
Probabilistic Graphical Models

Modeling networks: 
Gaussian graphical models and Ising models:
Eric Xing
Lecture 16, March 18, 2020

© Eric Xing @ CMU, 2005-2020 1
Reading: see class homepage



Knowledge and Graphical Models

q Knowledge --> Structure
q Expert systems
q Gaussian mixtures, HMM, Deep Belief Networks, …
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https://www.bnlearn.com/bnrepository/discrete-medium.html
https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model_fig8_323003973
https://commons.wikimedia.org/w/index.php?curid=4352728
https://medium.com/@icecreamlabs/deep-belief-networks-all-you-need-to-know-68aa9a71cc53

https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model_fig8_323003973
https://www.researchgate.net/figure/Worth-distribution-as-a-Gaussian-mixture-model_fig8_323003973
https://commons.wikimedia.org/w/index.php?curid=4352728
https://medium.com/@icecreamlabs/deep-belief-networks-all-you-need-to-know-68aa9a71cc53


Knowledge and Graphical Models

q So far: Knowledge --> Structure
q Encode human knowledge to GMs to model data

q Today: Knowledge <-- Structure
q Estimate graph from data to provide knowledge to human
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Structure Learning: Big Picture

q Tree vs Non-tree:
q Tree: 

q Polynomial time algorithm: Chow-Liu
q General graph: 

q NP-hard. Many approximation/heuristics.

q Directed vs Undirected:
q Directed (Bayesian networks): 

q Causal discovery (next week)
q Undirected (Markov networks): 

q Gaussian graphical models, Ising models (today)
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Social Network Internet Regulatory Network

Network Research
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Where do networks come from?

q The Jesus network
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Evolving networks
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March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,
Cliques,
…

over time?



…

t=1 2 3 T

Evolving networks
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Two “Optimal” approaches 

q “Optimal” here means the employed algorithms guarantee to return a 
structure that maximizes the objectives (e.g., LogLik)

q Many heuristics used to be popular, but they provide no guarantee on 
attaining optimality, interpretability, or even do not have an explicit objective

q E.g.: structured EM, Module network, greedy structural search, etc. 

q We will learn two classes of algorithms for guaranteed structure learning, 
which are likely to be the only known methods enjoying such guarantee, 
but they only apply to certain families of graphs:

q Trees: The Chow-Liu algorithm (lecture 3)
q Pairwise MRFs: covariance selection, neighborhood-selection (this lecture)      

© Eric Xing @ CMU, 2005-2020 10



x1

x2

x3

x4

x1

x2

x3

x4
ß

Key Idea: network inference as parameter estimation
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Model: 
Pairwise Markov Random Fields

q Nodal states can be either discrete (Ising/Potts model), or continuous 
(Gaussian graphical model), or heterogeneous 

q the parameter matrix encodes the graph structure
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Recall Multivariate Gaussian

q Multivariate Gaussian density:

q WOLG:  let

q We can view this as a continuous Markov Random Field with potentials 
defined on every node and edge:
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Cell type

Microarray 
samples Encodes dependencies 

among genes

Gaussian Graphical Model
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Edge corresponds to non-
zero precision matrix 
element

Precision Matrix Encodes Non-Zero Edges in Gaussian
Graphical Modela
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With small sample size, empirical covariance matrix cannot be inverted

Markov versus Correlation Network

q Correlation network is based on Covariance Matrix

q A GGM is a Markov Network based on Precision Matrix
q Conditional Independence/Partial Correlation Coefficients are a more sophisticated 

dependence measure
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Sparsity

q One common assumption to make: sparsity

q Makes empirical sense: Genes are only assumed to interface with small 
groups of other genes.

q Makes statistical sense: Learning is now feasible in high dimensions 
with small sample size
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Network Learning with the LASSO

q Assume network is a Gaussian Graphical Model

q Perform LASSO regression of all nodes to a target node
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Network Learning with the LASSO

q LASSO can select the neighborhood of each node
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L1 Regularization (LASSO)

q A convex relaxation.

q Enforces sparsity!
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Constrained Form Lagrangian Form
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Theoretical Guarantees

q Assumptions
q Dependency Condition: Relevant Covariates are not overly dependent
q Incoherence Condition: Large number of irrelevant covariates cannot be too 

correlated with relevant covariates
q Strong concentration bounds: Sample quantities converge to expected values 

quickly 
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If these are assumptions are met, LASSO will asymptotically recover 

correct subset of covariates that relevant.



