
Probabilistic Graphical Models

Deep Sequence Models
Zhiting Hu
Lecture 14, March 2, 2020

© Eric Xing @ CMU, 2005-2019 1
Reading: see class homepage

Overview: Deep Learning & Generative Models

● 2/19 Lecture 11 Statistical and Algorithmic Foundations of Deep Learning

● 2/24 Lecture 12 Deep generative models (part 1)

● 2/26 Lecture 13 Deep generative models (part 2)

● 3/2 Lecture 14 Deep sequence models

● 3/4 Lecture 15 A unified view of deep generative models

© Eric Xing @ CMU, 2005-2019 2

Overview: Deep Learning & Generative Models

● 2/19 Lecture 11 Statistical and Algorithmic Foundations of Deep Learning

● 2/24 Lecture 12 Deep generative models (part 1)

● 2/26 Lecture 13 Deep generative models (part 2)

● 3/2 Lecture 14 Deep sequence models

● 3/4 Lecture 15 A unified view of deep generative models

© Eric Xing @ CMU, 2005-2019 3

Inference & Learning

Model Architectures

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ Long-range dependency, vanishing gradients
◯ LSTM
◯ RNNs in different forms

● Attention Mechanisms
◯ (Query, Key, Value)
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer
◯ BERT

© Eric Xing @ CMU, 2005-2019 4

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ Long-range dependency, vanishing gradients
◯ LSTM
◯ RNNs in different forms

● Attention Mechanisms
◯ (Query, Key, Value)
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer
◯ BERT

© Eric Xing @ CMU, 2005-2019 5

Convolutional Networks (ConvNets)

● Biologically-inspired variants of MLPs [LeCun et al. NIPS 1989]
◯ Receptive field [Hubel & Wiesel 1962; Fukushima 1982]

§ Visual cortex contains a complex arrangement of cells
§ These cells are sensitive to small sub-regions of the visual field

◯ The sub-regions are tiled to cover the entire visual field

© Eric Xing @ CMU, 2005-2019 6Figure courtesy: Yann LeCun

Exploit the strong spatially local correlation present in natural images Local Filters

Convolutional Networks (ConvNets)

● Sparse connectivity
● Shared weights
● Increasingly “global” receptive fields
◯ simple cells detect local features
◯ complex cells “pool” the outputs of simple cells within a retinotopic

neighborhood.

© Eric Xing @ CMU, 2005-2019 7

Feature maps ! − 1
Feature maps !

Feature maps ! + 1

Convolutional Networks (ConvNets)

● Hierarchical Representation Learning [Zeiler & Fergus 2013]

© Eric Xing @ CMU, 2005-2019 8Figure courtesy: Yann LeCun

Evolution of ConvNets

© Eric Xing @ CMU, 2005-2019 9

AlexNet, 8 layers VGG, 19 layers GoogleNet, 22 layers ResNet, 152 layers

Figure courtesy: Kaiming He

2012

2015 2014 2015

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ Long-range dependency, vanishing
◯ LSTM
◯ RNNs in different forms

● Attention Mechanisms
◯ (Query, Key, Value)
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer
◯ BERT

© Eric Xing @ CMU, 2005-2019 10

ConvNets v.s. Recurrent Networks (RNNs)

● Spatial Modeling vs. Sequential Modeling
● Fixed vs. variable number of computation steps.

© Eric Xing @ CMU, 2005-2019 11

The hidden layers and the output
additionally depend on previous states
of the hidden layers

The output depends ONLY
on the current input

!"

ℎ"

!"

ℎ"

!$

ℎ$

!%

ℎ%

!&

ℎ&

=

RNNs in Various Forms

© Eric Xing @ CMU, 2005-2019 12

Image
classification Image

captioning

Sentence sentiment analysis /
Video recognition

Machine Translation Named Entity Recognition

One to One One to Many Many to One Many to Many Many to Many

!

"

!# !$!%

"

!

"# "$ "% "# "$ "%

!# !$!%

"# "$ "%

!# !$!%

(Sequence-to-sequence) (Sequence tagging)

Vanishing / Exploding Gradients in RNNs

© Eric Xing @ CMU, 2005-2019 13

Source: CS231N Stanford

!" = $%&ℎ()**!"+, +)*./")

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural networks”

Vanishing / Exploding Gradients in RNNs

© Eric Xing @ CMU, 2005-2019 14

Source: CS231N Stanford

!" = $%&ℎ()**!"+, +)*./")

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural networks”

Vanishing / Exploding Gradients in RNNs

© Eric Xing @ CMU, 2005-2019 15

Source: CS231N Stanford

!" = $%&ℎ()**!"+, +)*./")

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficult”
Pascanu et al., 2013 “On the difficulty of training recurrent neural networks”

Long-term Dependency Problem

© Eric Xing @ CMU, 2005-2019 16

!"

