(4
" PETUUM

& Carnegie Mellon University

Probabilistic Graphical Models

Gaussian Processes

Eric Xing
Lecture 21, April-4, 2020

Reading: see class homepage

Outline

e Part 1: Gaussian Processes (GPs)
e Definition of the GP
e Covariance kernels over various input spaces
e Inference and learning with GPs
e Deep (structured) kernel learning
e Scalability of GPs

e Part 2: GPs for Hyperparameter Tuning

e Hyperparameter selection as optimal experiment design

e Acquisition functions and GPs

e Part 3: Elements of meta-learning
e [he one-/few-shot learning problem
e (Conditional neural processes

0.5
input, x

(a), prior

0 0.5 1
input, x

(b), posterior

© Eric Xing @ CMU, 2005-2020 2 Lg

/
f Function Learning Example

700
™ —Train
© 600¢ —Alien?
§ ——Test
_Cc) 500+ —Human?
|_
~ [
5 V
Q 400"
< {
()
7
o 300"
a
()
£
~ 200
<C

1 0 1 1 1 1 L J

1%49 1951 1953 1955 1957 1959 1961

Year
© Eric Xing @ CMU, 2005-2020 3
L

/
(/ Learning Functions from Data

700

(o)}
o
o

o)
o
o

W
o
o

Airline Passengers (Thousands)
o N
o o
o o

L]
~..
L]

.~. .

%

49

1951 1953 1955 1957 1959
Year

1961

© Eric Xing @ CMU, 2005-2020

4

3

/
ﬁ Learning Functions from Data

Guess the parametric form of a function that could fit the data

> flx,w) =w'x [Linear function of w and x]
> fx,w) =wlop(x) [Linear function of w] (Linear Basis Function
Model)

> f(x,w) =g(w'p(x)) [Non-linear in x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1, x,x*) and
x € R! then f(x,w) = wy + wix + wyx? is a quadratic function.

/
{/ Learning Functions from Data

Guess the parametric form of a function that could fit the data

> flx,w) =w'x [Linear function of w and x]
> fx,w) =wlop(x) [Linear function of w] (Linear Basis Function
Model)

» f(x,w) = g(wlp(x)) [Non-linear in x and w] (E.g., Neural Network)

¢(x) is a vector of basis functions. For example, if ¢(x) = (1, x,x*) and
x € R! then f(x,w) = wy + wix + wyx? is a quadratic function.

Choose an error measure £(w), minimize with respect to w

> E(w) = S0, [f(xi,w) — y(xi))?

/
(/ Learning Functions from Data

A probabilistic approach

We could explicitly account for noise in our model.

> y(x) = f(x,w) + €(x), where €(x) is a noise function.

/
f Learning Functions from Data

A probabilistic approach

We could explicitly account for noise in our model.
» y(x) =f(x,w) + e(x), where €(x) is a noise function.

One commonly takes €(x) = N(0, o?) fori.i.d. additive Gaussian noise, in
which case

p(y(x)|x,w, o) = N (y(x);f(x,w), 02) Observation Model
N
plylx,w, 02) = HN(y(x,-);f(x,-, w), 02) Likelihood

i=1

/
f Learning Functions from Data

A probabilistic approach

We could explicitly account for noise in our model.
» y(x) =f(x,w) + e(x), where €(x) is a noise function.

One commonly takes €(x) = N(0, o?) fori.i.d. additive Gaussian noise, in
which case

p(y(x)|x,w, o) = N (y(x);f(x,w), 02) Observation Model
N
plylx,w, 02) = HN(y(x,-);f(x,-, w), 02) Likelihood

i=1

» Maximize the likelihood of the data p(y|x, w, o) with respect to %, w.

/
(/ Learning Functions from Data

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2.

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

© Eric Xing @ CMU, 2005-2020 10 ‘g
L 4

/
f Learning Functions from Data

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2.

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

» Both approaches are prone to over-fitting for flexible f(x,w): low error
on the training data, high error on the test set.

© Eric Xing @ CMU, 2005-2020 1 g
L 4

/
ﬁ Learning Functions from Data

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2.

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

» Both approaches are prone to over-fitting for flexible f(x,w): low error
on the training data, high error on the test set.

Regularization

» Use a penalized log likelihood (or error function), such as

model fit
-~ g ~ complexity penalty

1 n 2 __/_T
logp(y|X,w) ey Z(f(x,—,w) —y(x)7) —Aw'w
i=]

© Eric Xing @ CMU, 2005-2020

12

/
f Learning Functions from Data

» The probabilistic approach helps us interpret the error measure in a
deterministic approach, and gives us a sense of the noise level o2.

» Probabilistic methods thus provide an intuitive framework for
representing uncertainty, and model development.

» Both approaches are prone to over-fitting for flexible f(x,w): low error
on the training data, high error on the test set.

