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Outline

• Causality? Interventions? Causal thinking 

• Causal graphical models 

• Identification of  causal effects 

• Counterfactual reasoning 

• Causal discovery 

• Implications in machine learning
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March, 2014

Finding Causal Relations: Example 1

X: rice/wheat agriculture;
Y: culture;
Z: climate etc.:

X⫫Y;
X⫫Y | Z.

Under what conditions 
can we say 
X→Y ?

53
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Finding Causal Relations: Example 1

X: rice/wheat agriculture;
Y: culture;
Z: climate etc.:

X⫫Y;
X⫫Y | Z.

Under what conditions 
can we say 
X→Y ?

53



Find Causal Relations: Example 2

• 8 variables of 250 skeletons collected from 
different locations

Thanks to co"aborator Marlijn Noback



Example III: Distinguishing Cause 
from Effect
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Example IV: Finding the Latent 
World?

L3

X1
L1

L2

X2

X3 X4

X5

X6



Example IV: Finding the Latent 
World?
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Causal Discovery 1: 
Conditional Independence-Based Methods

- Constraint-based methods: PC and FCI

- Score-based approach: GES

57



• Connection between causal structure and statistical 
properties of the data under suitable assumptions ?

• Properties of causal systems: modularity

If there is no common cause of X and Y, the generating 
process for cause X         is irrelevant to        that 
generates effect Y from X

P(X) →X→
P(Y|X)

Y

What Information Helps Find 
Causality?

→



Causal Sufficiency

• A set of random variables V is causally 
sufficient if V contains every direct cause 
(with respect to V) of any pair of 
variables in V

• V = {X,Y,Z}: causally sufficient

• V = {X,Y}: causally insufficient  

• Methods exist in causally insufficient 
cases, e.g., FCI (Chapter 6 of the SGS 
book)

X Y

Z

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)
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We can See CI Relations 
from DAGs...

• Local Markov condition

• Global Markov condition

• d-separation implies conditional independence:

P (V), where V denotes the set of variables, obeys the global Markov con-
dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Z in G =) X ?? Y |Z.
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Going from CI to Graph?

• Contrapositive:

• Conditional dependence implies d-connection 

• What if variables are conditionally independent?

• Can we recover the property of the underlying graph from CI 
relations with Markov condition?

• Arbitrary P(V) would satisfy the global Markov condition 
according to Gf in which there is an edge between each pair of 
variables: trivial !

• Under what assumptions can we have CI ⇒ d-separation?

X and Y are d-separated by Z in G =) X ?? Y |Z.
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Causal Structure vs. Statistical Independence 
(SGS, et al.)

causal structure
(causal graph)
 Y → X → Z

Recall: Y⫫Z ⇔P(Y|Z)=P(Y); Y⫫Z|X ⇔P(Y|Z,X)=P(Y|X)
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Causal Structure vs. Statistical Independence 
(SGS, et al.)

causal structure
(causal graph)
 Y → X → Z

Statistical 
independence(s)

 Y      Z | X

Causal Markov condition: each variable is ind. of its non-
descendants (non-effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies 
are entailed by Markov condition in the causal graph

Recall: Y⫫Z ⇔P(Y|Z)=P(Y); Y⫫Z|X ⇔P(Y|Z,X)=P(Y|X)

 Y -- X -- Z ?



Faithfulness Assumption

health 
condition

• One may find independence between health condition & risk of 
mortality and between swimming skills & risk of drowning

risk of 
mortality

healthy 
lifestyle

-

- -
swimming 

skills
risk of 

drowning

carelessness

-
+ +

• E.g., if they are linear-Gaussian and a=-bc, then health_condition 
⫫ risk_mortality, which cannot by seen from the graph!

• Faithfulness assumption eliminates this possibility!

a
b c
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Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods

 X1       X2      X3     X4  
------------- 
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Discussion

• First, can we find the skeleton of the 
causal structure? If yes, how?

• Second, can we determine the causal 
direction?

Causal Markov condition + faithfulness

How?
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Constraint-Based Causal Discovery
• (Conditional) independence constraints 
⇒ candidate causal structures

• Relies on causal Markov condition & 
faithfulness assumption

• PC algorithm (Spirtes & Glymour, 1991)

• Step 1: X and Y are adjacent iff they are 
dependent conditional on every subset of the 
remaining variables (SGS, 1990)

• Step 2: Orientation propagation

• v-structure 

• Markov equivalence class, with pattern          
Y⎯X⎯Z

• same adjacencies; → if all agree on 
orientation; ⎯ if disagree

Y⫫Z | X

Y      Z 

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

generating

inferring

Y⎯X⎯Z 3 possibilities:
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Example (From SGS Book)

118 Causation, Prediction, and Search

C.) For each triple of vertices X , Y , Z such that the pair X , Y  and the pair Y , Z are each
adjacent in C but the pair X , Z are not adjacent in C, orient X  - Y  - Z as X  -> Y  <- Z if
and only if Y  is not in Sepset(X ,Z).
D. repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A - B as A -> B.

     until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

A B

C

D

E

True Graph

A B

C

D

E

Complete Undirected Graph

No zero order independenciesn = 0

A B

C

D

E

n = 2:     Second order independencies

n = 1      First order independencies

        A      C    B        |

A B

C

D

E

        A      E    B        |

        A       D   B        | 

          C       D    B        |

        B      E         
  
{C,D}|

Resulting Adjacencies

Resulting Adjacencies

Figure 1

Step 1

Pattern

Discovery Algorithms for Causally Sufficient Structures 119

Although it does not in this case, stage B) of the algorithm may continue testing for some steps
after the set of adjacencies in the true directed graph has been identified. The undirected graph at
the bottom of figure 1 is now partially oriented in step C). The triples of variables with only two
adjacencies among them are:

A - B - C;  A - B -D;
C - B - D;  B - C - E;
B  - D - E;  C - E - D

E is not in Sepset(C,D) so C - E and E - D collide at E. None of the other triples form
colliders. The final pattern produced by the algorithm is shown in figure 2.

A B

C

D

E

Figure 2

The pattern in figure 2 characterizes a faithful indistinguishability class. Every orientation of the
undirected edges in figure 2 is permissible that does not include a collision at B.

5.4.2.1 Complexity

The complexity of the algorithm for a graph G is bounded by the largest degree in G. Let k be
the maximal degree of any vertex and let n be the number of vertices. Then in the worst case the
number of conditional independence tests required by the algorithm is bounded by

2
n
2

 
 
  
 

n −1
i

 
 
  

 i =0

k

∑

which is bounded by

Step 1I
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PC 
Algorithm

Discovery Algorithms for Causally Sufficient Structures 117

each, to determine the conditional independence of two variables on the set of all remaining
variables requires considering the relations among the frequencies of 335 distinct states, only a
fraction of which will be instantiated even in very large samples.

