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Motivation via Clustering

How to pick 
number of cluster?

Points on a 2D plane 
with color as attribute
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Motivation via Clustering

Points on a 2D plane 
without color as attribute

How to pick 
number of cluster?
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Motivation via Clustering

Streaming DataT=1 T=2

How to pick 
number of cluster?
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Clustered data

q How to model this data?

q Mixture of Gaussians:

q Parametric model: Fixed finite number of parameters.

p(x1, . . . , xN |⇡, {µk}, {⌃k})
=

Q1
n=1

PK
k=1 ⇡kN (xk|µk,⌃k)
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Bayesian finite mixture model

q How to choose the mixing weights and mixture parameters?
q Bayesian choice: Put a prior on them and integrate out:

q Where possible, use conjugate priors
q Gaussian/inverse Wishart for mixture parameters
q What to choose for mixture weights?

p(x1, . . . , xN )

=

Z Z Z ✓ 1Y

n=1

KX

k=1

⇡kN (xk|µk,⌃k)

◆

p(⇡)p(µ1:K)p(⌃1:K)d⇡dµ1:Kd⌃1:K yi

xi
N

p qa

G/IW

K
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The Dirichlet distribution

q The Dirichlet distribution is a distribution over the (K-1)-dimensional 
simplex.

q It is parametrized by a K-dimensional vector 
such that                                and

q Its distribution is given by
QK

k=1 �(↵k)

�(
PK

k=1 ↵k)

KY

k=1

⇡↵k�1
k

(↵1, . . . ,↵K)

↵k � 0, k = 1, . . . ,K
P

k ↵k > 0
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Samples from the Dirichlet distribution

q If                                        then             for all k, and

q Expectation: 

α = (0.01,0.01,0.01) α = (100,100,100) α = (5,50,100)

⇡ ⇠ Dirichlet(↵1, . . . ,↵K) ⇡k � 0
PK

k=1 ⇡k = 1.

E

(⇡1, . . . ,⇡K)

�
= (↵1,...,↵K)P

k ↵k
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Conjugacy to the multinomial

q If                                             and  ✓ ⇠ Dirichlet(↵1, . . . ,↵K) xn
iid⇠ ✓

p(⇡|x1, . . . , xn) / p(x1, . . . , xn|⇡)p(⇡)

=

✓QK
k=1 �(↵k)

�(
PK

k=1 ↵k)

KY

k=1

⇡

↵k�1
k

◆✓
n!

m1! . . .mK !
⇡

m1
1 . . .⇡

mK
K

◆

/
QK

k=1 �(↵k +mk)

�(
PK

k=1 ↵k +mk)

KY

k=1

⇡↵k+mk�1
k

= Dirichlet(⇡|↵1 +m1, . . . ,↵K +mK)
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Distributions over distributions

q The Dirichlet distribution is a distribution over positive vectors that sum to 
one.

q We can associate each entry with a set of parameters
q e.g. finite mixture model: each entry associated with a mean and covariance.

q In a Bayesian setting, we want these parameters to be random.
q We can combine the distribution over probability vectors with a 

distribution over parameters to get a distribution over distributions over 
parameters.
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Example: finite mixture model

q Gaussian distribution: distribution over means.
q Sample from a Gaussian is a real-valued number/vector.
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Example: finite mixture model

q Gaussian distribution: distribution over means.
q Sample from a Gaussian is a real-valued number/vector.

q Dirichlet distribution:
q Sample from a Dirichlet distribution is a probability vector.
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Example: finite mixture model

q Dirichlet prior
q Each element of a Dirichlet-distributed vector is associated with a parameter value drawn from 

some distribution.
q Sample from a Dirichlet prior is a probability distribution over parameters.
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Properties of the Dirichlet distribution (collapsing)

q Relationship to gamma distribution: If                                 ,

q If and then

q Therefore, if                                                        then 

⌘k ⇠ Gamma(↵k, 1)

(⌘1,...,⌘K)P
k ⌘k

⇠ Dirichlet(↵1, . . . ,↵K)

⌘1 ⇠ Gamma(↵1, 1) ⌘2 ⇠ Gamma(↵2, 1)