Regularization

» Use a penalized log likelihood (or error function), such as

model fit
-~ g ~ complexity penalty

{ <" , _/\T_
logp(y|X,w) X _20_2 § :(f(Xj,W) —y(X,')) —AW W
i=]

» But how should we define complexity, and how much should we
penalize complexity?

» Can set A using cross-validation. © e Xing @ S, 20052029

13

/
f Learning Functions from Data

Bayes’ Rule

p(alb) = p(bla)p(a)/p(b), pla|b) o< p(bla)p(a).

likelihood x prior - py|X,w,0%)p(w)

t . — 7X7 2 _
pOSIELIOL marginal likelihood’ pwy, X, %) p(yX,o?)

/
(/ Learning Functions from Data

Predictive Distribution

py|xe,y,X) = /p(ylx*,w)p(wb’,X)dw.

/
ﬁ Statistics From Scratch

Predictive Distribution

POy, X) = / P (e, WDy, X)W

» Average of infinitely many models weighted by their posterior
probabilities.

» No over-fitting, automatically calibrated complexity.

» Typically more interested in distribution over functions than in
parameters w.

; Parametric vs. Nonparameteric Modeling

Parametric models:

e Assume that all data can be represented using a fixed, finite number of
parameters.

e Mixture of K Gaussians, polynomial regression, neural nets, etc.

Nonparameteric models:

e Number of parameters can grow with sample size. |

e Number of parameters may be random. :jjjjm;,;;;,:;o;;::’“ T
e Kernel density estimation. ‘ |

Bayesian nonparameterics: R S e S

e Allow for an infinite number of parameters a priori.
e Models of finite datasets will have only finite number of parameters.
e Other parameters are integrated out. g

© Eric Xing @ CMU, 2005-2020 17

/
f Parametric Bayesian Inference

M is represented as a finite set of parameters ¢

+ A parametric likelihood: x ~ p(-|6)
¢ Prioron 6: m(0)
+ Posterior distribution

p(Olx) = [p(x|6)m(0)dd

Examples:
» Gaussian distribution prior + 2D Gaussian likelihood - Gaussian posterior distribution
* Dirichilet distribution prior + 2D Multinomial likelihood - Dirichlet posterior distribution
» Sparsity-inducing priors + some likelihood models - Sparse Bayesian inference
© Eric Xing @ CMU, 2005-2020 18 g

/
(/ Nonparametric Bayesian Inference

M is aricher model, e.g., with an infinite set of parameters

+ A nonparametric likelihood: x ~ p(:|M)
¢ Prioron M: #(M)
+ Posterior distribution

p(x|M)m(M)

PMIx) = T g < PIMOT(M)

Examples:
- see next slide

/
(/ Nonparametric Bayesian Inference

function

-2
0 05 1
input, x

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/Sigmoid/Softmax likelihood %
© Eric Xing @ CMU, 2005-2020 20

% Weight-space View

e Consider a simple linear model

f(x) :aO_I_alxa
ap,a; ~N(0,1).

Output, f(x)

25) ; ; ; : i : A)
-10 -8 -6 -4 -2 0 2 4 6 8 10
Input, X © Eric Xing @ CMU, 2005-2020 21

/
f Function-space View

e We are interested in the distribution over functions induced by the
distribution over parameters...

e |n fact, we can characterize the properties of these functions directly:

f(x|a0,a1) = ap +apx, ap, aj NN(O,I).

f Function-space View

e We are interested in the distribution over functions induced by the
distribution over parameters...

e |n fact, we can characterize the properties of these functions directly:

(x|a0,a1) = ap +apx, ap, aj NN(O,I).
Elf(x)] = Elao] + Elai]x = 0.

Function-space View

e We are interested in the distribution over functions induced by the
distribution over parameters...

e |n fact, we can characterize the properties of these functions directly:

(x|a0,a1) = ap +apx, ap, aj NN(O,I).
Elf(x)] = Elao] + Elai]x = 0.
covf(xp),f(xe)] = Elf (xp)f (xe)] — Ef (xp) JEf (xe)]

/
f Function-space View

e We are interested in the distribution over functions induced by the
distribution over parameters...

e |n fact, we can characterize the properties of these functions directly:

f(x|ag,ay) = ap + arx, ag,a; ~N(0,1).

ap] + Ela1]x=0.

f (%6)f (xc)] — Ef (xp) | E[f (xc)]

ag + apay (xp + x.) + atxpx.] — 0
at] + Elatxyx.] + Elaga; (x, + x.)]
=14+ xpx.+0

=1+ xpx,.

Function-space View

e Therefore any collection of values has a joint Gaussian distribution (not

because of randomness in X, note that here we have lower-case x which means they are given as fixed, but

because of randomness in the function f).

