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Finding CGausal Relations: Example 1

| m,wa March, 2014 RESEARCH ARTICLES

Large-Scale Psychological sarch did notcontol ot
Differences Within China Explained by [SEssuss o
Rice Versus Wheat Agriculture Y: culture;

T. Talhelm,** X. Zhang,*? S. Oishi,* C. Shimin,® D. Duan,” X. Lan,” S. Kitayama® 7. climate etc.:

Cross-cultural psychologists have mostly contrasted East Asia with the West. However,
this study shows that there are major psychological differences within China. We
propose that a history of farming rice makes cultures more interdependent, whereas
farming wheat makes cultures more independent, and these agricultural legacies
continue to affect people in the modern world. We tested 1162 Han Chinese participants
in six sites and found that rice- growmg southern China is more interdependent and
holistic-thinking than the wheat-growing north. To control for confounds like climate,

we tested people from neighboring counties along the rice-wheat border and found Under what conditions
differences that were just as large. We also find that modernization and pathogen
prevalence theories do not fit the data. can we say

X2Y;

XMY | Z.

ver the past 20 years, psychologists have more insular and collectivistic (6). Studies
ncataloged a long list of differences be- have found that historical pathogen prevalence
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Find Gausal Relations: Example

Thanks to collaborator Marlijn Noback

e 8 variables of 250 skeletons collected from
different locations

A < DL B J_F L _GC_J_ _L_IA_'_J_m N [ 0 __ | F [ G I X 1 % | T | W
_1 e Population Crania size Diet or subsistence GEOEraPh 19Cat 0N per pepUItion dimate per population
s (Viade, fom (Centroid 5 Gathering Hunting  Fishing  Pastoralism Agriculture Yes=1. no=l Average at! Attrition pe Distance to Longitude Latitude Tmean  Tmin Tmax Vomean  Vomia  Vpmax
3 ANUELL AW Unknown  713.2942 2 3 . 0 1 o 15 2 16464 43548548 142639159 286  AL19 1701 7.43 20 1683
4 ANUZ L ANew Unkrown 626148 : 3 4 0 i 0 15 ! Pl 43.548548 142 639159 286 1.19 1701 7.43 227 1643
5 ANUZ2? Anw Unknown  679.4924 2 3 4 k] 1 o 15 1 16464 435435458 142639159 86 AL19 1701 .43 Ly 1653
_ 6 AINU_101€ Airw Mele 634.3309 2 3 4 0 1 0 15 25 15464 43548548 142639159 286 1119 1701 7.43 22 1683
7 AINU_101€ Ay Femae 686,285 2 3 4 0 1 0 15 - 16464 41548548 142639159 28 119 1701 7.43 L 1683
8 AusM4s Agstrelie  Male 673 8749 5 “ 0 0 0 1 5 | 20164 24287027 135615234 248 1333 3027 1110 7.55 15.9¢
9 AUSM24G Agstralia  Male 647 4588 3 “ 0 0 0 1 25 a 20164 -28.287027 135.615234 2246 1313 3027 1110 2.55 159¢
10 AusSMS217 Asstralla  Mele 658.6616 6 “ 0 0 ] 1 15 2 20064 24287027 135615234 2146 1333 3027 1110 755 15.96
11 AUSMBL77 Agstralia  Male 6457 5440 § “ 0 0 0 1 5 “ 20164 20287027 135615234 246 1333 3027 1110 7.55 15.9¢
12 AUSMSLTS Amtrelle  Mule 629.7138 L] “ 0 o ° 1 15 LL 20064 24287027 135615234 2246 1393 3027 11.10 758 15.9¢
AUSMB173 Austrolia  Male 38 7068 L s 0 0 0 o T | 35 20164  20.287027  13S61S23¢ 2246 1333 3027 1110 755 159
14 AUSMSITI Asstralia  Male 6430378 & “ 0 ] ] 1 15 2 20164 24287027 135615234 2146 1313 3027 1110 755 159
_15  AUSMB165 Australia  Mele €16.55 £ “ 0 0 0 1 25 as 20164 24287027 135615234 2246 1333 3027 1110 7.55 15.9¢
10 AUSMS154 Asstialia  Male 635.0605 & “ 0 0 0 1 5 2 20164 -28.287027 135615234 1146 1333 3027 1110 7.55 159¢
17 AUSMELS3 agstrala  Male 650 6959 6 = 0 0 0 1 5 3 20064 24287027 135615234 1118 1333 3027 1110 7.55 15.9¢
18 AUSFI412 Agstralia Female GLE.478) 6 4 0 0 0 1 25 1 20164 -28.287027 135615234 2246 1333 3027 1110 2.55 15.9¢
19 AusFELTY Asstralia  Female 634.3122 6 - 0 0 ] 1 5 s 200164 24287027 135615234 1146 1333 3027 1110 7.55 15.96
20 AUSFELTS Agstrolia Female 605.1759 £ 4 0 0 0 1 5 15 20164 20287007 135615234 2146 1333 3027 1110 7.55 159
21 AUSFEIT2 Amtialia  Femae 619 8324 & Q@ 0 ] o 1 25 L] 20164 24287027 135615234 1146 1343 3027 1110 755 15.9¢
_22 AUSFELSH Asstralia  Female 615.1206 b - 0 0 0 1 5 a5 20164 24287027 135615234 2148 1333 3027 1110 7.55 15.96
23 AUSFEIS? Asstralia  Female 626 2819 £ “ 0 0 o 1 25 2 20064 20287027 135615234 2146 1313 3027 1110 255 159
_ 24 AUSFELSS Australia  Female 628 4609 b “ 9 9 0 1 5 as 20164 24287027 135615234 2246 1333 3027 1110 7.55 15.96
45 AUSFISTE Asstralia Female 68 E311 1 4 0 0 0 1 5 2 20164 28.287027 135615234 2246 1113 3027 1110 755 159
26 AUSFI43  Agstralla  Female 60€.163 s - 0 0 ° 1 5 as 20164 24287027 135615234 146 1333 3027 11.10 7.55 15.9¢
27 AUSFELSE Agstralia Female 631.6258 6 “ 0 0 0 1 5 2 20164 26287027 135615234 2246 1333 3027 1110 7.55 15.96
28 DENM1432 Denmark  Mle 663 £198 0 0 1 3 6 0 R 2 10440 $5.717055 11711426 801 o0 1666 a67 559 1527
49 DENMI10L1 Denmark  Male 651.4847 < 9 1 3 (3 0 21 3 10¢40 55.71 7055 11.711426 30. 002 1666 92.67 559 1527
30 OENM123S Denmark  Male 63 4811 0 e 1 3 6 0 21 15 10840 55.717055 11.711426 801 o0 1666 a6r 554 150
(31 OENM1L5_Denmark Mule 612.5192 ¢ c 1 3 3 0 21 3 10240 §5.717055 11711426 801 002 16.66 967 5.59 15.27
32 DENMILS_ Denmark Male 6% 5609 . c 1 3 3 0 21 25 10440 $5.717055 11.711426 80. Q0 1666 967 558 150
(35 OENMLLS_ Denmark  Male 6045799 0 0 1 3 3 0 1 2 10240 $5.717055 11711426 80 om 1666 967 5.59 150
° c 1 3 (3 0

34 DENM?_77 Deamark Male €6553 21 25 10440 55.717055 11.711426 1 0.02 16.66 9267 559 1527



Example 11I: Distinguishing Cause
from Ettect
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Example IV: Finding the Latent

World?
X1y SR )
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Example IV: Finding the Latent
World?