⌘1 + ⌘2 ⇠ Gamma(↵1 + ↵2, 1)

(⇡1 . . . ,⇡K) ⇠ Dirichlet(↵1, . . . ,↵K)

(⇡1 + ⇡2,⇡3, . . . ,⇡K) ⇠ Dirichlet(↵1 + ↵2,↵3, . . . ,↵K)
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Properties of the Dirichlet distribution (splitting)

q The beta distribution is a Dirichlet distribution on the 1-simplex. 
q Let 

and                                                  

q Then

q More generally, if
then 

(⇡1 . . . ,⇡K) ⇠ Dirichlet(↵1, . . . ,↵K)

(⇡1✓,⇡1(1� ✓),⇡2, . . . ,⇡K) ⇠ Dirichlet(↵1b1,↵1(1� b1),↵2, . . . ,↵K)

✓ ⇠ Beta(↵1b,↵1(1� b)), 0 < b < 1.

✓ ⇠ Dirichlet(↵1b1,↵1b2, . . . ,↵1bN ),
P

i bi = 1.

(⇡1✓1, . . . ,⇡1✓N ,⇡2, . . . ,⇡K) ⇠ Dirichlet(↵1b1, . . . ,↵1bN ,↵2, . . . ,↵K)
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Properties of the Dirichlet distribution

q Renormalization:
If
then

(⇡1 . . . ,⇡K) ⇠ Dirichlet(↵1, . . . ,↵K)
(⇡2, . . . ,⇡K)
PK

k=1 ⇡k

⇠?

(⇡2, . . . ,⇡K)
PK

k=1 ⇡k

⇠ Dirichlet(↵2, . . . ,↵K)
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Choosing the number of clusters

q Mixture of Gaussians – but how many components?
q What if we see more data – may find new components? yi

xi
N

p qa

G/IW

K
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Parametric vs nonparametric

Parametric model: 
q Assumes all data can be represented using a fixed, finite number of 

parameters.
q Mixture of K Gaussians, polynomial regression.

Nonparametric model:
q Number of parameters can grow with sample size.
q Number of parameters may be random.

q Kernel density estimation.
Bayesian nonparametrics:
q Allow an infinite number of parameters a priori.
q A finite data set will only use a finite number of parameters.
q Other parameters are integrated out.
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Bayesian nonparametric mixture models

q Make sure we always have more clusters than we need.
q Solution – infinite clusters a priori!

q A finite data set will always use a finite – but random – number of 
clusters.

q How to choose the prior?
q We want something like a Dirichlet prior –

but with an infinite number of components.

p(xn|⇡, {µk}, {⌃k}) =
1X

k=1

⇡kN (xn|µk,⌃k)
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Constructing an appropriate prior

q Start off with

q Split each component according to the splitting rule: 

q Repeat to get 

q As               , we get a vector with infinitely many components

⇡(2) = (⇡(2)
1 ,⇡(2)

2 ) ⇠ Dirichlet

✓
↵

2
,
↵

2

◆

✓(2)1 , ✓(2)2
iid⇠ Beta

✓
↵

2
· 1
2
,
↵

2
· 1
2

◆

⇡(4) = (✓(2)1 ⇡(2)
1 , (1� ✓(2)1 )⇡(2)

1 , ✓(2)2 ⇡(2)
2 , (1� ✓(2)2 )⇡(2)

2 )

⇠ Dirichlet

✓
↵

4
,
↵

4
,
↵

4
,
↵

4

◆

⇡(K) ⇠ Dirichlet

✓
↵

K
, . . . ,

↵

K

◆

K ! 1
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The Dirichlet process

q Let H be a distribution on some space Ω – e.g. a Gaussian distribution 
on the real line.

q Let

q For

q Then                           is an infinite distribution over H.

q We write  

⇡ ⇠ lim
K!1

Dirichlet

✓
↵

K
. . . ,

↵

K

◆

k = 1, . . . ,1 let ✓k ⇠ H.

