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Probabilistic Graphical Models

Modeling networks:
Gaussian graphical models and Ising models:

Eric Xing
Lecture 16, March 18, 2020

Reading: see class homepage



% Knowledge and Graphical Models

o Knowledge --> Structure
o Expert systems

o Gaussian mixtures, HMM, Deep Belief Networks, ...

https://www.bnlearn.com/bnrepository/discrete-medium.html
https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model fig8 323003973
https://commons.wikimedia.org/w/index.php?curid=4352728
https://medium.com/@icecreamlabs/deep-belief-networks-all-you-need-to-know-68aa9a71cc53
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https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model_fig8_323003973
https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model_fig8_323003973
https://commons.wikimedia.org/w/index.php?curid=4352728
https://medium.com/@icecreamlabs/deep-belief-networks-all-you-need-to-know-68aa9a71cc53

Knowledge and Graphical Models

o So far: Knowledge --> Structure
o Encode human knowledge to GMs to model data

a Today: Knowledge <-- Structure
o Estimate graph from data to provide knowledge to human
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/
{/ Structure Learning: Big Picture

a Tree vs Non-tree:
a [ree:
o Polynomial time algorithm: Chow-Liu

a General graph:
o NP-hard. Many approximation/heuristics.

o Directed vs Undirected:
a Directed (Bayesian networks):
o Causal discovery (next week)
o Undirected (Markov networks):
o Gaussian graphical models, Ising models (today)



/ Network Research

Regulatory Network

Internet

Social Network

5
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/ Where do networks come from?

4 The JeSUS network Adam - jydan
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Evolving networks

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

effords

March 2005 January 2006 August 2006
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volving networks
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Recall: ML Structural Learning

for completely observed
GMs




; Two “Optimal” approaches

o “Optimal” here means the employed algorithms guarantee to return a
structure that maximizes the objectives (e.g., LogLik)

o Many heuristics used to be popular, but they provide no guarantee on
attaining optimality, interpretability, or even do not have an explicit objective

o E.g.: structured EM, Module network, greedy structural search, etc.

o We will learn two classes of algorithms for guaranteed structure learning,
which are likely to be the only known methods enjoying such guarantee,
but they only apply to certain families of graphs:

a Trees: The Chow-Liu algorithm (lecture 3)
o Pairwise MRFs: covariance selection, neighborhood-selection (this lecture)



4

Key Idea: network inference as parameter estimation
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Model:
Pairwise Markov Random Fields

1
p(x1, T2, T3, T4) = 7 exp{f1x1 + oy + O313 + 424 +

o120 + 0132123 + Oo3zos + O342314 }

a Nodal states can be either discrete (Ising/Potts model), or continuous
(Gaussian graphical model), or heterogeneous

o the parameter matrix encodes the graph structure
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% Recall Multivariate Gaussian

o Multivariate Gaussian density:
p(x|u,2)=

(272.)/7/2‘2‘1/2 CXp{-%(X—IU)TZ_I(X-/J)}

a2 WOLG: let p=0 Q=x""

1/2
p(x, %y, x, | 1£=0,0) =(§T),7/2€Xp{-§2qﬁ(xi)2 _Zqijxixj}
l i<j

o We can view this as a continuous Markov Random Field with potentials
defined on every node and edge:



Gaussian Graphical Model

Cell type

X ~ N0, =)

P ————

Microarray
samples

—_—

Encodes dependencies
among genes



; Precision Matrix Encodes Non-Zero Edges in Gaussian
Graphical Modela

o) _ (Em)‘l

‘

Edge corresponds to non-
zero precision matrix
element




% Markov versus Correlation Network

QA Correlation network is based on Covariance Matrix
Ei’j = 0 — )(ZJ_)Cj or p(Xz,Xj) = p(X%)p(Xj)

Q A GGM is a Markov Network based on Precision Matrix

Q Conditional Independence/Partial Correlation Coefficients are a more sophisticated
dependence measure

Qi; =0 = X LX;|X_;; or p(X;, X;X_ij) = p(X:|X_i;)p(X;|1X_i5)

(

) L2 T3

T1 L4

¥ OO O 0O

O % % ¥ ¥ ¥
O % % % % %
O OO % % %
OO % O % *
O x OO % *

\ / 26 O

With small sample size, empirical covariance matrix cannot be inverted
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% Sparsity

o One common assumption to make: sparsity

o Makes empirical sense: Genes are only assumed to interface with small
groups of other genes.

o Makes statistical sense: Learning is now feasible in high dimensions
with small sample size

Q) _ <2<n>>

1

sparse



% Network Learning with the LASSO

o Assume network is a Gaussian Graphical Model

o Perform LASSO regression of all nodes to a target node

59,
513’ 14/ 61:)’
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% Network Learning with the LASSO

o LASSO can select the neighborhood of each node
B1 = argming, [|Y — XB1 > + Al|B1 s

‘ 515‘

®
o
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/
{/ L1 Regularization (LASSO)

o A convex relaxation.