[f(xl)v ce >f(xN)] ~ N(Ov K) 3
Ki; = cov(f(xi),f(xj)) = k(xi,x;) = 1 + xpx. .

A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write

e Definition: £(x) ~ GP(m. k) to mean
[f(xl)aaf(xN)] NN(I'L?K) (3(
pi = m(x;) (3
K," = k(x,',Xj) , (3:
for any collection of input values xy, ..., xy. In other words, f is a GP with

mean function m(x) and covariance kernel k(x;, x;). © e xing @ o0, 205 202

26

ﬁ Example: Linear Basis Function Models

e Model specification: flx,w) =wlep(x)
p(w) = N(0,%,)

e Moments of the the induced distribution over functions:

E[f(x,w)] = m(x) = Ew"]¢(x) = 0

cov(f(xi),f(x)) = k(xi, x;) = E[f (x;)f (x;)] —
¢ (x;) Eww'|o(x;) — 0

gb(x,)Tqub(xj)

Ef (xi) | E[f (x;)]

» f(x,w) is a Gaussian process, f(x) ~ N (m, k) with mean function
m(x) = 0 and covariance kernel k(x;, x;) = ¢(x;)" X, (x;).

% Gaussian Processes

Interpretability:

e \We are ultimately more interested in — and have stronger intuitions about
— the functions that model our data and weights w in a parametric model.
We can express these intuitions using a covariance kernel.

GGeneralization:

e The kernel controls the support and inductive biases of our model, and
thus its ability to generalize to unseen.

/
(/ Gaussian Process: Graphical Model

Observations Y1 @

/
ﬁ Example: RBF kernel

[lx — ']|®

24°)

krpr(x, x) = cov(f(x),f(x')) = a”exp(—

» Far and above the most popular kernel.

» Expresses the intuition that function values at nearby inputs are more
correlated than function values at far away inputs.

» The kernel hyperparameters a and ¢ control amplitudes and wiggliness
of these functions.

» GPs with an RBF kernel have large support and are universal
approximartors.

https://distill.pub/2019/visual-exploration-gaussian-processes/

% Example: RBF kernel

[lx — x'||”

krpr(x, x") = cov(f(x),f(x)) = a’ exp(— 202)

SE kernels with Different Length-scales

09}
08}
0.7}
06

E o5}
04}
03}
0.2}

01

— =7
— =0T
— | = 2,28

0 2 4 6 8 10 12 14 16 18 20
T

Figure: SE kernels with different length-scales, as a function of 7 = x — X'. .exmaom msan = g

/
{/ Example: RBF kernel

Gaussian process sample prior functions

/
ﬁ Gaussian Process Inference

» Observed noisy datay = (y(x1),...,y(xy))" at input locations X.
» Start with the standard regression assumption: N (y(x);f(x), o?).

» Place a Gaussian process distribution over noise free functions
f(x) ~ GP(0,kg). The kernel k is parametrized by 6.

» Infer p(f.|y, X, X,) for the noise free function f evaluated at test points
X

© Eric Xing @ CMU, 2005-2020

33

/
f Recap: Multivariate Gaussian Distribution

5 ; 0.35

0.3

0.25

= a2
> 0 =
Q. 0.15
0.1
0.05
-5 0
-5 0 5 -10 -5 0 5 10
X X

Y1 (41 ki1 Fkio
If ~N , ’ ’
[w] ([uzl [kfz kmD

then Y1|y2 ~ N (Ml = k1,2kz_,é(y2 — lz), k11— k1,2]‘32_,%k{2)

/
ﬁ Gaussian Process Inference

» Observed noisy datay = (y(x1),...,y(xy))" at input locations X.
» Start with the standard regression assumption: N (y(x);f(x), o?).

» Place a Gaussian process distribution over noise free functions
f(x) ~ GP(0,kg). The kernel k is parametrized by 6.

» Infer p(f.|y, X, X,) for the noise free function f evaluated at test points

) |

Joint distribution
y KH(X7X)+02] K@(X,X*)
f* KQ(X*,X) KQ(X*,X*)

© Eric Xing @ CMU, 2005-2020 35 g
L

Gaussian Process Inference

» Observed noisy datay = (y(x1),...,y(xy))" at input locations X.
» Start with the standard regression assumption: N (y(x);f(x), o?).

» Place a Gaussian process distribution over noise free functions
f(x) ~ GP(0,kg). The kernel k is parametrized by 6.

» Infer p(f.|y, X, X,) for the noise free function f evaluated at test points

) |

Joint distribution

AR

Conditional predictive distribution

[l X, X, 3,0 ~ N (f.,cov(fy))
[= Ko(X., X)[Ko(X,X) + 0°1) "y,
cov(f.) = Ko(Xs, X)) — Ko(Xs, X)[Ko (X, X) + 1] ' Ko (X, X..) .