G :=
P1

k=1 ⇡k�✓k

G ⇠ DP(↵, H)
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Samples from the Dirichlet process

q Samples from the Dirichlet process are discrete.
q We call the point masses in the resulting distribution, atoms.

q The base measure H determines the locations of the atoms.
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Samples from the Dirichlet process

q The concentration parameter α determines the distribution over atom 
sizes.

q Small values of α give sparse distributions.

0

1
α = 0.1

0

1
α = 1

0

1
α = 10

©Eric Xing @ CMU, 2005-2020 23



Properties of the Dirichlet process

q For any partition A1,…,AK of Ω (imagine different colors from a possibly 
infinite color library), the total mass assigned to each partition is 
distributed according to              

Dir(αH(A1)),…,αH(AK))

0 1
0

0.2

0.4

0 1
0

0.2

0.4

0 1
0

0.2

0.4
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Definition: Finite marginals

q A Dirichlet process is the unique distribution over probability distributions 
on some space Ω, such that for any finite partition A1,…,AK of Ω,

[Ferguson, 1973]

0 1
0

0.2

0.4

0 1
0

0.2

0.4

0 1
0

0.2

0.4

(P (A1), . . . , P (AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK)).
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Conjugacy of the Dirichlet process

q Let A1,…,AK be a partition of Ω, and let H be a measure on Ω. Let P(Ak)
be the mass assigned by                        to partition Ak. Then

q If we see an observation in the Jth segment, then

q This must be true for all possible partitions of Ω.
q This is only possible if the posterior of G, given an observation x, is given 

by 

G ⇠ DP(↵, H)

(P (A1), . . . , P (AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK)).

(P (A1), . . . , P (Aj), . . . , P (AK)|X1 2 Aj)

⇠Dirichlet(↵H(A1), . . . ,↵H(Aj) + 1, . . . ,↵H(AK)).

G|X1 = x ⇠ DP

✓
↵+ 1,

↵H + �
x

↵+ 1

◆
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Predictive distribution

q The Dirichlet process clusters observations.
q A new data point can either join an existing cluster, or start a new cluster.
q Question: What is the predictive distribution for a new data point?
q Assume H is a continuous distribution on Ω. This means for every point θ

in Ω, PH(θ) = 0.
q First data point: 

q Start a new cluster. 
q Sample a parameter θ1 for that cluster.
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Predictive distribution

q We have now split our parameter space in two: the singleton θ1, and 
everything else.

q Let π1 be the size of atom at θ1.
q The combined mass of all the other atoms is π* = 1-π1.
q A priori, 
q A posteriori, 

(⇡1,⇡⇤) ⇠ Dirichlet(0,↵)

(⇡1,⇡⇤)|X1 = ✓1 ⇠ Dirichlet(1,↵)
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Predictive distribution

q If we integrate out π1 we get

P (X2 = ✓k|X1 = ✓1) =

Z
P (X2 = ✓k|(⇡1,⇡⇤))P ((⇡1,⇡⇤|X1 = ✓1)d⇡1

=

Z
⇡kDirichlet((⇡1, 1� ⇡1)|1,↵)d⇡1

= E
Dirichlet(1,↵)

⇥
⇡k

⇤

=

(
1

1+↵ if k = 1

↵
1+↵ for new k.
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Predictive distribution

q Lets say we choose to start a new cluster, and sample a new parameter 
θ2 ~ H. Let π2 be the size of the atom at θ2.

q A posteriori, 
q If we integrate out            ,            we get

(⇡1,⇡2,⇡⇤)|X1 = ✓1, X2 = ✓2 ⇠ Dirichlet(1,↵).
⇡ = (⇡1,⇡2,⇡⇤)

P (X3 = ✓k|X1 = ✓1, X2 = ✓2)

=

Z
P (X3 = ✓k|⇡)P (⇡|X1 = ✓1, X2 = ✓2)d⇡

= E
Dirichlet(1,1,↵)

⇥
⇡k

⇤

=

8
><

>:

1
2+↵ if k = 1

1
2+↵ if k = 2

↵
2+↵ for new k.
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Predictive distribution

q In general, if mk is the number of times we have seen Xi=k, and K is the 
total number of observed values,

q We tend to see observations that we have seen before  – rich-get-richer 
property.

q We can always add new features – nonparametric. 

