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Outline

l Part 1: Gaussian Processes (GPs)
l Definition of the GP
l Covariance kernels over various input spaces
l Inference and learning with GPs
l Deep (structured) kernel learning
l Scalability of GPs

l Part 2: GPs for Hyperparameter Tuning
l Hyperparameter selection as optimal experiment design
l Acquisition functions and GPs

l Part 3: Elements of meta-learning
l The one-/few-shot learning problem
l Conditional neural processes
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GPML book
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Function Learning Example
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Learning Functions from Data
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Learning Functions from Data
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Learning Functions from Data
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Learning Functions from Data
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Statistics From Scratch
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Parametric vs. Nonparameteric Modeling

Parametric models:
l Assume that all data can be represented using a fixed, finite number of 

parameters.
l Mixture of K Gaussians, polynomial regression, neural nets, etc.

Nonparameteric models:
l Number of parameters can grow with sample size.
l Number of parameters may be random.

l Kernel density estimation.

Bayesian nonparameterics:
l Allow for an infinite number of parameters a priori.
l Models of finite datasets will have only finite number of parameters.
l Other parameters are integrated out.
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Image: scikit-learn.org
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Parametric Bayesian Inference

A parametric likelihood: 
Prior on θ :
Posterior distribution

is represented as a finite set of parameters     

Examples:
• Gaussian distribution prior + 2D Gaussian likelihood    → Gaussian posterior distribution 

• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution 

• Sparsity-inducing priors + some likelihood models → Sparse Bayesian inference
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Nonparametric Bayesian Inference

A nonparametric likelihood: 
Prior on   :
Posterior distribution

Examples:
→ see next slide

is a richer model, e.g., with an infinite set of parameters
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probability measure binary matrix

function

Dirichlet Process Prior [Antoniak, 1974]
+ Multinomial/Gaussian/Softmax likelihood

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]
+ Gaussian/Sigmoid/Softmax likelihood

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/Sigmoid/Softmax likelihood

Nonparametric Bayesian Inference
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Weight-space View
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l Consider a simple linear model
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Function-space View
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l We are interested in the distribution over functions induced by the 
distribution over parameters…

l In fact, we can characterize the properties of these functions directly:
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Function-space View
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Function-space View
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l We are interested in the distribution over functions induced by the 
distribution over parameters…

l In fact, we can characterize the properties of these functions directly:
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Function-space View
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l Therefore any collection of values has a joint Gaussian distribution (not 
because of randomness in X, note that here we have lower-case x which means they are given as fixed, but 
because of randomness in the function f):

l Definition:

© Eric Xing @ CMU, 2005-2020



Example: Linear Basis Function Models
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l Model specification:

l Moments of the the induced distribution over functions:
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Gaussian Processes
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Interpretability:
l We are ultimately more interested in – and have stronger intuitions about 

– the functions that model our data and weights w in a parametric model.
We can express these intuitions using a covariance kernel.

Generalization:
l The kernel controls the support and inductive biases of our model, and 

thus its ability to generalize to unseen.

© Eric Xing @ CMU, 2005-2020



Gaussian Process: Graphical Model
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Example: RBF kernel
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Example: RBF kernel

31Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020



Example: RBF kernel
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Gaussian Process Inference
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Recap: Multivariate Gaussian Distribution
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If

then
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Gaussian Process Inference
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Gaussian Process Inference
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Gaussian Process Inference
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Gaussian Process Inference
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Gaussian Process Learning
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Gaussian Process Learning
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Rich Literature on Other Types of Covariance Kernels
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Kernels as functions of the distance:
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Rich Literature on Other Types of Covariance Kernels
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Kernels as functions of the distance: Spectral mixture kernels (Wilson & Adams, 2013)
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Gaussian Process and Deep Kernel Learning

q By adding GP as a layer to a deep neural net, we can think of it as 
adding an infinite hidden layer with a particular prior on the weights

q Deep kernel learning [Wilson et al., 2016]
q Combines the inductive biases of

deep models with the non-parametric
flexibility of Gaussian processes

q GPs add powerful regularization to
the network

q Additionally, they provide predictive
uncertainty estimates
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Deep Kernel Learning
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l Combines inductive biases of deep learning architectures with the 
nonparametric flexibility of Gaussian processes.

l Starting from some base kernel, we can get a deep kernel using 
functional composition:

Wilson et al., NIPS 2016 © Eric Xing @ CMU, 2005-2020



Learning Deep Kernels
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l Learn base kernel hyperparameters and neural network parameters jointly.

l Use the chain rule to compute derivatives of the log marginal likelihood
w.r.t. the deep kernel hyperparameters:

l To make the model scalable, inducing point methods can be applied.