#"

!$

#$

!%

#%

!&

#&

!&'$

#&'$

!&'%

#&'%

I live in France and I know __________

Example courtesy: Manik Soni

Long-term Dependency Problem

© Eric Xing @ CMU, 2005-2019 17

!"

#"

!$

#$

!%

#%

!&

#&

!&'$

#&'$

!&'%

#&'%

I live in France and I know __French__

Example courtesy: Manik Soni

Long-term Dependency Problem

© Eric Xing @ CMU, 2005-2019 18

!"

#"

!$

#$

!%

#%

!&

#&

!&'$

#&'$

!&'%

#&'%

I live in France and I know __French__

I live in France, a beautiful country, and I know __French__

Example courtesy: Manik Soni

● LSTMs are designed to explicitly alleviate the long-term dependency
problem [Horchreiter & Schmidhuber (1997)]

Long Short Term Memory (LSTM)

© Eric Xing @ CMU, 2005-2019 19

Standard RNN

LSTM

Long Short Term Memory (LSTM)

● Gate functions make decisions of reading, writing, and resetting
information

© Eric Xing @ CMU, 2005-2019 20

l Forget gate: whether to erase cell (reset)
l Input gate: whether to write to cell (write)
l Output gate: how much to reveal cell (read)

Long Short Term Memory (LSTM)

© Eric Xing @ CMU, 2005-2019 21

● Forget gate: decides what must be removed from !"#$

%& = ((*% + !&#,, .& + 0%)

Long Short Term Memory (LSTM)

© Eric Xing @ CMU, 2005-2019 22

● Forget gate: decides what must be removed from !"#$

● Input gate: decides what new information to store in the cell

%& = ((*% + !&#,, .& + 0%)

2& = ((*2 + !&#,, .& + 02)
34& = tanh(*4 + !&#,, .& + 04)

Long Short Term Memory (LSTM)

© Eric Xing @ CMU, 2005-2019 23

● Update cell state:

!" = $" ∗ !"&' +)" ∗ *!"
forgetting unneeded things

scaling the new candidate values by how
much we decided to update each state
value.

Long Short Term Memory (LSTM)

© Eric Xing @ CMU, 2005-2019 24

● Update cell state:

● Output gate: decides what to output from our cell state

!" = $" ∗ !"&' +)" ∗ *!"
forgetting unneeded things

scaling the new candidate values by how
much we decided to update each state
value.

+" = ,(.+ / 0"&', 2" + 3+)

0" = +" ∗ tanh(!")

sigmoid decides what parts of the cell
state we’re going to output

Backpropagation in LSTM

● No multiplication with matrix W during backprop
● Multiplied by different values of forget gate -> less prone to

vanishing/exploding gradient

© Eric Xing @ CMU, 2005-2019 25

Source: CS231N Stanford

RNNs in Various Forms

© Eric Xing @ CMU, 2005-2019 26

Image
classification Image

captioning

Sentence sentiment analysis /
Video recognition

Machine Translation Named Entity Recognition

One to One One to Many Many to One Many to Many Many to Many

!

"

!# !$!%

"

!

"# "$ "% "# "$ "%

!# !$!%

"# "$ "%

!# !$!%

(Sequence-to-sequence) (Sequence tagging)

RNNs in Various Forms

● Bi-directional RNN
l Hidden state is the concatenation of both

forward and backward hidden states.
l Allows the hidden state to capture both past and

future information.

© Eric Xing @ CMU, 2005-2019 27

[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]

RNNs in Various Forms

● Bi-directional RNN
l Hidden state is the concatenation of both

forward and backward hidden states.
l Allows the hidden state to capture both past and

future information.

● Tree-structured RNN
l Hidden states condition on both an input vector

and the hidden states of arbitrarily many child
units.

l Standard LSTM = a special case of tree-LSTM
where each internal node has exactly one child.

© Eric Xing @ CMU, 2005-2019 28

[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]

Chain-structured
LSTM

Tree-structured
LSTM

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.