P (Xn+1 = ✓k|X1, . . . , Xn) =

Z
P (Xn+1 = ✓k|⇡)P (⇡|X1, . . . , Xn)d⇡

= E
Dirichlet(m1,...,mK ,↵)

⇥
⇡k

⇤

=

(
mk
n+↵ if k  K
↵

n+↵ for new cluster.
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DP – a Pólya urn Process

q Self-reinforcing property
q exchangeable partition

of samples

a+
=
5
2p

a+
=
5
3p

a
a
+

=
5

p

)                 (: !pG =0

( ) )GDP(G 0a   ~           

. ~,,| 0
1

0 11
G

ii
nG

K

k

k
ii k a

ad
a

aff f +-
+

+-å
=

-

Joint:

Marginal:
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Polya urn scheme

q The resulting distribution over data points can be thought of using the 
following urn scheme.

q An urn initially contains a black ball of mass α.
q For n=1,2,… sample a ball from the urn with probability proportional to its 

mass.
q If the ball is black, choose a previously unseen color, record that color, 

and return the black ball plus a unit-mass ball of the new color to the urn.
q If the ball is not black, record it’s color and return it, plus another unit-

mass ball of the same color, to the urn

[Blackwell and MacQueen,1973]
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Chinese restaurant process

q The distribution over partitions can be described in terms of the following 
restaurant metaphor:

q The first customer enters a restaurant, and picks a table.
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Chinese restaurant process

q The distribution over partitions can be described in terms of the following 
restaurant metaphor:

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with 

probability mk/(n-1+α), where mk is the number of people sat at table k. 
He starts a new table with probability α/(n-1+α).
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Chinese restaurant process

q The distribution over partitions can be described in terms of the following 
restaurant metaphor:

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with 

probability mk/(n-1+α), where mk is the number of people sat at table k. 
He starts a new table with probability α/(n-1+α).
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Chinese restaurant process

q The distribution over partitions can be described in terms of the following 
restaurant metaphor:

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with 

probability mk/(n-1+α), where mk is the number of people sat at table k. 
He starts a new table with probability α/(n-1+α).
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Chinese restaurant process

q The distribution over partitions can be described in terms of the following 
restaurant metaphor:

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with 

probability mk/(n-1+α), where mk is the number of people sat at table k. 
He starts a new table with probability α/(n-1+α).

©Eric Xing @ CMU, 2005-2020 38



Exchangeability

q An interesting fact: the distribution over the clustering of the first N
customers does not depend on the order in which they arrived.

q Homework: Prove to yourself that this is true.
q However, the customers are not independent – they tend to sit at popular 

tables.
q We say that distributions like this are exchangeable.
q De Finetti’s theorem: If a sequence of observations is exchangeable, 

there must exist a distribution given which they are iid.
q The customers in the CRP are iid given the underlying Dirichlet process –

by integrating out the DP, they become dependent.
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The Stick-breaking Process

G0
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Stick breaking construction of DP

q We can represent samples from the Dirichlet process exactly.
q Imagine a stick of length 1, representing total probability.
q For k=1,2,…

q Sample a beta(1,α) random variable bk.
q Break off a fraction bk of the stick. This is the kth atom size
q Sample a random location for this atom.
q Recurse on the remaining stick.

[Sethuraman, 1994]

G :=
P1

k=1 ⇡k�✓k

⇡k :=bk
Qk�1

j=1 (1� bk)

bk ⇠Beta(1,↵)
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xi
N

G

qi
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G0

yi
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N

p qa

G0

The Stick-breaking constructionThe Pólya urn construction

Graphical Model Representations of DP

¥
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Inference in the DP mixture model

G :=
1X

k=1

⇡k�✓k ⇠ DP(↵, H)

�n ⇠ G

xn ⇠ f(�n)