We should like an algorithm that has the same input/output relations as the SGS procedure for
faithful distributions but which for sparse graphs does not require the testing of higher order
independence relations in the discrete case, and in any case requires testing as few d-separation
relations as possible. The following procedure (Spirtes, Glymour, and Scheines, 1991) starts
by forming the complete undirected graph, then "thins" that graph by removing edges with zero
order conditional independence relations, thins again with first order conditional independence
relations, and so on. The set of variables conditioned on need only be a subset of the set of
variables adjacent to one or the other of the variables conditioned.

Let Adjacencies(C,A) be the set of vertices adjacent to A in directed acyclic graph C. (In the
algorithm, the graph C is continually updated, so Adjacencies(C,A) is constantly changing as
the algorithm progresses.)

PC Algorithm:

A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat

repeat
select an ordered pair of variables X  and Y  that are adjacent in C such
that Adjacencies(C,X )\{Y} has cardinality greater than or equal to
n, and a subset S  of Adjacencies(C,X )\{Y} of cardinality n, and if
X  and Y  are d-separated given S  delete edge X  - Y  from C and
record S  in Sepset(X ,Y ) and Sepset(Y ,X );

until all ordered pairs of adjacent variables X  and Y  such that
Adjacencies(C,X )\{Y} has cardinality greater than or equal to n and all
subsets S  of Adjacencies(C,X )\{Y} of cardinality n have been tested for
d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X , Y , Adjacencies(C,X )\{Y} is
of cardinality less than n.

118 Causation, Prediction, and Search
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algorithm, the graph C is continually updated, so Adjacencies(C,A) is constantly changing as
the algorithm progresses.)

PC Algorithm:

A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat

repeat
select an ordered pair of variables X  and Y  that are adjacent in C such
that Adjacencies(C,X )\{Y} has cardinality greater than or equal to
n, and a subset S  of Adjacencies(C,X )\{Y} of cardinality n, and if
X  and Y  are d-separated given S  delete edge X  - Y  from C and
record S  in Sepset(X ,Y ) and Sepset(Y ,X );

until all ordered pairs of adjacent variables X  and Y  such that
Adjacencies(C,X )\{Y} has cardinality greater than or equal to n and all
subsets S  of Adjacencies(C,X )\{Y} of cardinality n have been tested for
d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X , Y , Adjacencies(C,X )\{Y} is
of cardinality less than n.
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C.) For each triple of vertices X , Y , Z such that the pair X , Y  and the pair Y , Z are each
adjacent in C but the pair X , Z are not adjacent in C, orient X  - Y  - Z as X  -> Y  <- Z if
and only if Y  is not in Sepset(X ,Z).
D. repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A - B as A -> B.

     until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

A B

C

D

E

True Graph

A B

C

D

E

Complete Undirected Graph

No zero order independenciesn = 0

A B

C

D

E

n = 2:     Second order independencies

n = 1      First order independencies

        A      C    B        |

A B

C

D

E

        A      E    B        |

        A       D   B        | 

          C       D    B        |

        B      E         
  
{C,D}|

Resulting Adjacencies

Resulting Adjacencies

Figure 1

Test for (conditional) 
independence with an 

increased cardinality of the 
conditioning set

Finding V-
structures

Y

X Z

Orientation propagation

Avoid spurious v-structures: Away from cycles:



(Independence) Equivalent 
Classes: Patterns

• Two DAGs are (independence) equivalent if and only if they have the 
same skeletons and the same v-structures (Verma & Pearl, 1991) 

• Patterns or CPDAG (Completed Partially Directed Acyclic Graph): 
graphical representation of (conditional) independence equivalence 
among models with no latent common causes (i.e., causally sufficient 
models)

 X2 X1

 X2 X1

 X2 X1

 X4 X3

 X2
 X1

Possible Edges ExampleX1 and X2 are not adjacent in any 
member of the equivalent class

X1→X2 in every member of the 
equivalent class

X1→X2 in some members of the 
equivalent class, and X1←X2 in 

some others
How many DAGs 

in this class?
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The PC Algorithm: Big Picture

 X1     X2         X3         X4  
———————————— 
-1.1    1.0    1.3    0.2  
2.1    2.0    3.1    -1.3  
3.1    4.2    2.6    0.6  
2.3   -0.6 -3.5       0.8 
1.3    2.2    0.9    2.4 
-1.8      0.9       -1.3    0.9  

...          ...     ...         ...

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

- Make use of conditional independence relations
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Example 1: College Plans

Sewell and Shah (1968) studied five variables from a sample of 
10,318 Wisconsin high school seniors. 
SEX                         [male = 0, female = 1]
IQ = Intelligence Quotient [lowest = 0, highest = 3] 
CP = college plans           [yes = 0, no = 1] 
PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]
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Example II: Causal analysis of 
archeology data

• 8 variables of 250 skeletons collected from different locations

Thanks to co"aborator Marlijn Noback
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Example II: Result

• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• PC + kernel-based conditional ind. test seems to be a good choice 

Thanks to co"aborator Marlijn Noback

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. 
paramasticatory 

behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D) 7. climate (6D)

8. cranial shape 
differentiation 

(255D)

reported
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• Different dimensions (from 1 to 255) with nonlinear dependence 
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Confounders? How about 
This Case?

X1 ?? X2;

X1 ?? X4 |X3;

X2 ?? X4 |X3.

What is the corresponding causal structure? Possible 
to have confounders behind X3 and X4?
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Confounders? How about 
This Case?

X1 ?? X2;

X1 ?? X4 |X3;

X2 ?? X4 |X3.

What is the corresponding causal structure? Possible 
to have confounders behind X3 and X4?

:-)
X1 X2

X3

X4
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I Can Discover There Is No 
Confounder: Example

• In the 1970s, the Edison Electric Company in North Carolina was concerned 
about the effects on plant growth of acid rain produced by emissions from its 
electric generators.


• The investigators chose samples from the Cape Fear estuary, where the Cape 
Fear River flows into the Atlantic Ocean.


• obtained 45 samples of Spartina grass up and down the estuary, and measured 
13 variables in the samples, including concentrations of various minerals, 
acidity (pH), salinity, and the outcome variable, the biomass of each sample


• The PC algorithm found that among the measured variables the only direct 
cause of biomass was pH.


• Y-structure: no confounder!