Wilson et al., NIPS 2016 © Eric Xing @ CMU, 2005-2020



Deep Kernel Learning for Regression
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Deep Kernel Learning on Sequential Data
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What if we have data of 
sequential nature?

Can we still apply the same 
reasoning and build rich 
nonparametric models on top 
recurrent nets?

Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020



Deep Kernel Learning on Sequential Data
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The answer is YES!

By adding a GP layer to a recurrent 
network, we effectively correlate 
samples across time and get 
predictions along with well 
calibrated uncertainty estimates.

Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020



Deep Kernel Learning on Sequential Data
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Lane prediction: LSTM vs GP-LSTM
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Deep Kernel Learning on Sequential Data

50Al-Shedivat et al., JMLR 2017

Lead vehicle prediction: LSTM vs GP-LSTM
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The Scalability Issue
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Scaling Up Gaussian Processes
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Inducing Point Methods

53Slide credit: Zoubin Ghahramani (MLSS, 2011) © Eric Xing @ CMU, 2005-2020



Inducing Point Methods

54Images: GPML library docs

Grids are tricky:
In high dimensions, one would need a LOT of inducing points to build a high-dimensional grid.
This might drastically affect efficiency.

Further reading:
Wilson, Dann, Nickisch (2015). Thoughts on Massively Scalable Gaussian Processes
Bauer, van der Wilk, Rasmussen (2016). Understanding Probabilistic Sparse Gaussian Process Approximations.

© Eric Xing @ CMU, 2005-2020



Massively Scalable GPs: O(n) training, O(1) inference

55Image source: Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020



Running Exact GPs on GPUs (recent)

56Wang et al. (2019). Exact Gaussian Processes on a Million Data Points (arXiv:1903.08114)

Key idea: Use a clever distributed GP learning and inference algorithm that runs on multiple GPUs.

© Eric Xing @ CMU, 2005-2020



Gaussian Process Software
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1) Classic MATLAB-based:

2) Keras-based (GPs as DL layers!) 4) TensorFlow (T2T library)

Tran et al. (2018) arXiv:1812.03973

3) PyTorch-based

Gardner et al. (2018) arXiv:1809.11165 © Eric Xing @ CMU, 2005-2020



Summary

l Gaussian process are Bayesian nonparametric models that can 
represent distributions over smooth functions.

l Using expressive covariance kernel functions, GPs can model a variety of 
data (scalar, vector, sequential, structured, etc.).

l Inference can be done fully analytically (in case of Gaussian likelihood). 
l Inference and learning are very computationally costly since exact 

methods require large matrix inversions.
l There is a variety of approximation methods to GPs that can bring down 

the learning and inference cost to O(n) and O(1), respectively.
l Many new libraries based on TF, PyTorch, Keras – GP models despite 

computational constraints, GPs are certainly quite popular.
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Gaussian Process for Hyperparameter Tuning

© Eric Xing @ CMU, 2005-2020 59



Hyperparameter Tuning

q Existing methods
q Grid search
q Graduate student descent

q Problems
q Time-consuming
q Labor-intensive

© Eric Xing @ CMU, 2005-2020 60



Automatic Hyperparameter Tuning

q Generalization performance (e.g., error rate) is a function of hyperparameters.

q If knowing this function, we can perform optimization to search for the optimal
hyperparameters yielding the lowest error.

q This function is a black-box and (almost surely) has no closed-form solutions.

q Solution: use a highly-expressive and easily-operable proxy function to
approximate the true function and perform optimization on the proxy function.