KH(X7X)+021 K@(X,X*)
Ko(Xi, X) Ko(Xs,Xx)

© Eric Xing @ CMU, 2005-2020

36

s

Gaussian Process Inference

» Specify f(x) ~ GP(0,k).

» Choose krpp(x,x') = 0(2) exp(—

[x—x'| |2
20
» Observe data, look at the prior and posterior over functions.

). Choose values for ay and 4.

Samples from GP Prior Samples from GP Posterior

/
1 \
5 of

N w -
\
—_—

4 Gaussian Process Inference

Increase the length-scale /.

Samples from GP Prior Samples from GP Posterior

Output, f(x)

Input, x Input, x g
© Eric Xing @ CMU, 2005-2020 38

/
f Gaussian Process Learning

» We can integrate away the entire Gaussian process f(x) to obtain the
marginal likelihood, as a function of kernel hyperparameters 6 alone.

p(y16,X) = / pOIf, X)p(F16, X)df - (48)

model fit complexity penalty

7\ 7\
7 N\ 7 N

1 P N
log p(y]6,X) = —7y' (Ko + 0°I)"'y — 7 log |Kg + 01| == log(2m)
(49)

Samples from GP Prior Samples from GP Posterior
4

Output, f(x)
Output, f(x)

0 5 -10 -5 0
Input, x Input, x

Gaussian Process Learning

1. Learning: Optimize marginal likelihood,

model fit complexity penalty

7\ N\
7) 4R N

| B 1 N
logp(y|0,X) = —in(Kg + 021) g = > log |Kg + 021| ~5 log(27),

with respect to kernel hyperparameters 6.

2. Inference: Conditioned on kernel hyperparameters @, form the
predictive distribution for test inputs X.:

f*|X*7X7y79 g N(f*,COV(f*)))
fv = Ko(Xe, X)[Ko(X,X) + 1]y,
cov(fy) = Ko(X,, X,.) — Ko(X,., X)[Ko(X, X) + 0°I] 'Ky (X, X,.) .

; Rich Literature on Other Types of Covariance Kernels

kMatern(T) = il(:)/ (QKVT)VKV(QEVT)

Kernels as functions of the distance:

15, — V=112 |
== v=2
5) S0.8 \ I
ksg(7) = exp(—0.577/£7) ;‘o.s %
3 3 : g
kva(T) = a(l + Q) exp(— \/_T) - 5" : - .
l 4 0.2 [e,
kRQ(T) T (l +) a€2) ? i?mput distance,zr . e inpgt,x .
kpg(T) = exp(—2sin’ (7w 7 w)/0?) : |
0'8 \»\\‘\‘ = .
g 0.6 %
5 g
804 3
0.2 b -2
% 3 I

input distance

'
i
. ;
% - ~ II
N]
o)
S
input, x
© Eric Xing @ CMU, 2005-2020 a1
L 4

/
f Rich Literature on Other Types of Covariance Kernels

Kernels as functions of the distance: Spectral mixture kernels (Wilson & Adams, 2013)
Q P
ks(7) = exp(—0.572/2) k(r) =) wq] | exp{-2n*73v"} cos(2mrpud)
V3r V3 =
kMA(T) = a(l + 7) exp(—T)
fra(r) = (14+ =) 15
T) =
RQ 2 l? 1

kpg(T) = exp(—2sin’ (7w 7 w)/0?)

(5]

Log Spectral Density

4.‘."‘v A /\\
0 J

= ¢ i . . X o ; ; :
= '9%49 1951 1953 1955 1957 1959 1961 0 005 01 015 02 025 03
Year Frequency (1/month)

a) b)

© Eric Xing @ CMU, 2005-2020 42 g
L 4

Gaussian Process and Deep Kernel Learning

o By adding GP as a layer to a deep neural net, we can think of it as

adding an infinite hidden layer with a particular prior on the weights

. W
o Deep kernel learning [wilson et al., 2016] ——
: : : : Input layer
o Combines the inductive biases of -

deep models with the non-parametric
flexibility of Gaussian processes

o GPs add powerful regularization to
the network

o Additionally, they provide predictive
uncertainty estimates

T

Irp

o WS
A

Hidden layers

h]
/ m Output layer
o —
\1

(10)

\\) Y1
\
/

/ \ '
/‘/ yp

he(0)

oo layer

© Eric Xing @ CMU, 2005-2020 43

s

% Deep Kernel Learning

e Combines inductive biases of deep learning architectures with the
nonparametric flexibility of Gaussian processes.

e Starting from some base kernel, we can get a deep kernel using
functional composition:

k(z,z") = k(h(x), h(z"))

W
> ~ W@ OIS
\ o N AN
[nput layer (a" h—>= W) ™~
, | SN o /I« \\Output layer
o A T hfl, - J N\ l

/',r' \ A 3) N/ | ‘
. |~ \ I\ e Y | L)y | \ \
€Iy \ // \ | ‘ Il(l »'; | \\
\ / \ A \ /
/ \ / ".\. ’:‘ {1/ /
. . 1 . Y B i . Y .