Network Learning with the LASSO

q Repeat this for every node
q Form the total edge set 
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If 

Then with high probability, 

Consistent Structure Recovery
[Meinshausen and Buhlmann 2006, Wainwright 2009]
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Why this algorithm work?

q What is the intuition behind graphical regression?
q Continuous nodal attributes
q Discrete nodal attributes

q Are there other algorihtms?

q More general scenarios: 
non-iid sample and evolving networks

q Case study
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Multivariate Gaussian

q Multivariate Gaussian density:

q A joint Gaussian: 

q How to write down p(x2), p(x1|x2) or p(x2|x1) using the block elements in µ
and S?

q Formulas to remember:
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The matrix inverse lemma

q Consider a block-partitioned matrix:

q First we diagonalize M

q Schur complement:
q Then we inverse, using this formula:

q Matrix inverse lemma
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The covariance and the precision matrices
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Single-node Conditional 

q The conditional dist. of a single node i given the rest of the nodes can be 
written as:

q WOLG: let 
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Conditional auto-regression 

q From 

q We can write the following conditional auto-regression function for each 
node:

q Neighborhood est. based on auto-regression coefficient
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Conditional independence

q From

q Given an estimate of the neighborhood si, we have:

q Thus the neighborhood si defines the Markov blanket of node i
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q L1-regularization based method
q Meinshausen and Bühlmann [Ann. Stat. 06]: 

q Used LASSO regression for neighborhood 
selection

q Banerjee [JMLR 08]: 
q Block sub-gradient algorithm for finding 

precision matrix
q Friedman et al. [Biostatistics 08]: 

q Efficient fixed-point equations based on a sub-
gradient algorithm

q …

Trends in GGM:

q Covariance selection (classical method) 
q Dempster [1972]: 

q Sequentially pruning smallest elements in 
precision matrix

q Drton and Perlman [2008]: 
q Improved statistical tests for pruning
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Serious limitations in 
practice: breaks down when 
covariance matrix is not 
invertible

Structure learning is possible 
even when # variables � # 
samples



The Meinshausen-Bühlmann (MB) algorithm: 

q Solving separated Lasso for every single variables:
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Step 1: Pick up one variable

Step 2: Think of it as “y”, and the rest as “z”

Step 3: Solve Lasso regression problem between y and z

Step 4: Connect the k-th node to those having nonzero weight in w

The resulting 
coefficient does not 
correspond to the Q 
value-wise



L1-regularized maximum likelihood learning

q Input: Sample covariance matrix S

q Assumes standardized data (mean=0, variance=1)
q S is generally rank-deficient 

q Thus the inverse does not exist
q Output: Sparse precision matrix Q

q Originally, Q is defined as the inverse of S, but not directly invertible
q Need to find a sparse matrix that can be thought as of as an inverse of S 

q Approach: Solve an L1-regularized maximum likelihood equation
© Eric Xing @ CMU, 2005-2020 33

log likelihood regularizer



From matrix opt. to vector opt.:
coupled Lasso for every single Var.

q Focus only on one row (column), keeping the others constant

q Optimization problem for blue vector is shown to be Lasso (L1-regularized quadratic 
programming)

q Difference from MB’s: Resulting Lasso problems are coupled
q The gray part is actually not constant; changes after solving one Lasso problem (because it is the opt of 

the entire Q that optimize a single loss function, whereas in MB each lasso has its own loss function..
q This coupling is essential for stability under noise
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Learning Ising Model 
(i.e. pairwise MRF)

q Assuming the nodes are discrete (e.g., voting outcome of a person), and 
edges are weighted, then for a sample x, we have 

q It can be shown the pseudo-conditional likelihood for node k is 
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Question: vector-valued nodes
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New Problem: 
Evolving Social Networks
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March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,

Cliques,
…
over time?