• Later verified by intervention-based analysis
76



Other Examples

• A: Raining; B: slippery ground; C: falling down

• A: Geographical background (continental/maritime 
country); B: economic conditions (agriculture/commerce); 
C: emergence of science
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Other Examples

• A: Raining; B: slippery ground; C: falling down

• A: Geographical background (continental/maritime 
country); B: economic conditions (agriculture/commerce); 
C: emergence of science

77

X1 X2

X3

X4



Confounders? How about 
This Case?

X1 ?? X3;

X1 ?? X4;

X2 ?? X3.
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Confounders? How about 
This Case?

X1 → X2          X4←X3

L
L: a latent variable

X1 ?? X3;

X1 ?? X4;

X2 ?? X3.
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Confounders? How about 
This Case?

X1 → X2          X4←X3

L
L: a latent variable

X1 ?? X3;

X1 ?? X4;

X2 ?? X3.

• For example, X1: I am not sick; X2: I am in class; X3: you 
are in class; X4: you are not sick

78



FCI (Fast Causal Inference) 
Allows Confounders

X1 → X2          X4←X3

L

• Assume the distribution over measured variables O is the marginal of a 
distribution satisfying the Markov and faithfulness conditions for the 
true graph

• The causal process over measured variables O is not necessarily a DAG. 
How can we represent (independence) equivalence classes over O ?

• Results represented by PAGs

What’s FCI’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997

Data available in 
‘data3_FCI.txt’



PAGs (Output of FCI): What 
Edges Mean?

 X2 X1

 X2 X1

 X2 X1

 X2  There is a latent common
cause of X1 and X2

 No set d-separates X2 and X1

 X1 is a cause of X2

 X2 is not an ancestor of X1

 X1

 X2 X1  X1 and X2 are not adjacent

 X2

 X3

 X1

 X2

 X3

Represents

PAG

 X1  X2

 X3

 X1

 X2

 X3

 T1

 X1

 X2

 X3

 X1

 etc.

 T1

 T1  T2
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Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

X1 X3

X2

X4

X1 X3X2 X4

X1 X3X2 X4

score 1

score 2

score 3
...

...

Which 
one is 

the best?

(Score may be BIC, AIC, etc.)

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...
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GES (Greedy Equivalence Search): 
Score Function

• Assumptions: The score is

• score equivalent (i.e., assigning the same score to equivalent DAGs)

• locally consistent: score of a DAG increases (decreases) when adding 
any edge that eliminates a false (true) independence constraint

• decomposable: 

• E.g., BIC:

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002

we can express it as:

Score(G,D) =
nX

i=1

Score(Xi,PaGi ) (1)

Note that the data D is implicit in the right-hand side Equa-
tion 1. Most commonly used scores in the literature have
these properties. For the remainder of this paper, we as-
sume they hold for the scoring function we use.

All of the CPDAG operators from GES are scored using
differences in the DAG scoring function, and in the limit of
large data, these scores are positive precisely for those op-
erators that remove incorrect independences and incorrect
dependences.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators until no
operator has a positive score; these operators correspond
precisely to the union of all single-edge additions to all
DAG members of the current (equivalence-class) state. Af-
ter FES reaches a local maximum, GES switches to the sec-
ond phase—called backward equivalence search or BES—
and greedily applies GES delete operators until no operator
has a positive score; these operators correspond precisely to
the union of all single-edge deletions from all DAG mem-
bers of the current state.

Theorem 1. (Chickering, 2002) Let C be the CPDAG that
results from applying the GES algorithm to m records sam-
pled from a distribution that is perfect with respect to DAG
G. Then in the limit of large m, C ⇡ G.

The role of FES in the large-sample limit is only to identify
a state C for which G  C; Theorem 1 holds for GES under
any implementation of FES that results in an IMAP of G.
The implementation details can be important in practice be-
cause what constitutes a “large” amount of data depends on
the number of parameters in the model. In theory, however,
we could simply replace FES with a (constant-time) algo-
rithm that sets C to be the no-independence equivalence
class.

The focus of our analysis in the next section is on a mod-
ified version of BES, and the details of the delete operator
used in this phase are important. We detail the precondi-
tions, scoring function, and transformation algorithm for a
delete operator in Figure 2. We note that we do not need to
make any CPDAG transformations when scoring the oper-
ators; it is only once we have identified the highest-scoring
(non-negative) delete that we need to make the transforma-
tion shown in the figure. After applying the edge modifi-
cations described in the foreach loop, the resulting PDAG
P is not necessarily completed and hence we may have to
convert P into the corresponding CPDAG representation.
As shown by Chickering (2002), this conversion can be ac-
complished easily by using the structure of P to extract a

Operator: Delete(X,Y,H) applied to C

• Preconditions
X and Y are adjacent
H ✓ NAY,X

H = NAY,X \H is a clique

• Scoring
Score(Y, {PaCY [H} \X)�Score(Y,X [PaCY [H)

• Transformation
Remove edge between X and Y
foreach H 2 H do

Replace Y �H with Y ! H
if X �H then Replace with X ! H

end
Convert to CPDAG

Figure 2: Preconditions, scoring, and transformation algo-
rithm for a delete operator applied to a CPDAG.

DAG that we then convert into a CPDAG by undirecting all
reversible edges. The complexity of this procedure for a P

with n nodes and e edges is O(n · e), and requires no calls
to the scoring function.

4 SELECTIVE GREEDY EQUIVALENCE
SEARCH

In this section, we define a variant of the GES algorithm
called selective GES—or SGES for short—that uses a sub-
set of the GES operators. The subset is chosen based on a
given property ⇧ that is known to hold for the generative
structure G. Just like GES, SGES—shown in Figure 3—has
a forward phase and a backward phase.

For the forward phase of SGES, it suffices for our theoret-
ical analysis that we use a method that returns an IMAP of
G (in the large-sample limit) using only a polynomial num-
ber of insert-operator score calls. For this reason, we call
this phase poly-FES. A simple implementation of poly-FES
is to return the no-independence CPDAG (with no score
calls), but other implementations are likely more useful in
practice.

The backward phase of SGES—which we call selective
backward equivalence search (SBES)—uses only a subset
of the BES delete operators. This subset must necessarily
include all ⇧-consistent delete operators—defined below—
in order to maintain the large-sample consistency of GES,
but the subset can (and will) include additional operators
for the sake of efficient enumeration.