. . ““ \ . //‘. .\". . / . \ .

/ [\ / \ I\ [\

/ \ [\ £\ / [\

/) {\) (e | \

74 \ I ; N\ | \ yp

2 \ f \ / \ AR A /

g, X [1 ¥ — 1\ | * ' 4
- |/ .. \ * [of

oo (0)/

Hidden layers |

© Eric Xing @ CMU, 2005-2020 44 g
oo layer ¢

Learning Deep Kernels

e | earn base kernel hyperparameters and neural network parameters jointly.

e Use the chain rule to compute derivatives of the log marginal likelihood
w.r.t. the deep kernel hyperparameters:

oL 9L 0K, 9L 0L 0K, 0g(x,w)
00 0K, 00 ' 0w 0Ky 0g(x,w) Ow

e [0 make the model scalable, inducing point methods can be applied.

4 Deep Kernel Learning for Regression

RMSE
Datasets n d
GP DNN DKL

RBF SM best RBF SM
Gas 2,565 128 0.214+0.07 0.1440.08 0.1240.07 0.114+0.05 0.114+0.05 0.09+0.06
Skillcraft 3,338 19 1.261+3.14 0.25+0.02 0.2540.02 0.254+0.00 0.254+0.00 0.254+0.00
SML 4,137 26 6.94+0.51 0.2740.03 0.26+0.04 0.2540.02 0.2440.01 0.234+0.01
Parkinsons 5,875 20 3.944+1.31 0.00+0.00 0.00+0.00 0.314+0.04 0.29+0.04 0.2940.04
Pumadyn 8,192 32 1.0040.00 0.2140.00 0.20+0.00 0.2540.02 0.2440.02 0.2340.02
PoleTele 15,000 26 12.610.3 5.40+0.3 4.30+0.2 3.4240.05 3.2840.04 3.114+0.07
Elevators 16,599 18 0.12+0.00 0.090+0.001 0.0894+0.002 0.099+0.001 | 0.084+0.002 0.084+0.002
Kin40k 40,000 8 0.34+0.01 0.1940.02 0.0640.00 0.1140.01 0.05+0.00 0.03+0.01
Protein 45,730 9 1.64+1.66 0.5040.02 0.47+0.01 0.494+0.01 0.4610.01 0.43+0.01
KEGG 48,827 22 0.33+0.17 0.1240.01 0.1240.01 0.1240.01 0.1140.00 0.104+0.01
CTslice 53,500 385 7.13+0.11 2.21+0.06 0.59+0.07 0.414+0.06 0.36+0.01 0.34+0.02
KEGGU 63,608 27 0.2940.12 0.124+0.00 0.124:0.00 0.124+0.00 0.111+0.00 0.114+0.00
3Droad 434,874 3 12.86+0.09 10.34+0.19 9.90+0.10 7.364+0.07 6.914+0.04 6.91+0.04
Song 515,345 90 0.5540.00 0.4640.00 0.4540.00 0.4510.02 0.4440.00 0.434+0.01
Buzz 583,250 77 0.88+0.01 0.51+0.01 0.51+0.01 0.494+0.00 0.48+0.00 0.46+0.01
Electric 2,049,280 11 0.2304£0.000 0.05340.000 0.0534+0.000 0.058+0.002 0.0504+0.002 0.048+0.002

© Eric Xing @ CMU, 2005-2020 46

% Deep Kernel Learning on Sequential Data

What if we have data of
sequential nature?

Can we still apply the same
reasoning and build rich
nonparametric models on top
recurrent nets?

; Deep Kernel Learning on Sequential Data

The answer is YES!

By adding a GP layer to a recurrent
network, we effectively correlate
samples across time and get
predictions along with well
calibrated uncertainty estimates.