RNNs in Various Forms

© Eric Xing @ CMU, 2005-2019 29

Pixel CNN Row LSTM Diagonal Bi-LSTM

[Pixel Recurrent Neural Networks, van den Oord. et al. 2016]

● RNN for 2-D sequences

RNNs in Various Forms

● RNN for Graph Structures
◯ Used in, e.g., image segmentation

© Eric Xing @ CMU, 2005-2019 30

Starting node

Current node

Neighboring nodes

[Semantic Object Parsing with Graph LSTM. Liang et al. 2016]

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ Long-range dependency, vanishing
◯ LSTM
◯ RNNs in different forms

● Attention Mechanisms
◯ (Query, Key, Value)
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer
◯ BERT

© Eric Xing @ CMU, 2005-2019 31

Attention: Examples

● Chooses which features to pay attention to

© Eric Xing @ CMU, 2005-2019 32Image captioning [Show, attend and tell. Xu et al. 15]

Attention: Examples

● Chooses which features to pay attention to

© Eric Xing @ CMU, 2005-2019 33Figure courtesy: Olah & Carter, 2016
Machine Translation

https://distill.pub/2016/augmented-rnns/

Why Attention?

© Eric Xing @ CMU, 2005-2019 34Figure courtesy: keitakurita

http://mlexplained.com/author/admin/

Why Attention?

● Long-range dependencies
◯ Dealing with gradient vanishing problem

© Eric Xing @ CMU, 2005-2019 35Figure courtesy: keitakurita

http://mlexplained.com/author/admin/

Why Attention?

● Long-range dependencies
◯ Dealing with gradient vanishing problem

● Fine-grained representation instead of a single global representation
◯ Attending to smaller parts of data: patches in images, words in sentences

© Eric Xing @ CMU, 2005-2019 36Figure courtesy: Lilian Weng

Why Attention?

● Long-range dependencies
◯ Dealing with gradient vanishing problem

● Fine-grained representation instead of a single global representation
◯ Attending to smaller parts of data: patches in images, words in sentences

● Improved Interpretability

© Eric Xing @ CMU, 2005-2019 37Figure courtesy: Olah & Carter, 2016

https://distill.pub/2016/augmented-rnns/

Attention Computation

© Eric Xing @ CMU, 2005-2019 38

Encoder

Decoder

● Encode each token in the input
sentence into vectors

● When decoding, perform a linear
combination of these vectors,
weighted by “attention weights”
◯ ! = softmax(!+,-./0.1_345603)

Figure courtesy: MARTA R. COSTA-JUSSÀ

score=2.1 -0.1 0.3 -1.0

Attention Computation (cont’d)

© Eric Xing @ CMU, 2005-2019 39

● Combine together value by taking
the weighted sum

Encoder

Attention Computation (cont’d)

© Eric Xing @ CMU, 2005-2019 40

● Combine together value by taking
the weighted sum

● Query: decoder state
● Key: all encoder states
● Value: all encoder states

Encoder

Attention Variants

● Popular attention mechanisms with different alignment score functions

© Eric Xing @ CMU, 2005-2019 41Courtesy: Lilian Weng

• Query: decoder state !"
• Key: all encoder states ℎ$
• Value: all encoder states ℎ$

Alignment score = f(Query, Keys)

Attention on Images – Image Captioning

© Eric Xing @ CMU, 2005-2019 42

• Query: decoder state
• Key: visual feature maps
• Value: visual feature maps

[Show, attend and tell. Xu et al. 15]

Attention on Images – Image Captioning

© Eric Xing @ CMU, 2005-2019 43

Hard attention vs Soft attention

Attention on Images – Image Captioning

© Eric Xing @ CMU, 2005-2019 44

Hard attention vs Soft attention

Attention on Images – Image Paragraph Generation

● Generate a long paragraph to
describe an image

◯ Long-term visual and language
reasoning

◯ Contentful descriptions -- ground
sentences on visual features

45

This picture is taken for three baseball players on a
field. The man on the left is wearing a blue
baseball cap. The man has a red shirt and white
pants. The man in the middle is in a wheelchair and
holding a baseball bat. Two men are bending down
behind a fence. There are words band on the fence.

A tennis player is attempting to hit the tennis ball
with his left foot hand. He is holding a tennis racket.
He is wearing a white shirt and white shorts. He has
his right arm extended up. There is a crowd of
people watching the game. A man is sitting on the
chair.

