ(s, a)← r(s, a) +
∑
s′

γp(s′|s, a)V (s′)

≡ Qπ(s, a)← r(s, a) +
∑
s′

γp(s′|s, a)
∑
a′

π(a′|s′)Qπ(s′, a′)

The second step greedily updates the policy by taking the action with the highest Qπ value.

Algorithm 2 Policy Iteration

Initialize random π(a|s), Q(s, a), V (s)∀s, a
Repeat until convergence:

1. Policy Evaluation
Repeat until convergence: Qπ(s, a)← r(s, a) +

∑
s′ γp(s

′|s, a)
∑
a′ π(a′|s′)Qπ(s′, a′)

2. Policy Improvement
π(a|s)← δ (a = argmaxa′Q(s, a′))

Policy improvement step is guaranteed to be at least as good as the current policy. This can be intuitively
understood as follows. Let’s say we take action a1 = argmaxa(Qπ(s, a)) in the first step and follow policy π
from there on. Doing so is better than or at least as good following policy π from the beginning because we
took the action with highest Qπ value. We can then extend this argument when we transition to state s2
from s1. That is, we choose action a2argmaxa(Qπ(s2, a)) from state s2 and follow policy π from there on.
Likewise, following the updated policy at every step is guaranteed to be at least as good as the current policy.

Figure 4: Left: Value function and policy are iteratively updated and at the end they converge to the optimal
values. Source: UCL Course on RL [Link]

Fig. 4 shows policy iteration pictorially. Policy evaluation step evaluates the correct value function. A greedy
update on the policy improves the policy but the value function is no longer correct. After multiple iterative
steps both of these converge to the true values.

https://www.davidsilver.uk/wp-content/uploads/2020/03/DP.pdf

Lecture 20: Reinforcement Learning and Control Through Inference in GM 7

3.2 Value Iteration

Is there a way we could avoid explicitly representing the policy and perform reinforcement learning based
only on value functions. The answer is a simple extension to the policy iteration algorithm we have just seen.
We can combine the policy evaluation and policy improvement steps into a single step.

In the bellman update, we substitute V (s′) with maxa′Q(s′, a′)

Algorithm 3 Value Iteration

Initialize random Q(s, a)∀s, a
Repeat until convergence:
Q(s, a)← r(s, a) +

∑
s′ γp(s

′|s, a)maxa′Q(s′, a′)

Due to the substitution, we can represent the update equation purely using value function. There is one key
difference between policy iteration and value iteration. Policy iteration updates the Q value for multiples
steps until convergence and then performs one single greedy update of the policy. Value iteration does a
single update on the value function for every greedy update of the policy.

3.3 Fitted Q Iteration

Policy iteration and value iteration are applicable only for small sized discrete state-spaces. For an environment
with S states and A actions per state, we need to store and update S ×A Q values.

For large or continuous state spaces, we can approximate the value function Q with a function approximator
with parameters θ. We can minimize the error:

min
θ

Ea∼π||Qθ(s, a)− y||

where, y = (r(s, a) + γmax
a′

Qθ(s′, a′)), is called the target

Here π(a|s) = δ(a = argmaxa′Q(s, a′)). We can minimize this objective with stochastic gradient descent.
While updating the parameters we don’t take the gradient of the target with respect to the parameters θ.
We can them perform a greedy update on the policy as in policy iteration.

Algorithm 4 Fitted Q-Iteration

Initialize random π(a|s), Q(s, a), V (s)∀s, a
Repeat until convergence:

1. Policy Evaluation
minθ Ea∼π||Qθ(s, a)− (r(s, a) + γmaxa′ Q(s′, a′))||

2. Policy Improvement
π(a|s)← δ (a = argmaxa′Q(s, a′))

In practice, fitted Q-learning is very unstable and there are numerous tricks used to stabilize it. In particular,
Deep Q Network (DQN, Mnih et al.) introduces a replay buffer and delayed parameters for the target
network.