Causal Discovery 1:
Conditional Independence-Based Methods

- Constraint-based methods: PC and FCI

- Score-based approach: GES

57



What Information Helps Find
Causality?

e Connection between causal structure and statistical
properties of the data under suztable assumptions ?

® Properties of causal systems: modularity

If there is no common cause of X and Y, the generating
process for cause X is irrelevant to that
generates effect Y from X

P(Y|X)
M
PIX)| = X— Y




Causal Sufhiciency

® A set of random variables V¥ is causally

sufficient if ¥ contains every direct cause 7
(with respect to V) of any pair of \
variables in V \ @

® V= {XYZ}: causally sufhicient
® V= {X7Y}: causally insufficient

® Methods exist in causally insufficient
cases, ¢.g., FCI (Chapter 6 of the SGS
book)

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)
59



We can See CI Relations

from DAGs...

. Born an
(Peer Pressure
ven Day

® |.ocal Markov condition
® (Global Markov condition

® d-separation implies conditional independence:

P(V), where V denotes the set of variables, obeys the global Markov con-

dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Zin g — X 1 Y |Z.
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Going from CI to Graph?

X and Y are d-separated by Zin§ — X 1L Y|Z.

® (Contrapositive:
® Conditional dependence implies d-connection
® What if variables are conditionally independent?

® (Can we recover the property of the underlying graph from CI
relations with Markov condition?

® Arbitrary P(V) would satisfy the global Markov condition
according to G in which there is an edge between each pair of
variables: trivial !

® Under what assumptions can we have CI = d-separation’
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Causal Structure vs. Statistical Independence
(SGS, et al.)

causal structure
(causal graph)
Y>> X/
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Causal Structure vs. Statistical Independence
(SGS, et al.)

Causal Markov condition: each variable is ind. of its non-
descendants conditional on its parents

causal structure Statistical
(causal graph) independence(s)
Y>> X7

Yo-X--Z1

Faithfulness: all observed (conditional) independencies
are entailed in the causal graph




Faithfulness Assumption

® One may find independence between health condition & risk of
mortality and between swimming skills & risk of drowning

health ; risk of I
condition b mortahty care essness

healthy ! risk of

e E.g., if they are linear-Gaussian and a=-bc, then health_condition
L risk_mortality, which cannot by seen from the graph!

e Faithfulness assumption eliminates this possibility!
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Constraint-Based vs. Score-Based

® (Constraint-based methods

® Score-based methods

Xi— X — X5—> Xy

score 1
‘ Which
‘ score 2 one is
the best?
2 66 13 O qscore3
| . '

X4 64 (Score may be BIC,AIC, etc.)

X — X «—X;—> X,




Constraint-Based

® (Constraint-based methods




D1iscussion

® First, can we find the skeleton of the
causal structure? If yes, how? X a,\thm\ness

® Second, can we determine the causal
direction?
How!
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Constraint-Based Causal Discovery

® (Conditional) independence constraints
= candidate causal structures

® Relies on causal Markov condition &
faithfulness assumption

-------------------

® PC algorithm (Spirtes & Glymour, 1991) [yuzix] |
® Step 1: X and Y are adjacent iff they are RS I o
dependent conditional on every subset of the lmfer ring

remaining variables (SGS, 1990)

Y—X—Z| 3 possibilities:
® Step 2: Orientation propagation

Fodbdh

® Markov equivalence class, with pattern
Y—X—7/

® same adjacencies; — if all agree on Y 7/ - v

orientation; — if disagree -




Example (From SGS Book)

Step | Step ||

N,
N,

True Graph Complete Undirected Graph




Example (From SGS Book)

Step | Step ||

//C\

A —> B A B /E
True Graph Complete Undirected Graph

n=0  No zero order independencies

Pattern

n=1  First order independencies Resulting Adjacencies
C
Allc B Allp B e N / \
A llE B c lUp IB A B E
\ b / \ /

n=2: Second order independencies Resulting Adjacencies

B 1lE | {C,D} /
5




P ( : A.) Form the complete undirected graph C on the vertex set V.

B.)
. n=0.
Algorithm =
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adjacencies(C,X)\{Y'} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if
Test for ( Conditional) X and Y are d-separated given S delete edge X - Y from C and
independence with an record S in Sepset(X,Y) and Sepset(Y.X);

increased cardin Glity Ofth e until all ordered pairs of adjacent variables X and Y such that

Ce . Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
conditioning set

subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C, X )\{Y} is

of cardinality less than n.
C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X > Y <- Zif

Finding V- ‘ ‘

structures
and only if Y is not in Sepset(X,Z).
D. repeat
If A-> B, B and C are adjacent, A and C are not adjacent, and there is no
. . . arrowhead at B, then orient B - Cas B -> C.
OI’ ientation Pr OPag ation It there 1s a directed path from A to B, and an edge between A and B, then orient

A-BasA ->B.

until no more edges can be oriented.



P ( : A.) Form the complete undirected graph C on the vertex set V.
B.)

n=0.
([ ]
Algorithm ==
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adjacencies(C,X)\{Y'} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if

Test fOI‘ (conditional) X and Y are d-separated given S delete edge X - Y from C and
independence with an record S in Sepset(X,Y) and Sepset(Y,X);
increased cardin Glity Of the until all ordered pairs of adjacent variables X and Y such that

C e Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
conditioning set L -

subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C, X )\{Y} is

of cardinality less than n.
Findin g V- ‘ ‘ C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
structures adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X -> Y <- Zif




(Independence) Equivalent

Classes: Patterns

® Two DAGs are (independence) equivalent if and only if they have the
same skeletons and the same v-structures (Verma & Pearl, 1991)

® Patterns or CPDAG (Completed Partially Directed Acyclic Graph):
graphical representation of (conditional) independence equivalence
among models with no latent common causes (i.e., causally sufficient
models)

X; and X> are not adjacent in any Possible Edges Example
member of the equivalent class |.___ X
. U1 X5 L —1X
X1—X>1n some members of the | \
equivalent class, and X;«X> in TTNX | — | X,
some others X5 | —» Xy
. X X
X1—X> in every member of the |- : : How many DAGs
equivalent class in this class?
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The PC Algorithm: Big Picture

- Make use of conditional independence relations

71
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Example 1: College Plans

Sewell and Shah (1968) studied five variables from a sample of
10,318 Wisconsin high school seniors.