A couple of zebra are standing next to each other on
dirt ground near rocks. There are trees behind the
zebras. There is a large log on the ground in front of
the zebra. There is a large rock formation to the left
of the zebra. There is a small hill near a small pond
and a wooden log. There are green leaves on the
tree.

Attention on Images – Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

46[Recurrent Topic-Transition GAN for Visual Paragraph Generation. Liang et al. 2017]

Attention on Images – Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

512

Visual Features
512 :ܲݐࢎ

C

4096

Visual attention

െͳܵݐࢎ : 1024

ݐࢌ
4096 :ݒ

1024 :ܵݐࢎ

Paragraph RNN
(512)

Sentence RNN
(1024)

Word RNN
(512)

Visual Attentive
weights

ǡ௜ିଵ௪ݐࢎ : 512

ǡ௜௪ݐࢎ : 512

C

512

Language attention

Language Attentive
weights

X

X

௧ǡ௜௟ࢌ : 512

+

݅ ൌ ͳǡǥ ǡ ௧ܰ

(a) Sentence generation

(b) Word generation

ܶ

C Concatenation

Weighted summationX

Average+

Sentence embedding

Local Phrases

� people playing baseball
� a man wearing white shirt and pants
� man holding a baseball bat
� person wearing a helmet in the field
� a man bending over

Local
Phrases

Continue or stop?

softmax

embedding

Figure 3. Illustration of our paragraph generator. Given visual features and local phrases of semantic regions, the paragraph generator is

performed for most T steps to sequentially generate each sentence. At t-th step, the paragraph states hP
t is first updated with the embedding

of preceding sentences by paragraph RNN. Then, the visual attention takes features of semantic regions, current paragraph states hP
t and

previous hidden states hS
t−1 as input to manifest a visual context vector fvt . fvt is then fed into sentence RNN to obtain the encoded topic

vector hS
t and determine whether to generate next sentence. The word RNN with language attention then generates each word.

and synthetic ones from the generator. The generator is up-
dated by employing a policy gradient based on the expected
reward received from the discriminator and the reconstruc-
tion loss for fully-supervised and semi-supervised settings,
defined in Eq. 4. To reduce the variance of the action values,
we run the roll-out policy starting from current state till the
end of the paragraph for five times to get a batch of output
samples. The signals that come from the word prediction
for labeled sentences (defined in Eq. 3)) can be regarded as
the intermediate reward. The gradients are passed back to
the intermediate action value via Monte Carlo search [35].

3.2. Paragraph Generator

Figure 3 shows the architecture of the generator G,
which recurrently retains different levels of context states
with a hierarchy constructed by a paragraph RNN, a sen-
tence RNN, and a word RNN, and two attention modules.
First, the paragraph RNN encodes the current paragraph
state based on all preceding sentences. Second, the spa-
tial visual attention module selectively focuses on semantic
regions with the guidance of current paragraph state to pro-
duce the visual representation of the sentence. The sentence
RNN is thus able to encode a topic vector for the new sen-
tence. Third, the language attention module learns to incor-
porate linguistic knowledge embedded in local phrases of
focused semantic regions to facilitate word generation by
the word RNN.

Region Representation. Given an input image, we
adopt the dense captioning model [13, 16] to detect seman-
tic regions of the image and generate their local phrases.
Each region Rj (j ∈ 1, . . . ,M) has a visual feature vec-
tor vj and a local text phrase (i.e., region captioning) srj =
{wr

j,i} consisting of Nj words. In practice, we use the top

M = 50 regions.
Paragraph RNN. The paragraph RNN keeps track of

the paragraph state by summarizing preceding sentences.
At each t-th step (t = 1, . . . , T), the paragraph RNN takes
the embedding of generated sentence in previous step as in-
put, and in turn produces the paragraph hidden state hP

t .
The sentence embedding is obtained by simply averaging
over the embedding vectors of the words in the sentence.
This strategy enables our model to support the manipula-
tion of the first sentence to initialize the paragraph RNN
and generate personalized follow-up descriptions.