8 Lecture 20: Reinforcement Learning and Control Through Inference in GM

4 Soft Policy Gradent and Soft Q-learning

The soft-policy gradient is written as:

J(θ) =

T∑
t=1

E(st,at)∼p(st,at) [r(st, at)] + Est∼p(st) [H(πθ(at|st))] (34)

=

T∑
t=1

E(st,at)∼pθ(st,at) [r(st, at)− log(πθ(at|st))] (35)

To calculate the gradient of the second term, we compute the following (using an expectation over trajectories):

∇θ
T∑
t=1

E(st,at)∼pθ(st,at) [log(π(at|st))]

=

∫
∇θ

[
p(τ)

T∑
t=1

log(πθ(at|st))

]
dτ

=

∫ [
∇θp(τ)

T∑
t=1

log(πθ(at|st)) + p(τ)∇θ
T∑
t=1

log(πθ(at|st))

]
dτ (Using chain rule)

=

∫ [
p(τ)∇θ log p(τ)

T∑
t=1

log(πθ(at|st)) + p(τ)

T∑
t=1

∇θ log(πθ(at|st))

]
dτ

=

∫
p(τ)∇θ log(p(τ))

[
T∑
t=1

log πθ(at|st) + 1

]
dτ

From the backward messages in RL (previous lecture), recall that

Qt(st, at) = log(βt(st, at)) = r(st, at) + log(Est+1∼p(st+1,at+1) [exp(Vt+1(st+1))])

Vt(st) = log(βt(st)) = log

(∫
exp(Qt(st, at))dat

)
From these two equations, it is easy to see that

π(at|st) =
βt(st, at)

βt(st)
= exp (Qt(st, at)− V (st))

To get rid of the p(τ) term over trajectories, we approximate it using sampling N trajectories. Expanding
Equation (35) and taking derivatives with respect to the parameters θ we get:

∇θJ(θ) = ∇θ
T∑
t=1

E(st,at)∼pθ(st,at) [r(st, at)− log πθ(at|st)]

≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(at|st)

[
r(st, at) +

(
T∑

t′=t+1

r(st′ , at′)− log(πθ(at′ |st′))

)
− log(πθ(at|st))− 1

]

=
1

N

N∑
i=1

T∑
t=1

(∇θQθ(st, at)−∇θVθ(st)) [r(st, at) +Qθ(st+1, at+1)−Qθ(st, at) + V (st)]

Lecture 20: Reinforcement Learning and Control Through Inference in GM 9

Since the term inside the inner brackets containing the terms of t′ becomes Qθ(st+1, at+1). Expanding the
terms related to Vθ we get:

=
1

N

N∑
i=1

T∑
t=1

(∇θQθ(st, at)−∇θVθ(st)) [r(st, at) +Qθ(st+1, at+1)−Qθ(st, at) + V (st)]

=
1

N

N∑
i=1

T∑
t=1

∇θQθ(st, at)
[
r(st, at) + softmaxat+1

Qθ(st+1, at+1)−Qθ(st, at)
]

This equation results in a very similar update to Q-learning:

θ ← θ + α∇θQθ(s, a) (r(s, a) + γV (s′)−Qθ(s, a))

where the value function V (s′) is defined as:

V (s′) = log

∫
exp(Qθ(s

′, a′))da′

We can technically add a temperature parameter β inside the exp of the Q-function such as exp
(
Q(s,a)
β

)
.

Higher values of β correspond to more ‘random’ policies and β close to 0 means a less stocastic policy.

Soft optimality has many benefits. Some of these benefits are listed below:

• Improves exploration and prevents entropy collapse.

• Easier to finetune policies for specific tasks. This is an empirical observation.

• Better robustness (due to wider coverage of states).

• Reduced to hard optimalty by increasing magnitude of rewards.

• This is a good model of human behavior.

	Control as Inference Recap
	Policy Gradients
	Value Based Reinforcement Learning
	Policy Iteration
	Value Iteration
	Fitted Q Iteration

	Soft Policy Gradent and Soft Q-learning