The DAG properties used by SGES must be equivalence
invariant, meaning that for any pair of equivalent DAGs,

Optimal Structure Identification With Greedy Search

We allow there to be missing values in each iid sample, but our results implicitly depend
on the assumption that the parameters of each Bayesian network are identifiable. We will
therefore assume for the remainder of this section that the empirical distribution defined
by the data D converges to p(·) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the
asymptotic behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the
two-phase greedy algorithm and show how it takes advantage of that asymptotic behavior
to identify the optimal solution. Finally, in Section 4.3, we discuss the applicability of the
algorithm to non-Bayesian scoring criteria and to Bayesian scoring criteria for which the
definition of the structure hypothesis diÆers from the one we presented in Section 2.3. We
also discuss how violations of Assumption 1 can aÆect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a DAG G measures the relative
posterior or relative log posterior of the hypothesis Gh that the independence constraints in
G are precisely the independence constraints in the generative distribution. Without loss of
generality, we express the Bayesian scoring criterion SB using the relative log posterior of
G

h:
SB(G,D) = log p(Gh) + log p(D|G

h) (3)

where p(Gh) is the prior probability of G
h, and p(D|G

h) is the marginal likelihood. The
marginal likelihood is obtained by integrating the likelihood function (i.e., Equation 1)
applied to each record in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution

p(·). A scoring criterion S is consistent if in the limit as m grows large, the following two

properties hold:

1. If H contains p and G does not contain p, then S(H,D) > S(G,D)

2. If H and G both contain p, and G contains fewer parameters than H, then S(G,D) >
S(H,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this
paper (i.e., those containing Gaussian or multinomial distributions) are curved exponential

models. The details of this class of model are not important for our results, but Haughton
(1988) shows that (under mild assumptions about the parameter prior) the Bayesian scoring
criterion is consistent for curved exponential models. In particular, Haughton (1988) shows
that Equation 3 for curved exponential models can be approximated using Laplace’s method
for integrals, yielding

SB(G,D) = log p(D|µ̂,Gh)°
d

2
log m + O(1) (4)

where µ̂ denotes the maximum-likelihood values for the network parameters, d denotes
the dimension (i.e., number of free parameters) of G, and m is the number records in D.
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GES: Search Procedure
• Performs forward (addition) / backward (deletion) equivalence search 

through the space of DAG equivalence classes

• Forward Greedy Search (FGS)

• Start from some (sparse) pattern (usually the empty graph)

• Evaluate all possible patterns with one more adjacency that entail 
strictly fewer CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum

• Backward Greedy Search (BGS)

• Start from the output of the Forward Stage

• Evaluate all possible patterns with one fewer adjacency that entail 
strictly more CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum



GES X

Y

Z

Suppose data were generated by
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X

Y

Z

(1)
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GES X

Y

Z

Suppose data were generated by

X

Y

Z

(1)

X

Y

Z

(2)
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GES Z1

Y

Z3

Suppose data were generated by X Z2

Imagine the GES procedure...

Z4
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Causal Discovery 2: 
Linear, Non-Gaussian Models

• Independent noise condition

• Causal discovery based on structural equation 
models: linear non-Gaussian case
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• Nonparametric; widely applicable given reliable conditional 
independence tests

• Recovering {causal relations} from {conditional independences}: bounded 
by the equivalence class

• Directly characterize and recover cause-effect relationships?

• additional weak and reasonable assumptions may be needed

X⫫Z | YX Y Z

X Y Z

X Y Z

X Y

X Y

X Y

or

or
Ztwo-vari

able case
?

Constraint-based Causal Discovery: 
Advantages and Limitations
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• Nonparametric; widely applicable given reliable conditional 
independence tests

• Recovering {causal relations} from {conditional independences}: bounded 
by the equivalence class

• Directly characterize and recover cause-effect relationships?

• additional weak and reasonable assumptions may be needed

X⫫Z | YX Y Z

X Y Z

X Y Z

eq
ui
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le
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ss

• Instead, try to directly identify local 
causal structures with functional causal 
models/structural equation models

X Y

X Y

X Y

or

or
Ztwo-vari

able case
?

Constraint-based Causal Discovery: 
Advantages and Limitations
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Distinguishing Cause from 
Effect?
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Fully Identify Causal Structure? FCMs!

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chan, ’06; Zhang 
& Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )

• A functional causal model represents effect as a function 
of direct causes and noise: Y = f (X, E), with X⫫E



Causal Asymmetry the Linear 
Case: Illustration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXY EY
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X

Y

X

Y

Y

Gaussian case

Uniform case

Linear regression Y = aX + EY
Linear regression X = bY + EX

Data generated by Y = aX + E (i.e., X →Y):

EY
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More Generally, LiNGAM Model

• Example:

X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1

X2 = E2,

X3 = 0.5X2 + E3,

X1 = �0.2X2 + 0.3X3 + E1.

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.
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X2 = E2,
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Matrix form:



More Generally, LiNGAM Model
• Linear, non-Gaussian, acyclic causal model (LiNGAM) 
(Shimizu et al., 2006):

• Disturbances (errors) Ei are non-Gaussian (or at most 
one is Gaussian) and mutually independent

• Example:
X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1

X2 = E2,

X3 = 0.5X2 + E3,

X1 = �0.2X2 + 0.3X3 + E1.

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.



LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2

4
E1

E3

E2

3

5 =

2

4
1 0 0

�0.5 1 0
0.2 �0.3 1

3

5 ·

2

4
X2

X3

X1

3

5

,

8
><

>:

X2 = E1

X3 = 0.5X2 + E3

X1 = �0.2X2 + 0.3X3 + E2

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X
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• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2

4
E1

E3

E2

3

5 =

2

4
1 0 0

�0.5 1 0
0.2 �0.3 1

3

5 ·

2

4
X2

X3

X1

3

5

,

8
><

>:

X2 = E1

X3 = 0.5X2 + E3

X1 = �0.2X2 + 0.3X3 + E2

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X

Question 1. How to find W?

Question 2. How to see B from W?
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LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2

4
E1

E3

E2

3

5 =

2

4
1 0 0

�0.5 1 0
0.2 �0.3 1

3

5 ·

2

4
X2

X3

X1

3

5

,

8
><

>:

X2 = E1

X3 = 0.5X2 + E3

X1 = �0.2X2 + 0.3X3 + E2

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .
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Can You See Causal Relations 
fromW? Example

• ICA gives Y = WX and

• Can we find the causal model?

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .

W =

2

664

0.6 �0.4 2 0
1.5 0 0 0
0 0.2 0 0.5
1.5 3 0 0

3

775
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Independent Component Analysis 

X1

Xm

observed 
signals

…

X = A·S Y = W·X

• Assumptions in ICA

• At most one of Si is Gaussian

• #Source >= # Sensor, and A is of full column rank


.5 .3 1.1 �0.3 ...
.8 �.7 .3 .5 ...

�
=


? ?
? ?

�
·

? ? ? ? ...
? ? ? ? ...