Sentence RNN with Spatial Visual Attention. The
visual attentive sentence RNN controls the topic of the next
sentence st by selectively focusing on relevant regions of
the image. Specifically, given the paragraph states hP

t from
the paragraph RNN and previous hidden states hS

t−1 of the
sentence RNN, we apply an attention mechanism on the vi-
sual features V = {v1, . . . ,vM} of all semantic regions,
and construct a visual context vector fvt that represents the
next sentence at t-th step:

f
v
t = attv(V,hP

t ,h
S
t−1)

=
M
∑

j=1

α(vj ,β(hP
t ,h

S
t−1))

∑M
j′=1 α(vj′ ,β(hP

t ,h
S
t−1))

vj

:=
M
∑

j=1

ajvj ,

(5)

where β(hP
t ,h

S
t−1) is a linear layer that transforms the con-

catenation of hP
t and hS

t−1 into a compact vector with the
same dimension as vj ; the function α(·) is to compute the
weight of each region and is implemented with a single lin-
ear layer. For notational simplicity, we use aj to denote the

3365

Semantic region
detection &
captioning

47

Attention on Images – Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection &
captioning Attention on both

visual regions and
text phrases

48

Attention on Images – Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection &
captioning Attention on both

visual regions and
text phrases

Hierarchical text
generation

49

Attention on Images – Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection &
captioning Attention on both

visual regions and
text phrases

Hierarchical text
generation

Multi-level
adversarial
learning

50

Attention on Images – Image Paragraph Generation
Table 2. Ablation studies on the effectiveness of key components

in the region-based attention mechanism of our RTT-GAN.

Method METEOR CIDEr

RTT-GAN (Fully- w/o phrase att) 16.08 15.13

RTT-GAN (Fully- w/o att) 15.63 14.47

RTT-GAN (Fully- 10 regions) 14.13 13.26

RTT-GAN (Fully- 20 regions) 16.92 16.15

RTT-GAN (Fully-) 17.12 16.87

The adversarial framework is trained following the
Wasserstein GAN (WGAN) [1] in which we alternate be-
tween the optimization of {Ds, Dr} with Eq.(2) and the op-
timization of G with Eq.(4). In particular, we perform one
gradient descent step on G every time after 5 gradient steps
on {Ds, Dr}. We use minibatch SGD and apply the RM-
Sprop solver [28] with the initial learning rate set to 0.0001.
For stable training, we apply batch normalization [12] and
set the batch size to 1 (i.e., “instance normalization”). In or-
der to make the parameters of Ds and Dr lie in a compact
space, we clamp the weights to a fixed box [−0.01, 0.01]
after each gradient update. In the semi-supervised setting
where only single-sentence captioning for images and stan-
dalone paragraph corpus are available, we set the maximal
number of sentences in the generated paragraph to 6 for all
images. In the fully-supervised setting, the groundtruth sen-
tence number in each visual paragraph is used to train the
sentence-RNN for learning how many sentences are needed.
We train the models to converge for 40 epochs. The imple-
mentations are based on the public Torch7 platform on a
single NVIDIA GeForce GTX 1080.

4. Experiments

4.1. Experimental Settings

To generate a paragraph for an image, we run the para-
graph generator forward until the STOP sentence state is
predicted or after Smax = 6 sentences, whichever comes
first. The word RNN is recurrently forwarded to sam-
ple the most likely word at each time step, and stops af-
ter choosing the STOP token or after Nmax = 30 words.
We use beam search with beam size 2 for generating para-
graph descriptions. Training details are presented in Sec-
tion 3.4, and all models are implemented in Torch plat-
form. In terms of the fully-supervised setting, to make a fair
comparison with the state-of-the-art methods [14, 16], the
experiments are conducted on the public image paragraph
dataset [16], where 14,575 image-paragraph pairs are used
for training, 2,487 for validation and 2,489 for testing. In
terms of semi-supervised setting, our RTT-GAN is trained
with the single sentence annotations provided in MSCOCO
image captioning dataset [2] which contains 123,000 im-
ages. The image-paragraph validation set is used for vali-
dating the semi-supervised paragraph generation. The para-

2) a bicycle parked on the sidewalk

3) man wearing a black shirt

4) a woman wearing a yellow shirt

5) a red and black bike

1) people riding a bike

6) a woman wearing a shirt

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
jeans. A woman is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

Figure 4. Visualization of our region-based attention mechanism.