SEX Imale = 0, female = 1]
IQ = Intelligence Quotient [lowest = 0, highest = 3]
CP = college plans [yes =0,no0 = 1]

PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]




Example II: Causal analysis of

archeology data
Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from different locations

A | 8 | c | D | £ | F | 6 | n | 1 | | IS L | M | N I 0 | P | © | R | s | T | U
L1l |c 20y atlon | Sax Cranlal size Diet or subsistence Paramastlc Centa wear - Gecgraphk I>zatlon per popu ztior Climzte per popelation
2z [Male, ter [Centroid S Gathering Huntng  Fshing Pasteralisr Agrica ture Yei=2, no=l Avarage atf Atirition pe Distanca to Lorgilude Latitude Tresr Trnin Trnax Vpmean Vpmin Vprax
3 ANUSL_L Alnu unknoan = 7132542 2 3 & C 1 C 1= 2 15364 43.5£85¢8 142,535158 2,85 -1L.19 17C1 743 227 1583
4 |ANU7_1 Ainu Unknoan 576.148 2 3 4 C 1 C 18 1 15454 13578578 1/2.539159 2.86 1L19 1701 7.43 227 15 €3
S5 |ami_2  anu Linknaan  h/sasJa 7 4 4 t 1 ( 1. 1 15304 43 SLESLR 1£7 339159 7 Hh 11149 111 red Y 1544
6 |ANU_LOLC Ainu Melz 634.32C4 2 3 4 C 1 C 1.5 25 15464 43548548 142.530159 2,86 -11.19 1701 743 227 1583
T |ani_10e anu Famale Akh JX% 7 4 4 t 1 ( 1. 4 15304 43 SLESLR 1£7.339159 7 M SIRL 111 red oy 1544
- B |AUSNIZ4S Austimia  Malz 6738749 6 4 0 C C 1 2.: 1 20154 24287027 25515234 2246 1333 3027 1L1C 7.55 15s¢€
9 |AEAI46 Austraia Mala 647 ASEE 6 4 0 C C 1 2% £ 20164 ~24 0k JU2) ELR-3 LY.L 2246 1333 3027 1L1c 758 15¢C€
LD |AUSNIB21T Austraia  Malz 633.€€16 6 4 0 C C 1 2.: Z 20154 24 287027 25515234 2246 1333 3027 1L1c 7.58 158¢€
L1 |AJUSMBITT Austraia  Mals 657.5414 6 4 0 C C 1 28 4 20154 -24 287027 13£.515234 2246 1333 3037 111 788 1566
L2 |AUSNISZTS Australa  Mal2 623.7138 6 & 0 C C 1 2.2 3= 20164 -24 287027 135.515234 2246 1333 3027 1L1C 7Is 15S¢€
AJSMBLTS Austrais  Mele 643.7C€4 6 4 0 C C | Y 35 20164 24267027 135515234 246 1333 3027 111C 755 15%€
14 |2 Max 01 anstrasa Mals ha4 48 h £ i ( ( 1 A J Z1na ~F4IFT037 135315234 7746 1444 anas 1o 5% 18 %k
L5 |AUSMSBLES Austraia  Melz 51655 6 4 0 C C 1 25 35 20154 24287027 125.515234 2246 1333 027 1L1cC 758 1595
Lb |AJSAIBLSZ Austraia  Mala 635.CECS 6 £ 0 C C 1 2% 2 20164 ~24 0k VL) 125515244 2246 1333 3027 1L1c 758 15¢C€
L7 |AUSNIBLSS Austraia  Malz 630.€559 6 4 0 C C 1 2.5 3 20154 -24 287027 125515234 2246 1333 3027 1L1cC 7.55 158€
LB |AJSF19L2 Awustraia  Female 613 1781 6 4 0 C C 1 25 1 20154 L ¥l 125515231 2216 1333 30327 111C 755 1556
19 |AUsSFSLTS Australa  Femde 6343122 6 ° 0 C C 1 2= 3= 20164 -24 287027 135.515234 2246 1333 3027 1L1C 7S 15S€
20 [AJSEELTS Austrada  Famade 6251758 6 4 0 ¢ ¢ 1 28 18 20154 -24 387027 135.515234 2246 1333 30327 111cC 755 1566
21 |aAN-1/7 astrata Famale hl4M40a h 4 1 t t 1 7 4 Z1na ~24IFT037 135515234 774k 1444 nae 1o A a4k
22 |AUST3LG0 Austrmin  Tamale 613.12CC 6 £ 0 C C 1 2.5 2= 20154 24287027 12£.515234 2246 1333 027 1L1cC 722 155¢
23 (A NS4S astraa Fomale h74 %14 h 4 1 t t 1 7 y Z1na ~24FFT027 135.5315234 7746 1444 nae 1na A a4k
24 |AUSF3L35 Austimia  Famde 623.4€C9 6 & 0 C C 1 2.: 3= 20154 ~24 267027 125.515234 2246 1333 3027 1L1cC 7.55 158¢€
Z5 |AJSF1578 Austraia  Femae 6406311 6 4 0 C C 1 25 p! 20164 ~24 0k VL) 125515244 2246 1333 3027 1L1c 7EE 15€C€
26 |AUSF233  Australa  Famde 506.164 6 & 0 C C 1 2.: 2= 20164 -24 287027 135.515234 2246 1333 3027 1L1C 7Is 15S¢€
27 |AJSEELS8 Austrada  Famale 6316358 6 4 0 C C 1 2.8 3 20154 -24 287027 135.515234 2246 1333 3037 111c 755 1566
2B | JENML432 Jenmerk  Mal2 653 €158 o) 0 1 3 € C 21 2 12440 55.717055 11.711426 501 A 16£¢€ 367 25 1527
~ 2D |JENMLOLL Jenmerk  Male G51.4E47 0 0 1 k| € C 21 k| 12440 55.717055% 11.71142¢6 301 -2.C2 16LC 267 558 1527
30 | ENMI 20y enmark Nals hdn 4k 41 i t 1 4 ¢ ( 71 18 1540 55.717055 117114726 A1 “)0.27 bk LAY S..% 1w
~ 31 |DENMLLG Jenmerk  Mele 6429152 0 0 1 k| € C 21 k| 12440 55.717055% 11.71142¢6 3.01 -2.C2 16LC 267 558 1527
32 | DENMLLS_ Jenmark  Mala 645 6ECO 0 0 1 3 € C 21 2% 12230 55.41,055 11.711426 301 2C2 L6EE €7 5.E¢ 1527
- 33 |JENMLLS Denimerk  Malz 674.9759 0 0 1 3 € C 21 2 12440 55.717055 11.711426 3.01 -J.C2 16£€ 367 5.8 1527
349 | DENM7_77 denmark  Malz 366,53 0 0 1 3 € C 21 25 12110 55./1/055 11.711126 301 202 1666 9.€7 55§ 1527
- 35 |JENML_S8 Jenmerk  Mal2 627.4z83 0 0 1 3 € C 21 1.2 12440 55.717055 11.711426 501 AW 16£¢€ 367 28 1527
36 |JENMS03 Jenmark  Mals 652 5553 0 0 1 3 € C 21 2 10410 §5.717055% 11.711126 301 202 1666 .67 558 1527
37 | NMYDT eamark Mals h/7 MatH 4] 4] 1 4 ¢ ( 71 NanN 1530 58.717055 11.7114725 A <02 IhER ELy B 1824
2R r L ne 17440 CC Z17NEE 11 711426 3Im 202 VEEE LWl ren 1522