Constrained Form Lagrangian Form
B = argming||Y — X3|* B = argming|[Y — XB|* + A[|B]1
subject to:

p
Y 1Bl <cC
j=1

o Enforces sparsity! ﬂ




/
{/ Theoretical Guarantees

o Assumptions
o Dependency Condition: Relevant Covariates are not overly dependent
o Incoherence Condition: Large number of irrelevant covariates cannot be too
correlated with relevant covariates
o Strong concentration bounds: Sample quantities converge to expected values

quickly

If these are assumptions are met, LASSO will asymptotically recover
correct subset of covariates that relevant.

© Eric Xing @ CMU, 2005-2020 21 g
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% Network Learning with the LASSO

o Repeat this for every node
o Form the total edge set g — {(u,v) ; maX(|ﬁuv|, |ﬁw|) > 0}

e

o

2@




/

(/ Consistent Structure Recovery
[Meinshausen and Buhlmann 2006, Wainwright 2009]

oA, > C\/logp

Then with high probability,

A

S(B) = S(B7)



Why this algorithm work?

o What is the intuition behind graphical regression?
o Continuous nodal attributes
o Discrete nodal attributes

a Are there other algorihtms?

o More general scenarios:
non-iid sample and evolving networks

o Case study



% Multivariate Gaussian

o Multivariate Gaussian density:
p(x|p,2) =

explL(x- 1) T (x- )

(272_),7/2‘2‘1/2
o A joint Gaussian:

X1 _ X4 | |2 2
p({leuj)_% (L‘j Llj,{zzl sz)

o How to write down p(x;), p(x4|x5) or p(x,|x4) using the block elements in u

and X7
o Formulas to remember:

p(x;) =7 (x,|m3,V;") p(XI‘XZ) =7 (x |m1|2,V1|2)
m; = b, my, =4 + 2122\512 (X — )
V' =%z Vi =2y _2122512221



% The matrix inverse lemma

E
o Consider a block-partitioned matrix: M= @

o First we diagonalize M

| -FH'||E F|| I 0| |EFH'G 0
o I ||G H||-H'G I| 0 H
_ -1
a Schur complement: M/H = E-FH"G
. . . _ 1 1
a Then we inverse, using this formula: XYZ=W = Y =ZW"X
yio |[EF 01 of(mmE) o 1 -FH?

|G H| |-H'G I| o H'|0 I
| (mE) (M/H)'FH _|E'+E'F(M/E)'GE" -E"F(M/E)"
|-H'G(MH)' H'+HG(M/H) ' FH” (M/E) GE" (ME)

o Matrix inverse lemma
(E-FH'G)' =E™ + E"F(H-GE"F) ' GE"



/
ﬁ The covariance and the precision matrices

y_ |:O-11 53}
o, X
U

[y (M/H ) (M/HY'FH
H'G(M/H)' H'+H'G(M/H)'FH"

U

0= { qn 'Q1151TZ—1_1 } _ {%1 q, }
'%12—1_151 2—1_1 (I+CI115-151TZ—1_1) q 0.,



P(X1‘X2) =7 (x4 |m1|2,V1|2)

_ -1 B
Single-node Conditional My —”1”122221("2 He)
V1|2 =2y — Lpplpplip

o The conditional dist. of a single node i given the rest of the nodes can be
written as:

p(Xi| X)) = N (i + E‘Y,-X_;E_l_,-}{_i (X — fix_.),
Yxox, — BxxoEx x Bxox)

o WOLG: let p=>0

p(X,,lX_;) — N(EYX Eil ,'X_,'X_f" Zl’iﬂxi - EXEX—EE}_{I_,[X_,[EX—iXF)

0= 41 'q“otlTZ—lil }:|:Q11 %T}
'%12—1715'1 2—171 I+q115-16-1Tz—171 g, _ 0,
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/
ﬁ Conditional auto-regression

a From .
I
— i

p(Xi|X) = N

—19 qf|—:')

o We can write the following conditional auto-regression function for each
node:

o Neighborhood est. based on auto-regression coefficient



Conditional independence

o From 7
p(XiX ) = N( ;