/
ﬁ Deep Kernel Learning on Sequential Data

Lane prediction: LSTM vs GP-LSTM

50

Front distance, m
[\) w e~
(@) (@) (e)

—
=

Ut

Front distance, m
DO (8] I
(e} (@) (an)

—_
o=

e}

ot

Side distance, m

© Eric Xing @ CMU, 2005-2020 49 g
L

/
(/ Deep Kernel Learning on Sequential Data

Lead vehicle prediction: LSTM vs GP-LSTM

100
u . o =11I L =::l B =11. . =I:.
= % A A A T
3 . n w® .l
S 60 LN LR .
-— .. ~
g . i, I,
£ " n
S - -
c 20
0 -5 0 5 =5 0 5 =5 0 5 =5 0 5 =5 0 b}

100 & -
@ﬁ . .““.\.
E80 .‘
d ‘-_-_-_—_::‘. ___________
o
S 60 .
G “
-o 40 /1‘_
< ﬁ‘k\
2 20 @ >
LL 7
0— 5 0 5 -5 0 5 -5 0 0 - ; L) | 0 |

Side distance, m

© Eric Xing @ CMU, 2005-2020 50 %
L 4

/
(/ The Scalability Issue

» Computational bottlenecks for GPs:

» Inference: (Ky + o*I)~ 'y for n x n matrix K.
» Learning: log |Ky + o°I|, for marginal likelihood evaluations needed to
learn 6.

» Both inference and learning naively require O(n’) operations and
O(n?) storage (typically from computing a Cholesky decomposition of
K). Afterwards, the predictive mean and variance cost O(n) and O (n?)
per test point.

/
(/ Scaling Up Gaussian Processes

Three Families of Approaches

» Approximate non-parametric kernels in a finite basis ‘dual space’.
Requires O(m?n) computations and O(m) storage for m basis
functions. Examples: SSGP, Random Kitchen Sinks, Fastfood,

A la Carte.

» Inducing point based sparse approximations. Examples: SoR, FITC,
KISS-GP.

» Exploit existing structure in K to quickly (and exactly) solve linear
systems and log determinants. Examples: Toeplitz and Kronecker
methods.

© Eric Xing @ CMU, 2005-2020

52

y Inducing Point Methods

We can approximate GP through M < N inducing points f to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) = [df [],, p(f»lf) p(f)

NO,Ky) w p(f) = N(O.KnKi/Kuy + _A)

e SPGP covariance inverted in O(M?N) < O(N?®) = much faster

4 Inducing Point Methods

0.8

0.6

0.4

0.2

Grids are tricky:
In high dimensions, one would need a LOT of inducing points to build a high-dimensional grid.
This might drastically affect efficiency.

Further reading:
Wilson, Dann, Nickisch (2015). Thoughts on Massively Scalable Gaussian Processes
Bauer, van der Wilk, Rasmussen (2016). Understanding Probabilistic Sparse Gaussian Process Approximations.

© Eric Xing @ CMU, 2005-2020 54 g
L

4 Massively Scalable GPs: O(n) training, O(1) inference

% 500 ~ & 700 v 8.0 v 8.0
& —e— 100 pts ~600| —*— 10 —¥ 40 € .5 4 100pts E- 5| 410 -+ 40
5 400 | —e— 200 pts S —— 20 —+— 80 = —4— 200 pts = —4- 20 — 80
bo) 500 Q7.0 Q70
2 —¥— 400 pts 8_ s —¥— 400 pts d
& 300 & 400 @ 8B 6.5
© 200 G 300 o 6 = 60
© 10 o 200 a5 Q55
= E |- kst £ 5. £ 5.0
= - = — ° == = =
0 0 = 45 = 45
0 20 40 60 &80 100 120 100 200 300 400 10 20 30 40 50 60 100 200 300 400

Number of training pts, 10° Number of inducing pts Number of training pts, 10° Number of inducing pts

© Eric Xing @ CMU, 2005-2020 55

Running Exact GPs on GPUs (recent)

Key idea: Use a clever distributed GP learning and inference algorithm that runs on multiple GPUs.

RMSE (random = 1) Training Time
Exact GP SGPR SVGP Exact GP SGPR SVGP

Dataset n d (BBMM) (m=512) (m=1,024) (BBMM) (m=>512) (m=1,024) #GPU p

PoleTele 9,600 26 0.154 0.219 0.218 22.1s 40.6 s 68.1s 1 1

Elevators 10,623 18 0.374 0.436 0.386 17.1s 412 112 s 1 1

Bike 11,122 17 0.216 0.345 0.261 18.8s 41.0s 109 s 1 1

Kin40K 25,600 8 0.093 0.257 0.177 83.3s 56.1s 297 s 1 1

Protein 29,267 9 0.545 0.659 0.640 120 s 65.5s 300 s 1 1

KeggDirected 31,248 20 0.078 0.089 0.083 107 s 67.0s 345 s 1 1

CTslice 34,240 385 0.050 0.199 1.011 148 s 77.5s 137s 1 1

KEGGU 40,708 27 0.120 0.133 0.123 50.8s 84.9s 7.61 min 8 1
3DRoad 278,319 3 0.106 0.654 0.475 7.06 hr 8.53min 22.1 min 8 16
Song 329,820 90 0.761 0.803 0.999 6.63hr 9.38 min 18.5 min 8 16
Buzz 373,280 77 0.265 0.387 0.270 11.5hr 11.5 min 1.19 hr 8 19
HouseElectric 1,311,539 9 0.049 _— 0.086 3.29 days _— 4.22 hr 8 218

Speedup over 1 GPU

o

(2]

-

(3]

KEGGU (n=40708)

3DRoad (n=278319)

Song (n=329820)

Buzz (n=373280)

GPUs

© Eric Xing @ CMU, 2005-2020

56

.