- B | A el e AL AFFA n n 1 = 3 21
el TR INFO , Shane_raweaordinates | Snane_svmmeacCoard. | Fartors | Rackgroind | Geagistance_eyra | + |
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Example II: Result
Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from diftferent locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® PC + kernel-based conditional ind. test seems to be a good choice

1. gender (1D)—> 2. cranial size (1D) 3. diet (5D)

reported

6. population history

8. cranial shape

repr esented by \ differentiation
geodistance (3D) 7. climate (6D) (255D)
5. level of attrition 2D) 4
paramasticatory
behavior (sD)
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Example II: Result
Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from diftferent locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® PC + kernel-based conditional ind. test seems to be a good choice

1. gender (1D)—> 2. cranial size (1D) 3. diet 5D)|-. X

reported e A

6. population history 8. cranial shape
represented by \ | differentiation

geodistance (3D) 7. climate (6D) / (255D)

5. level of attrition 2D) 4
paramasticatory

behavior (sD)

74



Confounders? How about

This Case?

X1 1 Xo;
X1 1L X4 Xs3;
Xo X4 | X3.

What is the corresponding causal structure? Possible
to have confounders behind X3 and X4?

75
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Confounders? How about

This Case?

X1 1 Xo;
X1 1L X4 Xs3;
Xo X4 | X3.

What is the corresponding causal structure? Possible
to have confounders behind X3 and X4?
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I Can Discover There Is No
Confounder: Example

In the 1970s, the Edison Electric Company in North Carolina was concerned
about the effects on plant growth of acid rain produced by emissions from its
electric generators.

The investigators chose samples from the Cape Fear estuary, where the Cape
Fear River flows into the Atlantic Ocean.

obtained 45 samples of Spartina grass up and down the estuary, and measured
13 variables in the samples, including concentrations of various minerals,

acidity (pH), salinity, and the outcome variable, the biomass of each sample

The PC algorithm found that among the measured variables the only direct
cause of biomass was pH.

Y-structure: no confounder!

Later verified by intervention-based analysis
/6



Other Examples

® A: Raining; B: slippery ground; C: falling down

® A: Geographical background (continental/maritime

country); B: economic conditions (agriculture/commerce);
C: emergence of science

i’
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Confounders? How about

This Case?
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Confounders? How about

This Case?

N
X1 — X> X4—X3 L: a latent variable
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Confounders? How about

This Case?

X1 1 Xs;
X1 1 Xy;
X9 X3.
e I,
X1 — Xo Xg4—X3 L. a latent variable

® For example, X;: I am not sick; X>: I am 1n class; X3: you
are 1n class; X4: you are not sick

78



FCI (Fast Causal Inference)
Allows Confounders

Assume the distribution over measured variables O is the marginal of a
distribution satisfying the Markov and faithfulness conditions for the
true graph

The causal process over measured variables O is not necessarily a DAG.
How can we represent (independence) equivalence classes over O ?

Results represented by PAGs

N
X1 — X X4—X3

What'’s FCI’s output?

Data available in
‘data3 FCl.txt’

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997



PAGs (Output of FCI): What
Edges Mean?

X X5 X; and X, are not adjacent

X; [o—p| X5 X5 18 not an ancestor of X

X5 No set d-separates X, and X

X 18 a cause of X,

X
I
s

X5 There 1s a latent common
cause of X, and X,

80



Score-Based

Xi— X —> X5—> X, score 1

Which
X — X —X;—> X} score 2 one is
X; X; the best?

score 3

=
l . q .

X4 8 (Score may be BIC,AIC, etc.)



GES (Greedy Equivalence Search):

Score Function

® Assumptions: The score is
® score equivalent (i.e., assigning the same score to equivalent DAGs)

® |ocally consistent: score of a DAG increases (decreases) when adding
any edge that eliminates a false (true) independence constraint

® decomposable: Score(G,D) =) Score(X;, Paj)

1=1
A d
® Eg,BIC: S5(9,D)=logp(D|0,G") — ; logm

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002
82



GES: Search Procedure

® Performs forward (addition) / backward (deletion) equivalence search
through the space of DAG equivalence classes

® Forward Greedy Search (FGS)

Start from some (sparse) pattern (usually the empty graph)

Evaluate all possible patterns with one more adjacency that entail
strictly fewer CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum

® Backward Greedy Search (BGY)

Start from the output of the Forward Stage

Evaluate all possible patterns with one fewer adjacency that entail
strictly more CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum



0.
Suppose data were generated by °
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0.
Suppose data were generated by °

&
(1 \°
Z_
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GES °\

Suppose data were generated by

e/
- NN

(1) ° 2) °

-




GES

Suppose data were generated by °

Imagine the GES procedure...

85



Causal Discovery 2:
Linear, Non-Gaussian Models

® [ndependent noise condition

® (Causal discovery based on structural equation
models: linear non-Gaussian case

86



Constraint-based Causal Discovery:
Advantages and Limitations

® Nonparametric; widely applicable given reliable conditional
independence tests

® Recovering {causal relations} from {conditional independences}: bounded
by the equivalence class

® Directly characterize and recover cause-effect relationships?

® additional weak and reasonable assumptions may be needed

X)) +—() — (2
X)— () —(2) | xu1z|Y
X)«— 1) +—(2)
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Constraint-based Causal Discovery:
Advantages and Limitations

® Nonparametric; widely applicable given reliable conditional
independence tests

® Recovering {causal relations} from {conditional independences}: bounded
by the equivalence class

® Directly characterize and recover cause-effect relationships?

® additional weak and reasonable assumptions may be needed

X1Z|Y

e Instead, try to directly identify local
causal structures with functional causal
models/structural equation models

87
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Fully Identify Causal Structure? FCMs!

e A functional causal model represents effect as a function
of direct causes and noise: Y =f (X, E), with X1LE ..,

v. ....

t;.‘t

® Linear non-Gaussian acyclic causal model (Shimizu et i.:.?:.:i‘m,..::;.-"
al., ‘06) | .« s

Y=aX+E F

® Additive noise model (Hoyer et al., ’09; Zhang & it *"..5":'-«'&

. als N E T
Hyvirinen, ‘ogb) Pt
R

Y=AX)+E 4

® Post-nonlinear causal model (Zhang & Chan, 06 Zhang
& Hyvirinen, ‘09a) ,.;f**”"; K

V=12 (filX) +E ) 4



Causal Asymmetry the Linear

Case: Illustration
Data generated by Y =aX + E (1.e., X —Y):

Linear regression Y = aX + EY
Y

Linear regression X = bY + Ex

Gaussian case

Uniform case




More Generally, LINGAM Model

e Example:

X2 — E27 R
X3 =0.5X, + Ej, E;
X1 = —0.2X5+0.3X35 + E7.