— (i

X_;. f}n']

a Given an estimate of the neighborhood s;, we have:
p(XilX=) = p(XilXs)

o Thus the neighborhood s; defines the Markov blanket of node i



4 Trends in GGM:

o Covariance selection (classical method) o Ls-regularization based method

o Dempster [1972]: o Meinshausen and Buhlmann [Ann. Stat. 06]:
o Sequentially pruning smallest elements in o Used LASSO regression for neighborhood
precision matrix selection
o Drton and Perlman [2008]: o Banerjee [JMLR 08]:
o Improved statistical tests for pruning o Block sub-gradient algorithm for finding

precision matrix
o Friedman et al. [Biostatistics 08]:

o Efficient fixed-point equations based on a sub-
gradient algorithm

Serious limitations in

practice: breaks down when

covariance matrix is not Structure learning is possible

invertible even when # variables > # O
samples

© Eric Xing @ CMU, 2005-2020 31 Lg



/
{/ The Meinshausen-Buhimann (MB) algorithm:

o Solving separated Lasso for every single-vatiables:
L1, L2y *=*y 1| Ty L4+1, " Lp

Step 1: Pick up one variable

Z — xlr x21 R xk—11 xk—'—lv Tty :Up

Step 2: Think of it as “y”, and the rest as

The resulting
: coefficient does not
Step 3: Solve Lasso regresfsion problem bg¢tween y and z correspond to the Q
value-wise

y=20"z

Step 4: Connect the k-th node to those having nonzero weight in w

© Eric Xing @ CMU, 2005-2020
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L,-regularized maximum likelihood learning

o Input: Sample covariance matrix S Si; =

o Assumes standardized data (mean=0, variance=1
o Sis generally rank-deficient
o Thus the inverse does not exist

a Output: Sparse precision matrix Q
o Originally, Q is defined as the inverse of S, but not directly invertible
o Need to find a sparse matrix that can be thought as of as an inverse of S

L -

N Y v .
log likelihood In ] M (z®]0,Q~1)  regularizer
o t=1 . . . .
o Approach: Solve an L4-regularized maximum likelihood equation



/
/ From matrix opt. to vector opt.:
coupled Lasso for every single Var.

o Focus only on one row (column), keeping the others constant

L 1

Q=1,7

I |

o Optimization problem for blue vector is shown to be Lasso (Ls-regularized quadratic
programming)

o Difference from MB’s: Resulting Lasso problems are coupled

o The gray part is actually not constant; changes after solving one Lasso problem (because it is the opt of
the entire Q that optimize a single loss function, whereas in MB each lasso has its own loss function..

o This coupling is essential for stability under noise

© Eric Xing @ CMU, 2005-2020 34 g
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/
f Learning Ising Model
(i.e. pairwise MRF)

o Assuming the nodes are discrete (e.g., voting outcome of a person), and
edges are weighted, then for a sample x, we have

P(Xl("‘)) — CXD(ZHLZE-;%' Z Qij.‘fﬂlj—ﬂ(e))

eV (i,j)EE

o |t can be shown the pseudo-conditional likelihood for node Kk is

Py (z|2\1) = logistic (2zx (O\x, T\x))



/
(/ Question: vector-valued nodes



New Problem:
Evolving Social Networks

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

r

March 2005 January 2006 August 2006

© Eric Xing @ CMU, 2005-2020
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/

{/ Reverse engineering time-specific "rewiring" networks




/ Inference |

[Song, Kolar and Xing, Bioinformatics 09]

o KELLER: Kernel Weighted L;-regularized Logistic Regression
Pt = arg min Lo (60) + M| € || Wt
g!

2

where [,(6!) = 3,_, w(x";x")log P(x!|x",,6!).

_ L _ ) = al‘glninz'y(x(”);ﬂ)+,\1||t9||
o Constrained convex optimization Al

o Estimate time-specific nets one by one, based on "virtual iid" samples
o Could scale to ~10% genes, but under stronger smoothness assumptions

| | 1
P

© Eric Xing @ CMU, 2005-2020 39 g



Algorithm — nonparametric neighborhood selection

o Conditional likelihood

Py: (2]a;) = logistic (27 (6}, 2\;))

o Neighborhood Selection: S(z;)={j | 0. #0}
o Time-specific graph regression:
o Estimate at £ €0, 1]
ﬁetﬁ;{lpirlll_l {— Z wi(t*)y(0;; 2°) + A |]'9r||1}
Where et
v(0i:2") = log Py (] 2\,)
and *

ﬁrh-n (t T t*]

weltT) =
!'.-':t( ) ZUETH Krhn (t'r . '{L*)




Structural consistency of KELLER

Assumptions

o Define: . _ .
s =maxmax |S, |, Oy = minmax|¢|
u t ecE

o A1l: Dependency Condition
Amin(Qg ) >0 min Vit ks [(] 1]
Amax () < Dpax,  Vt € [0,1]
o A2: Incoherence Condition Ja € (0,1] such that

OLl0 <1—-a V20,1
o A3: Smoothness COﬂdI’[‘Il 2rs(Q5s) | |

max sup |l (t%)] < Ao, max sup le” 1%)] = A

u,v

uv uv

. IMax sup i) £ B max su) i <B
o A4: Bounded Kernel ~ "axsup [0, (#)] < B, 1P |00, (£)]

AM > 1 max | K (2)| < M max K(2)? < My
zE

z€R

Q,:=E [vg log Py [X.“|X\u]] ; VueV ¥, =E [A\uX\u } ’

YueV

© Eric Xing @ CMU, 2005-2020
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% Theorem

[Kolar and Xing, 09]

Assume that Al. A2, A3, A4 hold. Furthermore. assume
that the following conditions hold:

2

2.