Gaussian Process Software

1) Classic MATLAB-based:

Documentation for GPML Matlab Code version 4.2
1) What?

The code provided here originally demonstrated the main algorithms from Rasmussen and Williams: Gaussi rocesses for Machine Learning. It has since grown to allow more likelihood functions,
further inference methods and a flexible framework for specifying GPs. Other GP packages can be found here.

The code is written by Carl Edward Rasmussen and Hannes Nickisch; it runs on both Octave 3.2.x and Matlab® 7.x and later. The code is based on previous versions written by Carl Edward
Rasmussen and Chris Williams.

2) Keras-based (GPs as DL layers!) 4) TensorFlow (T2T library)

[alshedivat / keras-gp @unwatch~ 10 Jrunstar 165 2 Gaussian Process Layers

GP layers map tensor to tensor and
internally sample from the function belief.

batch_size = 256
Keras + Gaussian Processes: Learning scalable deep and recurrent kernels. features, labels = load_spatial_data(batch_size)@_

<> Code Issues 8 Pull requests 1 Projects 0 Wiki Insights Settings

keras theano tensorflow gaussian-processes neural-networks machine-learning Manage topics model = tf.keras.Sequential([

tf.keras.layers.Flatten(), # no spatial knowledge

layers.SparseGaussianProcess(units=256, num_inducing=512),
layers.SparseGaussianProcess(units=256, num_inducing=512),

3) PYTO I'Ch-based layers.SparseGaussianProcess(units=10, num_inducing=512),

D

predictions = model(features)

G P T h neg_log_likelihood = tf.losses.mean_squared_error(labels=labels,
y orc predictions=predictions)

kl = sum(model.losses)
loss = neg_log_likelihood + kl
train_op = tf.train.AdamOptimizer().minimize(loss)

Figure: Deep GP

Gaussian processes for modern machine learning systems.

© Eric Xing @ CMU, 2005-2020 57

Summary

e (Gaussian process are Bayesian nonparametric models that can
represent distributions over smooth functions.

e Using expressive covariance kernel functions, GPs can model a variety of
data (scalar, vector, sequential, structured, etc.).

e Inference can be done fully analytically (in case of Gaussian likelihood).

e Inference and learning are very computationally costly since exact
methods require large matrix inversions.

e There is a variety of approximation methods to GPs that can bring down
the learning and inference cost to O(n) and O(1), respectively.

e Many new libraries based on TF, PyTorch, Keras — GP models despite
computational constraints, GPs are certainly quite popular.

Vo
" PETUUM

g) Carnegie Mellon University

Gaussian Process for Hyperparameter Tuning

/
{/ Hyperparameter Tuning

o Existing methods
a Grid search
o Graduate student descent

a Problems
o Time-consuming
o Labor-intensive

Automatic Hyperparameter Tuning

o Generalization performance (e.g., error rate) is a function of hyperparameters.

o If knowing this function, we can perform optimization to search for the optimal
hyperparameters yielding the lowest error.

o This function is a black-box and (almost surely) has no closed-form solutions.

o Solution: use a highly-expressive and easily-operable proxy function to
approximate the true function and perform optimization on the proxy function.

o Family of proxy functions: Gaussian Process

Gaussian Process for Hyperparameter Tuning

o Obtain a set S of (hyperparameter-configuration, error) pairs using grid
search or graduate student descent

o Repeat
o Fit a Gaussian process on the (hyperparameter, error) pairs in S

o Based on the fitted Gaussian process, select a hyperparameter configuration
H and measure the error E given H

o Addthe (H, E) pairto S

/
{/ How to select hyperparameter configuration?

o [radeoff between exploration and exploitation.

o Exploitation: search over the “promising” hyperparameter space
o The “promising” space is more likely to contain the best hyperparameters.
o Hyperparameter space yielding lower GP function values is more promising.

o Exploration: search over the entire hyperparameter space
o The “promising” space may not contain the best hyperparameters.
o Iry other spaces as well
o Space having more “uncertainty” is more worthwhile to try.