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003—-2030.



More Generally, LINGAM Model

e Example:
X2 — E27 R
X3 =0.5X, + Ej, E;

X1 =—-0.2X9+0.3X35+ Ej.

Matrix form:

X, 0 —0.2 0.3] [X; F,
X2 = |0 0 0 y XQ + E2
X3 0 05 0] |[Xs Es

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003—-2030.



More Generally, LINGAM Model

e Linear, non-Gaussian, acyclic_causal model (LINGAM)
(Shimizu et al., 20006):

X;i= Y  b;X;+E or X=BX+E

9: parents of ¢

e Disturbances (errors) E; are non-Gaussian (or at most
one is Gaussian) and mutually independent

e Example:
X2 — E27 R
X3 = 0.5X5 + Es, E)

X1 =—-0.2X5+0.3X35+ Ej.

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003-2030.



LiNGAM Analysis by ICA

LINGAM: X, =

7: parents of ¢

2

bij Xj + E;

or X=BX+E= E=(-B)X

® B has special structure: acyclic relations

ICA: Y=WX

B can be seen from W by permutation
and re-scaling

Faithfulness assumption avoided

E.g.,

<~

X2:E1

1
—0.9
0.2

0
1
_0.

X3 =0.59X9 + F3
X1 =-02X54+0.3X3+ E>

3

0
0l -
1_

93

So we have the causal
relation:




LiNGAM Analysis by ICA

LINGAM:X; = Y  b;X;+E or X=BX+E= E=(I-B)X

7: parents of 1

® B has special structure: acyclic relations

ICA: Y=WX

Question |.How to find W?

B can be seen from W
and re-scaling Question 2. How to see B from W?

Faithfulness assumption avoided

E.g., [E 1 0 0 Xo So we have the causal
Bl = =05 "1 0F- X3 relation:
_Eg_ I 0.2 —0.3 1_ _Xl_ '
Xo = Ej

<< X3 =0.5X9 4+ Es

X1 = —0.2X9 4+ 0.3X3 + Es
93




LiNGAM Analysis by ICA

LINGAM:X; = Y  b;X;+E or X=BX+E= E=(I-B)X

7: parents of ¢

® B has special structure: acyclic relations

ICA: Y=WX

B can be seen from W by permutation’
and re-scaling

Faithfulness assumption avoided

Eg, B, T 1 0 0] [X,
Esl =1-05 1 o0 |Xs
By |02 —03 1| |[X,
X2:E1

<< X3 =0.5X9+ E3

X1 = —-0.2X5+4+0.3X3 + E5
94

|1. First permute the rows ot W
’|to make all diagonal entries
non-zero, yielding W. )

2. Then divide each row of W
by its diagonal entry, giving W’

3. B=1-W'.

I

So we have the causal
relation:




Can You See Causal Relations
fromW? Example

® JCA gives Y=WX and
0.6

W =

® (Can we find the causal model?

1.5
0
1.5

—0.4
0
0.2
3

2

o O O

95

[. First permute the rows of W
to make all diagonal entries
non-zero, yielding W.

2. Then divide each row of W

by its diagonal entry, giving W’.
3. B=1-W'.




Independent Component Analysis

observed
signals

X=A"S

5 3 11 —03 .| [20] [7 7 2
8 —7 3 5 AT l2w e 2 9

s

o [
S

® Assumptions in ICA

® At most one of S, is Gaussian

Then A can be estimated up to
column scale and permutation
indeterminacies

® #Source >= # Sensor, and A is of full column rank
Hyvdrinen et al., Independe?w? Component Analysis, 200 |




Independent Component Analysis
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: T I : .
: g | | :
e b
' . mixing N

independent observed

sources signals

--------------------------------------------------------------------

unknown mixing system

X=A"S

s
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Independent Component Analysis

Y,

Ty
X

W Y
- -Il’l \ n
e, N e e de-mixing
- observed output: as
signals imdependent as
ICA system possible
X=A-S Y=WX

s

5 3 1.1 -0.3 ...]_[?A?] [? ?7 7 7 ] f
8 —7 3 5 T sy

® Assumptions in ICA Then A can be estimated up to

column scale and permutation

® . 4 > . . .
At most one of §; is Gaussian indeterminacies

® #Source >= # Sensor, and A is of full column rank
Hyvdrinen et al., Independe?w? Component Analysis, 200 |



Independent Component Analysis

b | Xl — R 1

m ' y 0
- N de-mixing
observed output: as
signals imdependent as
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Independent Component Analysis
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gl
e | de-mixing “ ,.
-' observed output: as
signals imdependent as
ICA system possible
X — A'S Y — W'X

5 3 1.1 -0.3 ...]_[?A?] [? ?7 7 7 ] f
8 —7 3 5 T sy
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® Assumptions in ICA Then A can be estimated up to

column scale and permutation

® . 4 > . . .
At most one of §; is Gaussian indeterminacies

® #Source >= # Sensor, and A is of full column rank
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Independent Component Analysis

— — — —
—
—

—

—_—

BN T . AAAA
L 31 TTToh e X, : )% Y,

1 H
e e il s m

________ J : . \ V4

. ndependent observed | output: as
sources signals 1ndependent as
................................................................... , ICA System DOSSlble

unknown mixing system

X =A-S Y=W-X

5 3 1.1 -0.3 ...]_[?A?] [? ?7 7 7 ] f
8 —7 3 5 T sy

s
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Darmois-Skitovich Theorem

Darmois-Skitovitch theorem: Define two random variables,
Y] and Y5, as linear combinations of independent random variables

S;,1=1,....,n:

)/1 = Cklsl + CVQSQ + ...+ oann,
Yo = 151 + BaSo + ... + 8BS

If Y7 and Y, are statistically independent, then all variables S, for
which «,;3; # 0 are Gaussian.

L e —

Kagan et al., Characterization Problems in Mathematical Statistics. New York:Wiley, 1973



How ICA works? By Mutual Information
Minimization (or ML)

® Mutual information /(Y7,...,Y») is the Kullback-Leiber divergence
from Py to [[:Py:

I(Y1,....Y, / / Pyy..... log """ ”dyl Ay,
Py;y---D

= ZH(Y;)—H(X) — log |W| because Y = WX
® Nonnegative and zero iff Y; are independent

® H(-): differential entropy--how random the variable is?

Hyvdrinen et al., Independent Component Analysis...



Intuition: Why ICA works?

XzA

sl &e? bozh Gaussian

® (After preprocessing) ICA aims to find a
rotation transformation Y=W-X to making
Y: independent

® By maximum likelihood log p(X1A4),

mutual information MI(Y;,..., Y
minimization, infomax...

X2A X2A XA

s1 and s2 fpoth Laplacian sl and s t!)th GitaRn s1: Laplaciam; s2: uniform
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Intuition: Why ICA works?

X.a

sl &e? bozh Gaussian

® (After preprocessing) ICA aims to find a
rotation transformation Y=W-X to making
Y: independent

® By maximum likelihood log p(X1A4),

mutual information MI(Y;,..., Y
minimization, infomax...