5!

then

L=

h, =QO(n~3)

Gl =011 ),

a: log pu
nhy

= o(1)

logp)

s h T

_r { s, log py,
= El( nhy J

Xi =0

93

min

P |G(A, ha,t) # G| =

@, (exp (—

nh.,,
C'I

5.‘:‘1

g

+ ' log p)) — 0

© Eric Xing @ CMU, 2005-2020
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4 Inference |l

[Amr and Xing, PNAS 2009, AOAS 2009]

o TESLA: Temporally Smoothed L;-regularized Iogistic regression

#n

9}6’? = arg mm Zim, (6)
+A1 Z (i
t=1
T
+Ao > || 6 — 0L
t=2

where [,.,(0%) = & Y- 110 P(xf x4 ;. 0).

o Constrained convex optimization
o Scale to ~5000 nodes, does not need smoothness assumption, can accommodate abrupt changes.

© Eric Xing @ CMU, 2005-2020 43 g
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% Temporally Smoothed Graph Regression

T T .
' S SCAES) T'a’ + STy
TESLA: M A0 hp Tusa) 1y

1.|| LIII"I-" "‘u"
8.1 ‘:jﬁ_iﬂfJﬂur = LTV e Vi,
st —wp, <0 -0 < f:‘Z.....!.‘v‘JEV\L



{/ Modified estimation procedure

o estimate block partition on which the coetfficient functions are constant

mmZ(Y XB(t:))’ +2)\22 1Belloy *)

=1
o estimate the coefficient functions on each block of the partition

min 3 (¥ — Xi7)2 + 2 [Ivll; (™)

GRP
TR e



; Structural Consistency of TESLA

a
a

[Kolar, and Xing, 2009]

It can be shown that, by applying the results for model selection of the
Lasso on a temporal difference transformation of (*), the block are
estimated consistently

Then it can be further shown that, by applying Lasso on (**), the
neighborhood of each node on each of the estimated blocks
consistently

Further advantages of the two step procedure
choosing parameters easier
faster optimization procedure



% Senate network — 109" congress

a Voting records from 109th congress (2005 - 2000)

o There are 100 senators whose votes were recorded on the 542 bills,
each vote Is a binary outcome



Senate network — 109" congress

March 2005 January 2006

August 2006

© Eric Xing @ CMU, 2005-2020
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% Senator Ben Nelson




(/ Progression and Reversion of Breast Cancer cells

S1 (normal) (o ~(e)—-"---
9

O
T4 (malignant O “
( J ) O%OOOO

T4 revert 1

T4 revert 3

,7

T4 revert 2



/
(/ Estimate Neighborhoods Jointly Across All Cell Types

How to share information
across the cell types?




{/ Sparsity of Difference

Penalize differences between networks of adjacent cell types

STLED s

620
H 9T4R1 9T4 H . 25 o 9T4R3 9T4 H
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9/ 9/
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% Tree-Guided Graphical Lasso (Treegl)

RSS for all cell types

) : 2
6(1) 5 H(n) — a]_on_llll ( 72 8 B(TL n S)
\u N 9‘ ..... (n) nZ:l Z \u \u )
+)\1 Z H@(ﬂ 1+ A Z ||9(n) (“("))” )
71—
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/ Network Overview
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Interactions — Biological Processes

T4 cells: Increased Cell Proliferation,

S1 cells ; :
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/" Interactions — Biological Processes

T4 cells MMP-T4R cells:

Significantly reduced
Y interactions 2

biological régulation

© Eric Xing @ CMU, 2005-2020
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Interactions — Biological Processes
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% Fancier network est. scenarios

o Dynamic Directed (auto-regressive) Networks
[Song, Kolar and Xing, NIPS 2009] DR

o Missing Data

[Kolar and Xing, ICML 2012]

a Multi-attribute Data ‘ - s \

[Kolar, Liu and Xing, JMLR 2013] -4

bcd -
S g.n
- hb
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% Summary

« Graphical Gaussian Model
« The precision matrix encode structure
« Not estimatable when p >>n

« Neighborhood selection:
« Conditional dist under GGM/MRF
« Graphical lasso
« Sparsistency

o Time-varying Markov networks
. Kernel reweighting est.
« Total variation est.