©Eric Xing @ CMU, 2005-2020 43



Inference: Collapsed sampler

q We can integrate out G to get the CRP.
q Reminder: Observations in the CRP are exchangeable.
q Corollary: When sampling any data point, we can always rearrange the 

ordering so that it is the last data point.
q Let zn be the cluster allocation of the nth data point. 
q Let K be the total number of instantiated clusters. 
q Then

q If we use a conjugate prior for the likelihood, we can often integrate out the 
cluster parameters

p(zn = k|xn, z�n,�1:K) /
(
mkf(xn|�k) k  K

↵
R
⌦ f(xn|�)H(d�) k = K + 1
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Problems with the collapsed sampler

q We are only updating one data point at a time.
q Imagine two “true” clusters are merged into a single cluster – a single 

data point is unlikely to “break away”.
q Getting to the true distribution involves going through low probability 

states è mixing can be slow.
q If the likelihood is not conjugate, integrating out parameter values for new 

features can be difficult.
q Neal [2000] offers a variety of algorithms.
q Alternative: Instantiate the latent measure.
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Topic models

q Topic models describe documents using a distribution over features.
q Each feature is a distribution over words
q Each document is represented as a collection of words (usually 

unordered – “bag of words” assumption).
q The words within a document are distributed according to a document-

specific mixture model
q Each word in a document is associated with a feature.

q The features are shared between documents.
q The features learned tend to give high probability to semantically related 

words – “topics”
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Latent Dirichlet allocation

q For each topic k=1,…,K
q Sample a distribution over words, β~Dir(η1,…, ηV)

q For each document m=1,…,M
q Sample a distribution over topics, θm~Dir(α1,…,αK)
q For each word n=1,…,Nm

q Sample a topic zmn~Discrete(θm)
q Sample a word wmk~Discrete(βz)

α θ z

n.
M

β

x
(m)

K

η
Blei et al, 2002
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Constructing a topic model with infinitely many topics

q LDA: Each distribution is associated with a distribution over K topics.
q Problem: How to choose the number of topics?
q Solution: 

q Infinitely many topics!
q Replace the Dirichlet distribution over topics with a Dirichlet process!

q Problem: We want to make sure the topics are shared between 
documents
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Sharing topics

q In LDA, we have M independent samples from a Dirichlet distribution.
q The weights are different, but the topics are fixed to be the same.
q If we replace the Dirichlet distributions with Dirichlet processes, each 

atom of each Dirichlet process will pick a topic independently of the 
other topics.
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Sharing topics

q Because the base measure is continuous, we have zero probability of 
picking the same topic twice.

q If we want to pick the same topic twice, we need to use a discrete base 
measure.

q For example, if we chose the base measure to be                       , then we 
would have LDA again.

q We want there to be an infinite number of topics, so we want an infinite, 
discrete base measure.

q We want the location of the topics to be random, so we want an infinite, 
discrete, random base measure.

H =
KX

k=1

↵k��k
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Hierarchical Dirichlet Process (Teh et al, 2006)

q Solution: Sample the base measure from a Dirichlet process!

G0

G1 G2

X1 X2

G0 ⇠ DP(�, H)

Gm ⇠ DP(↵, G0)
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Chinese restaurant franchise

q Imagine a franchise of restaurants, serving an infinitely large, global 
menu.

q Each table in each restaurant orders a single dish.
q Let nrt be the number of customers in restaurant r sitting at table t.
q Let mrd be the number of tables in restaurant r serving dish d.
q Let m.d be the number of tables, across all restaurants, serving dish d.
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Chinese restaurant franchise

q Customers enter the restaurants, and sit at tables according to the 
Chinese restaurant process

q The first customer enters a restaurant, and picks a table.
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Chinese restaurant franchise

q Customers enter the restaurants, and sit at tables according to the 
Chinese restaurant process

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with probability 

mk/(n-1+α), where mk is the number of people sat at table k. He starts a new table 
with probability α/(n-1+α).
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Chinese restaurant franchise

q Customers enter the restaurants, and sit at tables according to the 
Chinese restaurant process

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with probability 

mk/(n-1+α), where mk is the number of people sat at table k. He starts a new table 
with probability α/(n-1+α).
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Chinese restaurant franchise

q Customers enter the restaurants, and sit at tables according to the 
Chinese restaurant process