�

Hyvärinen et al., Independent Component Analysis, 2001

Then A can be estimated up to 
column scale and permutation 

indeterminacies

A
s1

s2

X1

X2
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Darmois-Skitovich Theorem

Darmois-Skitovitch theorem: Define two random variables,
Y1 and Y2, as linear combinations of independent random variables
Si, i = 1, ..., n:

Y1 = ↵1S1 + ↵2S2 + ...+ ↵nSn,

Y2 = �1S1 + �2S2 + ...+ �nSn.

If Y1 and Y2 are statistically independent, then all variables Sj for
which ↵j�j 6= 0 are Gaussian.

Kagan et al., Characterization Problems in Mathematical Statistics. New York: Wiley, 1973



How ICA works? By Mutual Information 
Minimization (or ML)

• Mutual information I(Y1,...,Yn) is the Kullback-Leiber divergence 
from PY to ∏iPYi :

• Nonnegative and zero iff Yi are independent

• H(·): differential entropy--how random the variable is?

Hyvärinen et al., Independent Component Analysis...

I(Y1, ..., Yn) =

Z
. . .

Z
pY1,...,Yn log

PY1,...,Yn

pY1 ...pYn

dy1...dyn

=

Z
. . .

Z
pY1,...,Yn logPY1,...,Yndy1...dyn �

Z
pY1,...,Yn

nX

i=1

log pYidyi

=
X

i

H(Yi)�H(Y )

=
X

i

H(Yi)�H(X)� log |W| because Y = WX



Intuition: Why ICA works?
• (After preprocessing) ICA aims to find a 

rotation transformation Y = W·X to making 
Yi independent

• By maximum likelihood log p(X|A), 
mutual information MI(Y1,...,Ym) 
minimization, infomax...

X1
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X1

X2

X1

X2

X1

X2
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A Demo of 
the ICA 

Procedure
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Why Gaussianity Was Widely 
Used?

• Central limit theorem: An illustration

• “Simplicity” of the form; completely characterized by mean 
and covariance

• Marginal and conditionals are also Gaussian

• Has maximum entropy, given values of the mean and the 
covariance matrix

E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.
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Gaussianity or Non-Gaussianity?

• Non-Gaussianity is actually ubiquitous

• Linear closure property of Gaussian distribution: If the 
sum of any finite independent variables is Gaussian, then 
all summands must be Gaussian (Cramér, 1936)

• Gaussian distribution is “special” in the linear case

• Practical issue: How non-Gaussian they are?
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Application: Causal diagram in HK Stock 
Market (Zhang & Chan, 2006)

1. Ownership relation: 
x5 owns 60% of x8; 

x1 holds 50% of x10.

2. Stocks belonging to 
the same subindex 

tend to be connected.

3. Large bank 
companies (x5 and 
x8) are the cause of 

many stocks.

4. Stocks in Property 
Index (x1, x9, x11) 
depend on many 
stocks, while they 
hardly influence 

others.



Causal Discovery 3: 
Nonlinearity, confounding, missing data, 

confounding, time series…
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Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & 

Hyvärinen, UAI’09; Huang et al., KDD’18)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 
Ghassami et al., NIPS’18; Huang et al., ICML’19) 



FCMs with Which Causal Direction is 
Generally Identifiable

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chen, 2006; 
Zhang & Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )
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Causal Asymmetry with Nonlinear 
Additive Noise: Illustration 

X

Y

Y = f(X) +E with E⫫X

(Hoyer et al., 2009)
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Post-Nonlinear (PNL) Causal Model 
(Zhang & Chan, 2006; Zhang & Hyvärinen, ‘09a)

• Without prior knowledge, the assumed model is expected to be 
• general enough: adapt to approximate the true generating process 

• identifiable: asymmetry in causes and effects       

• Special cases: linear models; nonlinear additive noise models; 
multiplicative noise models: Y = X · E = exp

�
log(X) + log(E)

�



Post-Nonlinear (PNL) Causal Model 
(Zhang & Chan, 2006; Zhang & Hyvärinen, ‘09a)

• Without prior knowledge, the assumed model is expected to be 
• general enough: adapt to approximate the true generating process 

• identifiable: asymmetry in causes and effects       

• Special cases: linear models; nonlinear additive noise models; 
multiplicative noise models:

Xi = fi,2 ( fi,1 (pai) + Ei)

Y = X · E = exp
�
log(X) + log(E)

�
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Identifiability in Two-variable Case: 
Theoretical Results

• Two-variable case: if X1→X2, then X2 = f2,2 ( f2,1 (X1) + E2)

• Is the causal direction implied by the model unique?

• By a proof of contradiction

• Assume both X1→X2 and X2→X1 satisfy PNL model 

• One can then find all non-identifiable cases

Xi = fi,2 ( fi,1 (pai) + Ei)



Identifiability: A Mathematical Result



All Non-Identifiable Cases 
(Zhang and Hyvärinen, 2009)



All Non-Identifiable Cases 
(Zhang and Hyvärinen, 2009)

Causal direction is generally 

identifiable if the data were 

generated according to 

X2 = f2 ( f1 (X1) + E). 

Special cases: X2 = a·X1 +E 

and X2 = g(X) +E.



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & 

Hyvärinen, UAI’09; Huang et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Zhang et al., UAI’16) 

• Confounding (SGS 1993; Hoyer et al., 2008; Zhang et al., 2018c)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)
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• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)
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In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23

(1� ⇢212)
1/2(1� ⇢223)

1/2

=
⇢̃13 � ⇢̃12⇢̃23

1+�2

�
1� ⇢̃2

(1+�2)

�1/2�
1� ⇢̃2

(1+�2)

�1/2

=
r
2
⇢̃
2

1 + �2 � ⇢̃2
.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y
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W X1 X2 Y

S

(c) (d)

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in
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How to Estimate Deep Latent 
Causal Structure? 

• Only observe Xi, generated by a 
large number of  latent variables/
features & inter causal relations 

• Latent features are also causally 
related 

• Is the structure identifiable? 

• Difficulty in independence-
based or factor analysis methods 

• If  it is, necessary to have deep 
structures!
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Causal Discovery and Hidden Feature Learning
by Heterogeneity Encoding
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1 Introduction
Causal discovery in the presence of hidden variables... great importance... causal rela-
tions between the hidden variables...

difficulty in handling confounders...
Heterogeneous or nonstationary data... whenever there is a distribution shift, there

must be some quantity those changes in the process... If we can find all variables they
were changed across different distributions, then we discover “true” causal variables in
the system...

Heterogeneity encoding... Changes in noise terms... changes in the functions...
Minimality...
In the linear-Gaussian case, not possible given a simple distribution...
We often have multiple scenarios or multiple tasks... Benefit from heterogeneity...