T0 TN

…

Drosophila development

t*

n=1 or some small #

Reverse engineering time-specific "rewiring" networks
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Inference I

q KELLER: Kernel Weighted L1-regularized Logistic Regression

q Constrained convex optimization
q Estimate time-specific nets one by one, based on "virtual iid" samples
q Could scale to ~104 genes, but under stronger smoothness assumptions
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[Song, Kolar and Xing, Bioinformatics 09]

Lasso:



Algorithm – nonparametric neighborhood selection

q Conditional likelihood

q Neighborhood Selection:

q Time-specific graph regression:
q Estimate at

Where

and
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Structural consistency of KELLER

Assumptions
q Define: 

q A1: Dependency Condition

q A2: Incoherence Condition

q A3: Smoothness Condition

q A4: Bounded Kernel
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Theorem
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[Kolar and Xing, 09]



Inference II

q TESLA: Temporally Smoothed L1-regularized logistic regression

q Constrained convex optimization
q Scale to ~5000 nodes, does not need smoothness assumption, can accommodate abrupt changes. 
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[Amr and Xing, PNAS 2009, AOAS 2009]



Temporally Smoothed Graph Regression

© Eric Xing @ CMU, 2005-2020 44

TESLA:

…



Modified estimation procedure

q estimate block partition on which the coefficient functions are constant

q estimate the coefficient functions on each block of the partition

© Eric Xing @ CMU, 2005-2020 45
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(**)



Structural Consistency of TESLA

I. It can be shown that, by applying the results for model selection of the 
Lasso on a temporal difference transformation of (*), the block are 
estimated consistently

II. Then it can be further shown that, by applying Lasso on (**), the
neighborhood of each node on each of the estimated blocks
consistently

q Further advantages of the two step procedure
q choosing parameters easier
q faster optimization procedure
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[Kolar, and Xing, 2009]



Senate network – 109th congress

q Voting records from 109th congress (2005 - 2006)
q There are 100 senators whose votes were recorded on the 542 bills, 

each vote is a binary outcome
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Senate network – 109th congress
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March 2005 January 2006 August 2006



Senator Chafee
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Senator Ben Nelson
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S1 (normal)

Progression and Reversion of Breast Cancer cells
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T4 (malignant)

T4 revert 1

T4 revert 2

T4 revert 3



T4

S1

T4R1

T4R2

T4R3

Estimate Neighborhoods Jointly Across All Cell Types
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How to share information 
across the cell types?



Penalize differences between networks of adjacent cell types

T4

S1

T4R1

T4R2

T4R3

Sparsity of Difference
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RSS for all cell types

sparsity Sparsity of difference

Tree-Guided Graphical Lasso (Treegl)
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S1

T4

EGFR-ITGB1

PI3K-MAPKK

MMP

Network Overview
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S1 cells
T4 cells: Increased Cell Proliferation, 
Growth, Signaling, Locomotion

Interactions – Biological Processes
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MMP-T4R cells: 
Significantly reduced 
interactions

T4 cells

Interactions – Biological Processes
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PI3K-MAPKK-T4R: Reduced Growth, 
Locomotion and SignalingT4 cells

Interactions – Biological Processes
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Fancier network est. scenarios

q Dynamic Directed (auto-regressive) Networks

q Missing Data

q Multi-attribute Data
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[Song, Kolar and Xing, NIPS 2009]

[Kolar and Xing, ICML 2012]

[Kolar, Liu and Xing, JMLR 2013]



Summary

l Graphical Gaussian Model
l The precision matrix encode structure
l Not estimatable when p >> n

l Neighborhood selection:
l Conditional dist under GGM/MRF
l Graphical lasso
l Sparsistency

l Time-varying Markov networks
l Kernel reweighting est.
l Total variation est.
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