XA %/
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Intuition: Why ICA works?

Xz*

sl &e? bozh Gaussian

® (After preprocessing) ICA aims to find a
rotation transformation Y=W-X to making
Y: independent

® By maximum likelihood log p(X1A4),

mutual information MI(Y;,..., Y
minimization, infomax...

XA

s1: Laplaciap; s2: uniform




Intuition: Why ICA works?

Xz*

sl &e? bozh Gaussian

® (After preprocessing) ICA aims to find a
rotation transformation Y=W-X to making
Y: independent

® By maximum likelihood log p(X1A4),

mutual information MI(Y;,..., Y
minimization, infomax...




A Dem() Of SIGNALS JOINT DENSITY

the ICA e+
| ] B
Procedure WW,WHW .
______________ _'r___.____.___
Input signals and density
SIGNALS JOINT DENSITY

bty

5
0
5
5[
UMWWWWMW
-5

Whitened signals and density
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SIGNALS

A A A AR

Separated signals after 1 step of FastiCA

SIGNALS JOINT DENSITY

Separated signalsiafter 3 steps of FastiCA



SIGNALS JOINT DENSITY

5
0
-5 + -

Séomgad
.Q...o.\. .. ".,':_I.E
At
U VAVAVAVAVAVAVAVAVAVAVAVAVA

.

™

Separated signals after 5 steps of FastiCA
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Why Gaussianity Was Widely
Used?

Central limit theorem: An illustration

1 72 73

120 ; 200 ; ; ; 200

hist(U)) hist( (U1+U2)/sqrt(2)) hist( (U,+U_+U,_)/sqrt(3) )

100
150 150 |
80
60 100| 100
40
50| 50|

20

0
-0.5 0 0.5 -1

“Simplicity” of the form; completely characterized by mean
and covariance

Marginal and conditionals are also Gaussian

Has maximum entropy, given values of the mean and the

covariance matrix
E. T. Jaynes. Probability Theory: Téree Logic of Science. 1994. Chapter 7.



(Gaussianity or Non-(GGaussianity?

® Non-Gaussianity is actually ubiquitous

® Linear closure property of Gaussian distribution: If the
sum of any finite independent variables is (Gaussian, then
all summands must be Gaussian (Cramér, 1936)

® (Gaussian distribution is “special” in the linear case

® Practical issue: How non-(GGaussian they are?

|04



Application: Causal diagram in HK Stock
Market (Zhang & Chan, 2006)
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Application: Causal diagram in HK Stock
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Application: Causal diagram in HK Stock
Market (Zhang & Chan, 2006)
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Application: Causal diagram in HK Stock
Market (Zhang & Chan, 2006)
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x2: CLP Hidgs (0002.hk)
x3: HK & China Gas (0003.hk)
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x5: HSBC Hldg (0005.hk),

x6: HK Electric (0006.hk)

x7: Hang Lung Dev (0010.hk)

x8: Hang Seng Bank (0011.hk)
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x10: Hutchison (0013.hk)

x11: Sun Hung Kai Prop (0016.hk)
x12: Swire Pacific 'A’ (0019.hk)
x13: Bank of East Asia (0023.hk)
x14: Cathay Pacific Air (0293 hk)

[0.029 O]l ; X9

~8/ 081

l.

3.

4.

Ownership relation:
x> owns 60% of x8;
x1 holds 50% of x10.

Stocks belonging to
the same subindex
tend to be connected.

Large bank
companies (x5 and
x8) are the cause of

many stocks.

Stocks 1n Property
Index (x1, x9, x11)
depend on many
stocks, while they
hardly influence
others.




Causal Discovery 3:

Nonlinearity, confounding, missing data,
confounding, time series...
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Practical Issues in Causal Discovery...

® Nonlinearities ( Hoyer et al., NIPS’08;
)



FCMs with Which Causal Direction is
Generally Identifiable

® Linear non-Gaussian acyclic causal model (Shimizu et

al., ‘06) i

e o
Y=aX+E I

Hyvirinen, ‘ogb) R

g
>

® Post-nonlinear causal model (Zhang & Chen, 2006; Y et
Zhang & Hyvirinen, ‘09a)

Y=/ (fi(X)+E )

108




Causal Asymmetry with Nonlinear
Additive Noise: Illustration

Y = fiX) +E with ELX

(Hoyer et al., 2009)
109



Post-Nonlinear (PNL) Causal Model

(Zhang & Chan, 2006; Zhang & Hyvirinen, ‘09a)

® Without prior knowledge, the assumed model is expected to be
® ocneral enough: adapt to approximate the true generating process

® identifiable: asymmetry in causes and effects

Noise cffect

Canses v/ > (+) v f, — Effect

—_ » _

SEILSUI' I IIlEHSLII’EHleIll .
distortion

Nonlinear effect
of the causes ‘

® Special cases: linear models; nonlinear additive noise models;
multiplicative noise models: ¥ = X - E = exp (log(X) + log(E))



Post-Nonlinear (PNL) Causal Model

(Zhang & Chan, 2006; Zhang & Hyvirinen, ‘09a)

® Without prior knowledge, the assumed model is expected to be
® ocneral enough: adapt to approximate the true generating process

® identifiable: asymmetry in causes and effects

pa;: parents (causes) of x,

Xi=fi2(fi1(pai) + E)

fg,zi assumed- to be_ £, : not necessarily ; noise/disturbance:
continuous and invertible il independent from pa,

oI the causes | distortion

® Special cases: linear models; nonlinear additive noise models;
multiplicative noise models: ¥ = X - E = exp (log(X) + log(E))
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Identifiability in Two-variable Case:
Theoretical Results

l pa.: parents (causes) of x,

g— -—

= -

f o assumed- to be. £ ;2 not necessarily
| continuous and mvertible | C Sl

e '[wo-variable case: if X;—X>, then X> =f2>( f21 (X)) + E>)
® [s the causal direction implied by the model unique?

® By a proof of contradiction

e Assume both X;—X> and X>—X; satisfy PNL model

® One can then find all non-identifiable cases



Identifiability: A Mathematical Result

Notation
Theorem 1 t1 £ g5 (1), 22 2 f5(a),
h = f1o0g2, hi = g1 0 fa.
Assume a9 = fo filx1) + €3). Al 2 T ), i) @ ez ()

r1 = g2(g1(x2) + €1).

Further suppose that involved densities and nonlinear functions are third-
order differentiable, and that p_, 1s unbounded,

For every pomnt satisfying 7," #'# 0, we have

17 " / 12

. //] /! !
.11(1// _mh (ll)ll) _9 ])) Bt I}%/ R 111/+ I})' (h/// B '])/ )

/
h' 7 5

Obtained by using the fact that the Hessian of the logarithm of the joint
density of independent variables 1s diagonal everywhere (Lin, 1998)

It 1s not obvious 1f this theorem holds 1n practice. ..