Identifiability...
Causal discovery... Hidden feature learning...

2 Model
The observed variables Xi are generated by hidden variables Fi with linear transfor-
mation A and their inter causal relations represented by the causal influence matrix
B:

X = BX+AF+EX , (1)

where EX ⇠ N (µEX
,⌃EX ). The components of EX are uncorrelated, i.e., ⌃EX =

diag(�X
1 , ...,�X

n ). The generating process of the hidden variables can be represented
by the following structural equation model (SEM):

F = CF+EF , (2)

where EF ⇠ N (µEF
,⌃EF ) with ⌃EF = diag(�F

1 , ...,�
F
m), and EF and EX are

mutually independent.
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Nonstationary/Heterogeneous Data and 
Causality

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, 
climate data...)

• Multiple data sets under different 
observational or experimental conditions

• Causal modeling & distribution shift heavily 
coupled

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation 
determination, IJCAI 2017
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Causal Discovery from Nonstationary/
Heterogeneous Data

• Method to determine changing causal 
modules & estimate skeleton

• Causal orientation determination 
benefits from independent changes in 
P(cause) and P(effect | cause)

• How do the nonstationary modules 
change over time / across data sets?
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.
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(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.
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Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

Kernel nonstationary 
driving force estimation

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation 
determination, IJCAI 2017

• Questions to answer:



Nonstationarity Helps 
Determine Causal Direction

• Independent changes in P(cause) and P(effect | cause); generally 
violated for wrong directions 

• Special cases: if                   , since             , we known 

•                      , if C ⫫ Vl  given a variable set excluding Vk

•                      , if C ⫫ Vl  given a variable set including Vk

θ5(C)

V1 V2 V3 V4

g(C)

V5
V1 V2 V3 V4

(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).
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Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [?]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. ?? gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. ??(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
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4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
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Nonstationarity Helps 
Determine Causal Direction

• Independent changes in P(cause) and P(effect | cause); generally 
violated for wrong directions 

• Special cases: if                   , since             , we known 

•                      , if C ⫫ Vl  given a variable set excluding Vk

•                      , if C ⫫ Vl  given a variable set including Vk
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(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).

−2 0 2
−2

−1

0

1

2

X
1

X
2

(b) on data set 2

−2 0 2
−2

−1

0

1

2

X
1

X
2

(c) on both data sets

−2 0 2
−2

−1

0

1

2

X
1

X
2

(a) on data set 1

−2 0 2
−1

−0.5

0

0.5

1

X
1

Ê

(d) on both data sets

Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent

4

V1 V2 V3 V4

C

V5
V1 V2 V3 V4

(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).

−2 0 2
−2

−1

0

1

2

X
1

X
2

(b) on data set 2

−2 0 2
−2

−1

0

1

2

X
1

X
2

(c) on both data sets

−2 0 2
−2

−1

0

1

2

X
1

X
2

(a) on data set 1

−2 0 2
−1

−0.5

0

0.5

1

X
1

Ê
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4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [?]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. ?? gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. ??(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
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4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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• Independent changes in P(cause) and P(effect | cause); generally 
violated for wrong directions 

• Special cases: if                   , since             , we known 

•                      , if C ⫫ Vl  given a variable set excluding Vk

•                      , if C ⫫ Vl  given a variable set including Vk

θ5(C)

V1 V2 V3 V4

g(C)

V5
V1 V2 V3 V4

(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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Causal Analysis of Major Stocks in 
NYSE (07/05/2006 - 12/16/2009)

Fig. 8: Recovered causal graph from 80 NYSE stocks. Each
color of nodes represents one sector.

while the stocks SAN and CHK only have changes points
around 05/05/2008 (T2). Most stocks which have change
points only at T2 have more direct causes. The change points
match with the critical time of financial crisis–those in the
TED spread, as well as parts of the change points (T2 and T3)
in HK stock data.
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Fig. 9: The estimated nonstationary driving force of six stock
returns from 07/05/2006 ⇠ 12/16/2009. The stocks USB, JCP,
GE, and PBR have change points at 07/16/2007 (T1) and
05/05/2008 (T2) . The stocks SAN and CHK have change
points only at 05/05/2008 (T2). The change points match with
the critical time of financial crisis.

VI. CONCLUSION

Causal discovery has been an important tool to discover
underlying causal information from observational data. In
real world applications, especially with data collected over a
relatively long time or across different conditions, successful

causal discovery has to deal with nonstationarity or heteor-
geneity of the data. In this paper we proposed nonparametric
methods for estimating the underlying driving force of the
change in the local causal mechanisms and for determining
causal direction by leveraging distribution shift. The discov-
ered causal direction helps construct correct causal models
and, moreover, the estimated nonstationary driving force of
the changes in the causal mechanisms facilitates understanding
why and how the generating process changes and gives sug-
gestions about what variables to further incorporate into the
system to make it causally sufficient. Experimental results on
both synthetic and real data (including fMRI data and financial
data) demonstrated that the distribution shift property contains
reliable information for causal direction determination and that
the estimated nonstationary driving force provides essential
background knowledge for causal modeling of the observed
variables. We note that causal modeling and distribution shift
are heavily coupled and that distribution shift actually contains
useful information for causal direction determination. A line
of our future research is to exploit this connection to improve
online prediction in nonstationary environments.
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• Causal graphical models 
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• Counterfactual reasoning 

• Causal discovery 

• Implications in machine learning
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Domain Adaptation (or Transfer 
Learning)

target 
(test)

source 
(training)• Traditional 

supervised 
learning:         

• Might not be the 
case in practice:

P te
XY = P tr

XY

(xtr, ytr) xte

Causal model Y→X

Prob. model P(1)(X,Y), P(2)(X,Y), P(3)(X,Y), ... P(k)(X,Y)...
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Possible Situations for Domain 
Adaptation: When Y→X (Zhang et al., 2013)

• Y is usually the cause of X 
(especially for classification)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

involved parameters estimated by matching PX

Zhang et al., ICML 2013;  Zhang et al., AAAI 2015;  Gong et al., ICML 2016; 
Stojanov et al.,  AISTATS 2018;  Zhao et al., ICML 2019;  Fu et al., CVPR 2019…
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(especially for classification)
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- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:
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• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte
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? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
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Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

Domain Adaptation under Target and Conditional Shift
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Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift
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Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)
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Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:
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(X,Y )⇠P te
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[l(x, y, ✓)] = E
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,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1
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tr
i )l(xtri , y
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• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
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? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
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Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:
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Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y
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), ..., wd(Y

tr
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) =
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• Identifiability: Under certain conditions on Ptr
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traning data to reproduce Pte
X , i.e., by minimizing
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(wi,bi)
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift (ConS)

involved parameters estimated by matching PX

Zhang et al., ICML 2013;  Zhang et al., AAAI 2015;  Gong et al., ICML 2016; 
Stojanov et al.,  AISTATS 2018;  Zhao et al., ICML 2019;  Fu et al., CVPR 2019…