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with probability 

mk/(n-1+α), where mk is the number of people sat at table k. He starts a new table 
with probability α/(n-1+α).
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Chinese restaurant franchise

q Customers enter the restaurants, and sit at tables according to the 
Chinese restaurant process

q The first customer enters a restaurant, and picks a table.
q The nth customer enters the restaurant. He sits at an existing table with probability 

mk/(n-1+α), where mk is the number of people sat at table k. He starts a new table 
with probability α/(n-1+α).
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Chinese restaurant franchise

q Each table in each restaurant picks a dish, with probability proportional 
to the number of times it has been served across all restaurants.

p(table t chooses dish d|previous tables) =
(

md
T+� for an existing table

�
T+� for a new table
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Chinese restaurant franchise

q Each table in each restaurant picks a dish, with probability proportional 
to the number of times it has been served across all restaurants.

p(table t chooses dish d|previous tables) =
(

md
T+� for an existing table

�
T+� for a new table
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Chinese restaurant franchise

q Each table in each restaurant picks a dish, with probability proportional 
to the number of times it has been served across all restaurants.

p(table t chooses dish d|previous tables) =
(

md
T+� for an existing table

�
T+� for a new table
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Chinese restaurant franchise

q Each table in each restaurant picks a dish, with probability proportional 
to the number of times it has been served across all restaurants.

p(table t chooses dish d|previous tables) =
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Hierarchical DP Mixture
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An infinite topic model

q Restaurants = documents; dishes = topics.

q Let H be a V-dimensional Dirichlet distribution, so a sample from H is a 
distribution over a vocabulary of V words.

q Sample a global distribution over topics, 

q For each document m=1,…,M
q Sample a distribution over topics, Gm~DP(γ,G0).
q For each word n=1,…,Nm

q Sample a topic ϕmn~Discrete(G0).
q Sample a word wmk~Discrete(ϕmn).

G0 :=
1X

k=1

⇡k��k ⇠ DP(↵, H)

©Eric Xing @ CMU, 2005-2020 68



The “right” number of topics
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Figure 3: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

The hierarchical DP extension of LDA thus takes the following form. Given an underlying
measure H on multinomial probability vectors, we select a random measure G0 which provides a
countably infinite collection of multinomial probability vectors; these can be viewed as the set of all
topics that can be used in a given corpus. For the jth document in the corpus we sample Gj using
G0 as a base measure; this selects specific subsets of topics to be used in document j. From Gj

we then generate a document by repeatedly sampling specific multinomial probability vectors θji

from Gj and sampling words xji with probabilities θji. The overlap among the random measures
Gj implements the sharing of topics among documents.

We fit both the standard parametric LDA model and its hierarchical DP extension to a corpus
of nematode biology abstracts (see http://elegans.swmed.edu/wli/cgcbib). There are 5838 abstracts
in total. After removing standard stop words and words appearing fewer than 10 times, we are left
with 476441 words in total. Following standard information retrieval methodology, the vocabulary
is defined as the set of distinct words left in all abstracts; this has size 5699.

Both models were as similar as possible beyond the distinction that LDA assumes a fixed finite
number of topics while the hierarchical Dirichlet process does not. Both models used a symmetric
Dirichlet distribution with parameters of 0.5 for the prior H over topic distributions. The concen-
tration parameters were given vague gamma priors, γ ∼ Gamma(1, .1) and α0 ∼ Gamma(1, 1).
The distribution over topics in LDA is assumed to be symmetric Dirichlet with parameters α0/L
with L being the number of topics; γ is not used in LDA. Posterior samples were obtained using the
Chinese restaurant franchise sampling scheme, while the concentration parameters were sampled
using the auxiliary variable sampling scheme presented in the appendix.

We evaluated the models via 10-fold cross-validation. The evaluation metric was the perplex-
ity, a standard metric in the information retrieval literature. The perplexity of a held-out abstract
consisting of words w1, . . . , wI is defined to be:

exp

(

−
1

I
log p(w1, . . . , wI |Training corpus)

)

(41)

where p(·) is the probability mass function for a given model.
The results are shown in Figure 3. For LDA we evaluated the perplexity for mixture component

cardinalities ranging between 10 and 120. As seen in Figure 3 (Left), the hierarchical DP mixture
approach—which integrates over the mixture component cardinalities—performs as well as the
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