“Promising” and “Uncertain”

Promising: Hyperparameters
yielding low GP mean

Error Uncertain: Hyperparameters
yielding large GP variance

Hyperparameter Uncertain but Promising Promising but
not promising and uncertain not uncertain

© Eric Xing @ CMU, 2005-2020 64 g
L

Acquisition Function

* Hyperparameters that are more
promising and more uncertain
have larger acquisition function

Accuracy value.
1 » Select the hyperparameter with
_— the largest acquisition function
Acquisition
: value to try.
function
\\ — o~
Hyperparameter Uncertain but Promising Promising but
not promising and uncertain not uncertain

© Eric Xing @ CMU, 2005-2020 65 g
L

/
f Define Acquisition Function

Current lowest error

\ Predictive mean
function of GP posterior
f(Toest) — ,u(:c)/ P
,Y(x) 2 () o Predictive marginal vari
olxr) - ginal variance

function of GP posterior

a Probability of Improvement (Kushner 1964):
api(z) = P(v(z))

o d(+) is the cumulative density function of a normal distribution.

/
(/ Define Acquisition Function (Cont’d)

a Expected Improvement (Mockus 1978):

aei(z) = o(z)(v(z)®(v(z)) + N(v(z); 0,1))

a GP Upper Confidence Bound (Srinivas et al. 2010):

aLce(z) = pu(z) — Ko(x)

/ lllustration

[Jpredvar == pred mean = = w=truth @ evaluations ?

Figure Courtesy:
Rya n Ad a m S © Eric Xing @ CMU, 2005-2020 68 %

/ lllustration

f(x)

El(x)

Figure Courtesy:
Ryan Adams

© Eric Xing @ CMU, 2005-2020

69

P

lllustration

f(x)

El(x)

© Eric Xing @ CMU, 2005-2020 70 %

Figure Courtesy:
Ryan Adams

/ lllustration

f(x)

El(x)

© Eric Xing @ CMU, 2005-2020 71 ‘g

Figure Courtesy:
Ryan Adams

lllustration

f(x)

El(x)

Figure Courtesy:
Ryan Adams

lllustration

f(x)

El(x)

© Eric Xing @ CMU, 2005-2020 73 Lg

Figure Courtesy:
Ryan Adams

% lllustration

f(x)

El(x)

Figure Courtesy:
Ryan Adams

% Summary

a Use GP to tune hyperparameters
a lteratively fit GP to approximate the true hyperparameter-error function

o Select hyperparameters that have low GP mean and high GP variance to
try

a Acquisition function simultaneously considers GP mean and variance.

Vo
" PETUUM

g) Carnegie Mellon University

Elements of Meta-learning and Neural Processes

Example: Fast Learning of Functions

e S0 far, we assumed that data was generated by a single function.

e \What if there are multiple data-generating functions, and each time we
get only a few points from one of them. Can we identify it?

Samples from GP Posterior

Output, f(x)
LA & S A o - N w I

% What is meta-learning?

e Standard learning: Given a distribution over examples (single task), learn
a function that minimizes the loss

¢ = arg minE.p [I(f¢(2))]

e Learning-to-learn: Given a distribution over tasks, output an adaptation
rule that can be used at test time to generalize from

distribution over adaptation rule takes
tasks/datasets a as input
and outputs a model

0 = arg min Erp {Lr[ge(T)]}, where
Lr(ge(T)] := Eznpy [L(fp(2))], ¢ = go(T)

distribution over
examples for task T oerexng @ony, 2052020 78 g

% Example: Few-shot Image Classification

Considered in:

Lake et al., ‘15
Vinyals et al., ‘16
Santoro et al., ‘16
Ravi, Larochelle, ‘17
Finn et al., ‘17

0 = arg mein Er~p {Lr|ge(T)]}, where
Lr(ge(T)] := Eonpy [1(f5(2))] 5 ¢ := go(T)

training data

test set

meta-training

—

| || I

o

14 el Il =
i ‘ - g
o [N

meta-testing \E

trai
¢1ra1n

traj
¢2ra1n

test
1

/
{/ Conditional Neural Processes

Y4 Yo Y3

(4]
g CNP architecture:
© X 42 A3 X4 Xg e ... n N
Observations Targets _ \
§ @ @ ° e Ya Ys Ye
() % / "
= S Y1 Y2 Y3 . pa e 9
= @)
§ j E Ya Ys Yo | ...
g,
Q y Y Y
g 1 2 2 Observe Aggregate Predict
()
S % %5 X3 X4 Xs Xg | ...
)
Qo Train Predict

© Eric Xing @ CMU, 2005-2020 83 g
L 4

% Summary

e [here are cases when learning a single function is not enough —
contextual models are used Iin such case.

e Few-shot learning is a popular application of meta-learning, where
contextual models are trained on distributions of different tasks.
Examples:

e Solve different sub-problems
e Imitate different demonstrations
e Make predictions about different user preferences

e Neural processes propose an alternative to kernel learning (kernel
becomes fully implicit; the model is scalable without approximations)

)]
O
C
D
Q
W
.
D]
—+—)
-
Q.
-
@)
)
——
@)
O
@)
-
@)
W

01010001 Q