Possible Situations for Domain 
Adaptation: When Y→X (Zhang et al., 2013)

• Y is usually the cause of X 
(especially for classification)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =
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X ]� µ̂[Pte
X ]
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�|⌦K̃� � 2
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x
2

 

 
class 1 (training)

class 2 (training)

class 1 (test)

class 2(test)

boundary (train. data) 

boundary by TarS

Ptr(class 1)=0.6

Pte(class 1)=0.2

0

2

4

6

8

10

12

14

Unweighted
CovS EM

Tar
S

LS−
GeTa

rS

With oracle beta

Oracle test data

C
la

ss
ifi

ca
tio

n 
er

ro
r (

%
)

Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
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whose empirical version is (Kc
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and
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mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
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), ..., bd(Y
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)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
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where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
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Y ], Pnew
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Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift (ConS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Generalized target shift (GeTarS)

involved parameters estimated by matching PX

Zhang et al., ICML 2013;  Zhang et al., AAAI 2015;  Gong et al., ICML 2016; 
Stojanov et al.,  AISTATS 2018;  Zhao et al., ICML 2019;  Fu et al., CVPR 2019…



Possible Situations for Domain 
Adaptation: When Y→X (Zhang et al., 2013)

• Y is usually the cause of X 
(especially for classification)

P te
X

helps
find
P te
Y |X

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift (ConS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Generalized target shift (GeTarS)

involved parameters estimated by matching PX

Zhang et al., ICML 2013;  Zhang et al., AAAI 2015;  Gong et al., ICML 2016; 
Stojanov et al.,  AISTATS 2018;  Zhao et al., ICML 2019;  Fu et al., CVPR 2019…



Application: Remote Sensing 
Image Classification

Domain Adaptation under Target and Conditional Shift

selected data set No. 68, since 1) the data are non-
stationary time series, 2) there is a strong dependence
between the two variables so that one can be predicted
non-trivially by the other, and 3) the variables are be-
lieved to have a direct causal relation, so that the in-
variance of the conditional distribution of one variable
(e�ect) given the other (cause) is likely to hold approx-
imately. Fig. 6 (top) showing the time series as well
as the joint distribution. Here X and Y stand for the
number of bytes sent by a computer at the tth minute
and the number of open http connections at the same
time, respectively. It is natural to have the causal re-
lation Y � X. One subsample was always used for
training, because on it Y has large values. The re-
maining data were divided into four subsets, and each
time one of them was used for test and the others in-
cluded for training.

Fig. 6 (bottom) shows the estimated �⇥ values on the
four test sets; they match P te

Y well. Table 2 gives the
MSE on the four test sets produced by di�erent ap-
proaches. Note that to achieve robustness of the pre-
diction result, we incorporated an exponent q for �⇥ as
the importance weights, as in correction for CovS with
importance re-weighting (Shimodaira, 2000). q = 1
(i.e., the proposed standard approach) and q = 0.5
were used. From Table 2 one can see TarS gives the
best results on all four test sets.
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Figure 6. Prediction results on Pair 68 of the cause-e�ect
pairs. Top: time series data of X and Y (left, shifted apart
for clarity) and the joint distribution (right). Bottom: es-
timated �� values on the four test sets.

Table 2. Prediction performance (MSE) on test sets.

Test set Unweight. CovS CovS (q = 0.5) TarS TarS (q=0.5)
1 0.3789 0.3844 0.3802 0.3310 0.3229
2 0.0969 0.1126 0.1071 0.0937 0.0887
3 0.0578 0.0673 0.0659 0.0466 0.0489
4 0.2054 0.2126 0.2136 0.2008 0.1630

7.2. Remote Sensing Image Classification

Hyperspectral remote sensing images are characterized
by a dense sampling of the spectral signature of dif-
ferent land-cover types. We used a benchmark data
set in the literature which consists of data acquired by

the Hyperion sensor of the Earth Observing 1 (EO-1)
satellite in an area of the Okavango Delta, Botswana,
with 145 features; for details of this data set, see (Ham
et al., 2005). The labeled reference samples were col-
lected on two di�erent and spatially disjoint areas
(Area 1 and Area 2), thus representing possible spa-
tial variabilities of the spectral signatures of classes.
The samples taken on each area were partitioned into
a training set TR and a test set TS by random sam-
pling. The numbers of labeled reference samples for
each set and class are reported in Table 6. TR1, TS1,
TR2, and TS2 have sample sizes 1242, 1252, 2621, and
627, respectively. One would expect that not only the
prior probabilities of the classes Y , PY , but also PX|Y
would change across the two domains, due to physical
factors related to ground (e.g., di�erent soil moisture
or composition), vegetation, and atmospheric condi-
tions. Our target is to do domain adaptation from
TR1 to TS2 and from TR2 to TS1.

Table 3. Number of training (TR1 and TR2) and test (TS1

and TS2) patterns acquired in the two spatially disjoint
areas for the experiment on remote sensing image classifi-
cation.

Class
Number of patterns
Area 1 Area 2

TR1 TS1 TR2 TS2

Water 69 57 213 57
Hippo grass 81 81 83 18
Floodplain grasses1 83 75 199 52
Floodplain grasses2 74 91 169 46
Reeds1 80 88 219 50
Riparian 102 109 221 48
Firescar2 93 83 215 44
Island interior 77 77 166 37
Acacia woodlands 84 67 253 61
Acacia shrublands 101 89 202 46
Acacia grasslands 184 174 243 62
Short mopane 68 85 154 27
Mixed mopane 105 128 203 65
Exposed soil 41 48 81 14
Total 1242 1252 2621 627

After estimating the weights and/or transformed
training data (with ⇥LS = 10�4), we applied the multi-
class classifier with a RBF kernel on the weighted or
transformed data. Hyperparameters were selected by
cross-validation. Table 4 shows the overall classifica-
tion error (i.e., the fraction of misclassified points) ob-
tained by di�erent approaches for each domain adap-
tation problem. We can see that in this experiment,
correction for target shift does not significantly im-
prove the performance; in fact, the estimated � values

• Two domains (area 1 & area 2)
• 14 classes Domain Adaptation under Target and Conditional Shift

for most classes are rather close to one. However, cor-
rection for conditional shift with LS-GeTarS substan-
tially reduces the overall classification error in both
cases.