All Non-Identifiable Cases

(Zhang and Hyvirinen, 2009)

Log-mixed-linear-and-

exponential:

log p,,

. (.1(;.021‘ + Cav +(.4

\Tzil)lc 1: All situations in which

fo(fi(x1) + e2)

xr1 = go(g1(x2) + 1)

€19

(log p,)) > c(c#0),

ASV ——o0Or as v— +

the PNL causal model 1s not identifiable.

Pes \ pe, (t1 = g._,_l(.rl')) h= fiog Remark
| Gaussian (Gaussian linear hy also linear
11 log-mi_\'-lin-ch log-mix-lin-exp linear hy strictly monotonic, and hj —
0. as 20 — +oC or as 290 — —X
IIT || log-mix-lin-exp one-sided asymptoti-¥|| A strictly monotonic,
cally exponential (but || and A" — 0, as t; —
not log-mix-lin-exp) +0o0 or as ty — —oX
IV || log-mix-lin-exp generalized mixture of || Same as above
two exponentials
V generalized mixture | two-sided asymptoti- || Same as above
of two exponentials | cally exponential w

/

Po X (€172 4 cqe)os

N\

as v — —oo and

as v —» +ao

(log p,) —>¢, (¢, #0),

(logp,)—>c,(c, #0),

log p,,




All Non-Identifiable Cases @ 2/t

(Zhang and Hyvirinen, 2009) r1 = g2(g91(x2) + e1)

log p

(log p,)) > c(c#0),

Log-mixed-linear-and- A8 V —> —0 Or a8 V —> +0
exponential:

logp, = 1€ 4+ c3v + ¢4

V - |

\Tul)lo 1: All situations I = n 1S genera“y not 1dentifiable.

Pes \ Were Remark

hy also linear

c
— X a
| (Gaussian Xp U . \{ he dat

11 log-mix-lin-

rd‘ng to 5 St-l‘iCtl}' monotonic. and [;" —
O

. as 29 — +0C Or as 290 — —X

[II || log-mix-lin-exp

IV || log-mix-lin-exp

\Y generalized mixture
of two v.\:puw'lltizll.\'

P

1)1‘ X (.(.1(,021‘ _i_(,B(_.C_-;'l‘)Cs




Practical Issues in Causal Discovery...

® Nonlinearities ( Hoyer et al., NIPS’08;
)

® (ategorical variables or mixed cases (
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Practical Issues in Causal Discovery...
® Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang &
Hyvirinen, UAI’09; Huang et al., KDD’18)
® (Categorical variables or mixed cases (I Tuang et
® Measurement error (Zhang et al., UAT 18, PSA

® Selection bias (Zhang et al., UAT'16)
® Confounding (SGS 1993; Hoyer et al., 2008; Cai

X =BX+ AF + Ex
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Generalized Independent I 7,

Noise (GIN) Condition "
: X

Z.= {X1} Y = {Xo, X3}
Hke X1\
@x @x 1

L L

& &

) =

Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurlPS’19
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Generalized Independent

Noise (GIN) Condition

>

@ 7= {X1} Y = {Xo, X3}

c-Xo—b-X;s
=c(bL1 + Es) — b(cLy + E3)
=clky — bEj3,

independent from L and from Xj,
b Cov(Xs, X3)

and we know —

c Cov(X1, X3)

Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurlPS’19




Generalized Independent

Noise (GIN) Condition

>

@ 7= {X1} Y = {Xo, X3}

C - X2 —b- X3
=c(bL1 4+ F3) — b(cLy + E3) Nontrivial linear combination
—cEy — bEj5, of Xo and X3 will involve

the noise term in L1,

independent from L and from Xj,
hence dependent on X4

and we know é Cov(X, X3)

c Cov(X1, X3)

Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurlPS’19




Nonlinearities (

Measurement error (

Selection bias (

Missing values (

X1 X2 X3 X4
-9.4653403e-01
-9.4895568e-01

7.2489037e-01

1.3261794e+00
-2.1128404e+00
1.5453163e+00
6.5974086e-02
8.9772858e-01

1 12A0N01T T~ AN

Confounding (SGS 1993;

X5 X6
6.6703495e-01

5.1435422e-01

-6.1971037e-01
1.3359744e-02
-5.3986972e-01
5.5826895e-01
2.6752870e-01

2 E104079%~ AN

Categorical variables or mixed cases (

8.2886922e-01

6.7338326e-01
5.1325341e-01
-1.3440612e+00
-1.0498756e-01
-2.0209600e+00
4.5157367e-01
6.5247930e-01
-4.9204975e-01

E ENET1EENA~A AN

-1.3695521e+00
-4.6381657e-01
4.3403559%e-01
8.3567780e-01

1.4171149e+00
-1.7172659e+00
1.5566262e+00
-5.7895322e-01
7.7933358e-02

A O2WELNO0OA~A A1

Hoyer et al., NIPS’08;

-3.2675465e-02
-1.8280031e+00
9.4535076e-01
2.9825903e-01

1.6251026e+00
-2.4746799e+00
9.3882105e-01
5.0062743e-01
8.3467624e-01

N DTATAAAA AN

Practical Issues in Causal Discovery...

1.8634806e-01

7.5164028e-01
7.7796018e-02
-7.3325009e-01
3.7478050e-01
-2.8026586e+00
-4.3382982e-01
1.0183537e+00
9.2744311e-01
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Practical Issues in Causal Discovery...

® Nonlinearities ( Hoyer et al., NIPS’08;
)

® (ategorical variables or mixed cases (

® Measurement error ( )

® Selection bias ( )

® (Confounding (SGS 1993; ;
® Missing values ( )
® Causality in time series

® Time-delayed + instantaneous relations (Hyvarinen ICMIL08;

)

® Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14;
)

® From partially observable time series ( )
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Practical Issues in Causal Discovery...

® Nonlinearities ( Hoyer et al., NIPS’08;
)

® (ategorical variables or mixed cases ( )

® Measurement error ( )

® Selection bias ( )

® (Confounding (SGS 1993; : — e A= h T ¢
® Missing values ( )

® C(ausality in time series

)

® Subsampling / temporally aggregation (Danks & Plis, NTPS
)

® From partially observable time series ( )

® Application in recommender systems ( )

® Nonstationary/heterogeneous data (



Nonstationary/Heterogeneous Data and
Causality

® Ubiquity of nonstationary/heterogeneous data

® Nonstationary time series (brain signals, : '
climate data...) o m @ e w

® Multiple data sets under different
observational or experimental conditions

® (Causal modeling & distribution shift heavily
coupled

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015

Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation
determination, [|[CAl 2017

Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Causal Discovery from Nonstationary/
Heterogeneous Data

e (Questions to answer:

® Method to determine changing causal
modules & estimate skeleton

® (Causal orientation determination
benefits from independent changes in
P(cause) and Peffect | cause)

® How do the nonstationary modules
change over time / across data sets?