q Family of proxy functions: Gaussian Process

© Eric Xing @ CMU, 2005-2020 61



Gaussian Process for Hyperparameter Tuning

q Obtain a set S of (hyperparameter-configuration, error) pairs using grid
search or graduate student descent

q Repeat
q Fit a Gaussian process on the (hyperparameter, error) pairs in S

q Based on the fitted Gaussian process, select a hyperparameter configuration
H and measure the error E given H

q Add the (H, E) pair to S

© Eric Xing @ CMU, 2005-2020 62



How to select hyperparameter configuration?

q Tradeoff between exploration and exploitation.
q Exploitation: search over the “promising” hyperparameter space

q The “promising” space is more likely to contain the best hyperparameters.
q Hyperparameter space yielding lower GP function values is more promising.

q Exploration: search over the entire hyperparameter space
q The “promising” space may not contain the best hyperparameters. 
q Try other spaces as well
q Space having more “uncertainty” is more worthwhile to try.

© Eric Xing @ CMU, 2005-2020 63



“Promising” and “Uncertain”

© Eric Xing @ CMU, 2005-2020 64

Hyperparameter

Error

Promising but
not uncertain

Promising
and uncertain

Uncertain but
not promising

Promising: Hyperparameters
yielding low GP mean

Uncertain: Hyperparameters
yielding large GP variance



Acquisition Function

© Eric Xing @ CMU, 2005-2020 65

• Hyperparameters that are more
promising and more uncertain
have larger acquisition function
value.

• Select the hyperparameter with
the largest acquisition function
value to try.

Hyperparameter

Accuracy

Promising but
not uncertain

Promising
and uncertain

Uncertain but
not promising

Acquisition 
function



Define Acquisition Function

© Eric Xing @ CMU, 2005-2020 66

Predictive mean
function of GP posterior

Predictive marginal variance 
function of GP posterior

Current lowest error

q Probability of Improvement (Kushner 1964):

q Φ(#) is the cumulative density function of a normal distribution.



Define Acquisition Function (Cont’d)

© Eric Xing @ CMU, 2005-2020 67

q Expected Improvement (Mockus 1978):

q GP Upper Confidence Bound (Srinivas et al. 2010):



Illustration
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Figure Courtesy:
Ryan Adams



Illustration
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Illustration
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Illustration
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Illustration
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Illustration
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Figure Courtesy:
Ryan Adams



Summary

q Use GP to tune hyperparameters

q Iteratively fit GP to approximate the true hyperparameter-error function

q Select hyperparameters that have low GP mean and high GP variance to
try

q Acquisition function simultaneously considers GP mean and variance.
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Elements of Meta-learning and Neural Processes
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Example: Fast Learning of Functions

l So far, we assumed that data was generated by a single function.
l What if there are multiple data-generating functions, and each time we 

get only a few points from one of them. Can we identify it?

77© Eric Xing @ CMU, 2005-2020



What is meta-learning?
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l Standard learning: Given a distribution over examples (single task), learn 
a function that minimizes the loss

l Learning-to-learn: Given a distribution over tasks, output an adaptation 
rule that can be used at test time to generalize from a task description

distribution over
tasks/datasets

distribution over
examples for task T

adaptation rule takes
a task description as input
and outputs a model

© Eric Xing @ CMU, 2005-2020



Example: Few-shot Image Classification
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Considered in:
Lake et al., ‘15
Vinyals et al., ‘16
Santoro et al., ‘16
Ravi, Larochelle, ‘17
Finn et al., ‘17
...

Image: bair.berkeley.edu © Eric Xing @ CMU, 2005-2020



Conditional Neural Processes
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CNP architecture:

Garnelo et al., ICML 2018 © Eric Xing @ CMU, 2005-2020



Summary

l There are cases when learning a single function is not enough –
contextual models are used in such case.

l Few-shot learning is a popular application of meta-learning, where 
contextual models are trained on distributions of different tasks. 
Examples:
l Solve different sub-problems
l Imitate different demonstrations
l Make predictions about different user preferences

l Neural processes propose an alternative to kernel learning (kernel 
becomes fully implicit; the model is scalable without approximations)
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