Table 4. A misclassification rate on remote sensing data set

under di�erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS
TR1 � TS2 20.73% 20.73% 20.41% 11.96%
TR2 � TS1 26.36% 25.32% 26.28% 13.56%

8. Conclusion and Discussions

We have considered domain adaptation where both the
distribution of the covariate and the conditional distri-
bution of the target given the covariate change across
domains. From the causal point of view, we assume the
target causes the covariate, such that the change in the
the data distribution can be modeled easily. In par-
ticular, we studied three situations, target shift, con-
ditional shift, and generalized target shift which com-
bines the above two situations. We presented practical
approaches to handle them based on the kernel mean
embedding of conditional and marginal distributions.
Simulations were conducted to verify our theoretical
claims, and experimental results on diverse real-world
problems, showed that (generalized) target shift often
happens in domain adaptation, and that the proposed
approaches could substantially improve the classifica-
tion or regression performance.
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target shift

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(c) Classification
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

Zhang et al., Domain adaptation under target and conditional Shift, ICML 2013



What Features/Components to Transfer?

  

• Invariant/transferrable causal mechanism (Zhang et al., 2013; 2014; 
Gong et al, 2016): invariance of P(Xct | Y) 

• Nonparametric transfer learning (Stojanov et al.2018a,b; Gong et 
al., 2018 & 2020; Zhang et al., 2020) 

• Detect, model, utilize changes

Gong, Zhang et al., Domain adaptation with conditionally transferable components, ICML 2016
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5.4 Prediction

5.5 A More General Framework Suitable for Large Data

If one ignores its specific structure and consider it as a network, Fig. 2 actually
takes Y,E1, E2,✓1,✓2 as input and outputs (X1, X2). This can be seen as a
particular type of GAN for domain adaptation, in which the parameters are
used to capture the variability across domains... Generally speaking, however,
this requires a larger sample size to estimate the network and the values of the
parameters ✓1,✓2 for di↵erent domains...
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Causality & Transferability

• Causality helps

• One may find causal structure 
under rather strong assumptions

• But do we have to go to the causal 
level to achieve transferability?

• Think about classical conditioning
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• Causality helps

• One may find causal structure 
under rather strong assumptions

• But do we have to go to the causal 
level to achieve transferability?

• Think about classical conditioning

135

• “If a particular stimulus in the 
dog's surroundings was present 
when the dog was given food 
then that stimulus could 
become associated with food 
and cause salivation on its 
own.”



Automated Domain Adaptation

• Discover properties of  changes from source domain 

• Represent them with an augmented graph 

• Domain adaption is just a problem of  inference on this 
graphical model

Data set 1
Data set 2

Data set n

...

       
 
           

Zhang, Gong, et al., Domain adaptation as a problem of inference on graphical models,  Arxiv 2020
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edges, such a “supernode" can be considered as a chain component of the chain graph [34], and the145

joint distribution can be factorized as a “DAG of chain components".) For instance, for the digit146

recognition problem, one can view the pixels of the digit image as such a “supernode" in the graph.147

Finally, as discussed above, for the purpose of predicting Y , we only need to exploit the conditional148

distributions of Y and its children. Hence, in practice one may not need to find the whole graph over149

all features and Y . This observation may accelerate the procedure of learning the augmented graph,150

which will be discussed in Section 3.1.151

2.1.1 Relation to Causal Graphs152

X4X2 X6YX1

X3 X7X5

✓1 ✓Y ✓2✓3 ✓6

mi

Figure 1: An augmented DAG over Y and Xi. For any vari-
able V with a ✓ variable/vector as its parent, the conditional
distribution P (V |PA(V )) may change across domains. The
✓ variables take the same value within each domain.

If the causal graph underlying the ob-153

served data is known, there is no con-154

founder (hidden direct common cause155

of two variables), and the observed156

data are perfect random samples from157

the populations implied by the causal158

model, then one can directly benefit159

from using the causal model for trans-160

fer learning, if it is known, as shown161

in [35, 14, 36]. If fact, in this case our162

graphical representation will encode163

the same set of conditional indepen-164

dence relations as the original causal model.165

It is worth noting that the causal model, on its own, might not be sufficient to explain the properties of166

the data, for instance, because of selection bias [37], which is often present in the sample. Furthermore,167

it is notoriously difficult to find causal relations based on observational data; to achieve it, one often168

has to make rather strong assumptions on the causal model (such as faithfulness [38]) and sampling169

process. On the other hand, it is rather easy to find the graphical model purely as a description of170

conditional independence relationships in the variables as well as the properties of changes in the171

distribution modules. The underlying causal structure may be very different from the augmented DAG172

we adopt. For instance, let Y be disease and X the corresponding symptoms. It is natural to have Y173

as a cause of X . Suppose we have data collected in difference clinics (domains) and that subjects are174

assigned to different clinics in a probabilistic way according to how severe the symptoms (X) are.175

Then one can see that across domains we have changing P (X) but a fixed P (Y |X) and, accordingly,176

in the augmented DAG has a directed link from X to Y , contrary to the causal direction. For detailed177

examples as well as the involved causal graphs and augmented DAGs, please see Appendix.178

2.2 Inference on Augmented Graphical Models for DA179

We now aim to predict the value (or the distribution) of Y given the observed features x⌧ in the target180

domain, which is about P (Y⌧
|x⌧ ), where Yt is the concatenation of Y across all data points in181

the target domain. To achieve so, we have several issues to address. First, which features should182

be included in the prediction/inference procedure? Second, as illustrated in Figure 1, a number of183

distribution factors change across domains, indicated by the links from the ✓ variables, and it is not184

necessary to consider all of them for the purpose of DA–which changing factors should be adapted to185

the target-domain data? Third, for all data in the same domain the ✓ variables take the same value.186

It is then necessary to properly take into account this “parameter sharing" property in the inference187

procedure.188

Let us first show the general results on calculation of P (Y⌧
|x⌧ ), based on which prediction in189

the target domain is made. We then discuss how to simplify the estimator, thanks to the specific190

augmented graphical structure over X and Y . As the data are I.I.D. given the values of ✓, we know191

P (x,y |✓) =
Q

k P (xk, yk |✓) and P (x |✓) =
Q

k P (xk |✓). Also bearing in mind that the value192

of ✓ is shared within the same domain, we have193
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Summary

• Why causality? Why causality? 

• Causal inference 

• Different types of  “independence” helps in causal discovery: 

• Conditional independence: constraint-based approach 

• Cause ⫫ noise in constrained FCMs ⇒ causal asymmetry 

• Independent changes in P(cause) and P(effect | cause) 

• Confounding, selection bias, temporal info… 

• Transfer learning: compact description of  changes 

• Modularity, independent changes…