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015

Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation
determination, [|CAl 2017
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Causal Discovery from Nonstationary/
Heterogeneous Data

e (Questions to answer:

® Method to determine changing causal
modules & estimate skeleton

® (Causal orientation determination
benefits from independent changes in
P(cause) and Peffect | cause)

® How do the nonstationary modules Kernel nonstationary
change over time / across data sets? driving force estimation

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015

Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation
determination, [|CAl 2017
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Nonstationarity Helps |
Determine Causal Direction ()—)

e Independent changes in P(cause) and P(effect | cause); generally
violated for wrong directions

e Special cases: if C — Vi, — V;, since C — V,,, we known . N
<
. . . . A
e C — Vi + Vit C LV, given a variable set excluding AN ‘
q’é(.\%(\' &
e C = Vi — Vit C LV} given a variable set including 1, \‘\ecx\@“\

Hoowver. The logic of causal inference. Economics and Philosophy, 6:207—234, 1990.

9(C) C.
OGO
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Causal Analysis of Major Stocks in
NYSE (07/05/2006 - 12/16/2009)

Energy

Basic Industry
Finance

Consumer Service
Health Care
Utility
Technology

Capital Goods
Consumer Nondurable Goods

Transportation

o
o
o

usB
N
JCP
N
SAN
N

[« I \v]
[« I \v]
[ I o]

o
(>IN e ]
o

PBR
N

CHK
N

N
N

0
07/05/06 T1 T2 12/17/09 07/05/06 T1 T2 12/17/09 07/05/06 T1 T2 12/17/09

Huang, Zhang, Zhang, Romero, Glymour, Scholkopf, Behind Distribution Shift: Mining Driving
Forces of Changes and Causal Arrows,” ICDM 2017 127




Outline

Causality? Interventions? Causal thinking
Causal graphical models

Identification of causal ettects
Counterfactual reasoning

Causal discovery

Implications in machine learning




Domain Adaptation (or Transfer
Learning)

Source

® [raditional
supervised
learning:
P §<€Y =P §<TY

® Might not be the

case 1n practice:

Causal model Y—X

Prob. model PU(X)Y), PO(X,Y), PO(XY), ... POXY)...



“Causality” Matters in Prediction: An
[llustration

Understanding connections between difterent scenarios
& modeling differences
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“Causality” Matters in Prediction: An
[llustration

g |

Understanding connections between difterent scenarios
& modeling differences



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

Y lly th t X COD §% IZ/’ g Cé;’;g' f},
® Y is usually the cause o . o~
(especially for classification) 8 i‘% :‘{ g 3-77%?(' ‘ \";\5

e Target shift (TarS) @0 maiD*@*‘@

involved parameters estimated by matching Px

Zhang et al., ICML 2013; Zhang et al.,AAAl 2015; Gong et al., ICML 201 6;
Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

Y lly th t X C0> §% :’I g([z’; §' f}}
® Y is usually the cause o | W
(especially for classification) 8 i%’ \4{ g ég(‘gg —~

e Target shift (TarS) @omaiD—>®_>@
o Conditional shift (ConS) /@\

@omaz’D

involved parameters estimated by matching Px

Zhang et al., ICML 2013; Zhang et al.,AAAl 2015; Gong et al., ICML 201 6;
Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

® Y is usually the cause of X
(especially for classification)

e Target shift (TarS) @omaiD—>®_>@

e Conditional shift (ConS) .
@omaz’D @—>®

e Generalized target shift (GeTarS)

o
0
O
0

@omai@

involved parameters estimated by matching Px

Zhang et al., ICML 2013; Zhang et al.,AAAl 2015; Gong et al., ICML 201 6;
Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...



Possible Situations for Domain
Adaptation: When Y—X (Zhang et al., 2013)

® Y is usually the cause of X
(especially for classification)

e Target shift (TarS) @omaiD—>®_>@

e Conditional shift (ConS)

o
0
O
0

/_\
' t
@omazD @—>® | PX?
e Generalized target shift (GeTarS) _gelps
@E>>3@ |
domain —>-@—>- te
P Y|X

involved parameters estimated by matching Px

Zhang et al., ICML 2013; Zhang et al.,AAAl 2015; Gong et al., ICML 201 6;
Stojanov et al., AISTATS 2018; Zhao et al., ICML 2019; Fu et al, CVPR 2019...




Application: Remote Sensing
Image Classification

® Tswvo domains (area 1 & area 2)
® 14classes

Number of patterns . /\\
Class Area 1 Area 2 dOmaZD—)@—)' :

TRl TSl TR2 TSQ

Water U A T . Location-scale generalized
Hippo grass 81 81 |83 18 target shift
Floodplain grassesl | 83 75 199 52 e e
Floodplain grasses2 | 74 91 169 46

Heedsl S0 88 1219 S0 | Misclassification rates by different methods
Riparian 102 109 221 48 k)

Firescar? 03 33 215 44 Problem Unweight | CovS TarS ‘LS-GeTarS
Island interior 77 7 166 37 TR, — TSy | 20.73% 20.73% | 20.41% | 11.96%
Acacia woodlands ]4 67 2953 61 TRy — TS | 26.36% 25.32% | 26.28% | 13.56% f

Acacia shrublands 101 89 202 46

Acacia grasslands 184 174 | 243 62

Short mopane 68 85 154 27
Mixed mopane 105 128 203 65
Exposed soil 41 48 81 14
Total 1242 1252 | 2621 627

Zhang et al., Domain adaptation under target and conditional Shift, ICML 2013



What Features/Components to Transfer?

o Invariant/transferrable causal mechanism (Zhang et al., 2013; 2014;
Gong et al, 2016): invariance of P(X<|Y)

e Nonparametric transfer learning (Stojanov et al.2018a,b; Gong et
al., 2018 & 2020; Zhang et al., 2020)

e Detect, model, utilize changes

Gong, Zhang et al., Domain adaptation with conditionally transferable components, ICML 2016



On MNIST Data | e [
o

One source domain: ‘{ Q@ q ’) 4 o —1
Target domain: e ? \0 >B

Learned parameter values 0: -0.24 (source, 0°); 0.46 (target,45°)

(Generate new data with
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Causality & Transterability

Causality helps

One may find causal structure
under rather strong assumptions

But do we have to go to the causal
level to achieve transferability?

® Think about classical conditioning

135
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But do we have to go to the causal

level to achieve transferability? *

® Think about classical conditioning
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“If a particular stimulus in the
dog's surroundings was present
when the dog was given food
then that stimulus could
become associated with food
and cause salivation on its
own.”



Automated Domain Adaptation
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® Discover properties of changes from source domain
® Represent them with an augmented graph

® Domain adaption 1s just a problem of inference on this

eraphical model

Zhang, Gong, et al., Domain adaptation as a problem of inference on graphical models, Arxiv 2020
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Summary

® Why causality? Why causality?

® (Causal inference

® Different types of “independence” helps 1in causal discovery:

® (onditional independence: constraint-based approach

e (ause I noise in constrained FCMs = causal asymmetry

® Independent changes in
® (onfounding, selection

® ‘[ranster learning: com

P(cause) and P(effect | cause)
bias, temporal 1nfo...

pact description of changes

® Modularity, independ

ent changes...