For each sentence generation, RTT-GAN selectively focuses on se-

mantic regions of interest in the spatial visual attention, and atten-

tively leverage the word embeddings of their local phrases to en-

hance the word prediction. In the top row, we illustrate the regions

with highest attention confidences during the spatial visual atten-

tion and its corresponding words (highlighted in red) with highest

attention confidences during the language attention in each step.

graph generation performance is also evaluated on 2,489
paragraph testing samples. For both fully-supervised and
semi-supervised settings, we use the word vocabulary of
image-paragraph dataset as [16] does and the 14,575 para-
graph descriptions on public image paragraph dataset [16]
are adopted as the standalone paragraph corpus for train-
ing discriminators. We report six widely used automatic
evaluation metrics, BLEU-1, BLEU-2, BLEU-3, BLEU-4,
METEOR, and CIDEr. The model checkpoint selection is
based on the best combined METEOR and CIDEr score on
the validation set. Table 1 reports the performance of all
baselines and our models.

4.2. Comparison with the State-of-the-arts

We obtain the results of all four baselines from [16].
Specifically, Sentence-Concat samples and concatenates
five sentence captions from the model trained on MS COCO
captions, in which the first sentence uses beam search and
the rest are samples. Image-Flat [14] directly decodes an
image into a paragraph token by token. Template pre-
dicts the text via a handful of manually specified tem-
plates. And Region-Hierarchical [16] uses a hierarchical
recurrent neural network to decompose the paragraphs into
the corresponding sentences. Same with all baselines, we
adopt VGG-16 net [27] to encode the visual representa-
tion of an image. Note that our RTT-GAN and Region-

Hierarchical [16] use the same dense captioning model [13]
to extract semantic regions. Human shows the results by
collecting an additional paragraph for 500 randomly chosen
images as [16]. As expected, humans produce superior de-
scriptions over any automatic method and the large gaps on
CIDEr and METEOR verify that CIDEr and METEOR met-
rics align better with human judgment than BLEU scores.

Fully-supervised Setting. We can see that our RTT-

GAN (Fully-) model significantly outperforms all base-

3367

51

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ Long-range dependency, vanishing
◯ LSTM
◯ RNNs in different forms

● Attention Mechanisms
◯ (Query, Key, Value)
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer
◯ BERT

© Eric Xing @ CMU, 2005-2019 52

Transformers – Multi-head (Self-)Attention

● State-of-the-art Results by Transformers

◯ [Vaswani et al., 2017] Attention Is All You Need
§ Machine Translation

◯ [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding

§ Pre-trained Text Representation

◯ [Radford et al., 2019] Language Models are Unsupervised Multitask Learners
§ Language Models

© Eric Xing @ CMU, 2005-2019 53

Multi-head Attention

© Eric Xing @ CMU, 2005-2019 54

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

© Eric Xing @ CMU, 2005-2019 55

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-head Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

© Eric Xing @ CMU, 2005-2019 56

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-head Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention in Encoders and Decoders

© Eric Xing @ CMU, 2005-2019 57

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Encoder Decoder

Transformer

Multi-head Attention in Encoders and Decoders

© Eric Xing @ CMU, 2005-2019 58Image source: Bgg

Transformer

BERT: Pre-trained Text Representation Model

© Eric Xing @ CMU, 2005-2019 59Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

BERT: Pre-trained Text Representation Model

© Eric Xing @ CMU, 2005-2019 60Image source: Vaswani, et al., 2017

● Conventional word
embedding:
◯ Word2vec, Glove
◯ A pre-trained matrix, each

row is an embedding
vector of a word

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

BERT: Pre-trained Text Representation Model

© Eric Xing @ CMU, 2005-2019 61Image source: Vaswani, et al., 2017

● Conventional word
embedding:
◯ Word2vec, Glove
◯ A pre-trained matrix, each

row is an embedding
vector of a word

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

BERT: Pre-trained Text Representation Model

● BERT: A model to extract contextualized word embedding

© Eric Xing @ CMU, 2005-2019 62

BERT: Pre-trained Text Representation Model

● BERT: A model to extract contextualized word embedding

© Eric Xing @ CMU, 2005-2019 63

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

BERT: Pre-trained Text Representation Model

● BERT: A model to extract contextualized word embedding

© Eric Xing @ CMU, 2005-2019 64

BERT: Pre-trained Text Representation Model

● Use BERT for sentence classification

© Eric Xing @ CMU, 2005-2019 65

BERT Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 88.1 91.3 45.4 80.0 82.3 56.0 75.2
BERTBASE 84.6/83.4 71.2 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERTBASE = (L=12, H=768,
A=12); BERTLARGE = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.
com/language-unsupervised/.

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).6

WNLI Winograd NLI is a small natural lan-
guage inference dataset deriving from (Levesque
et al., 2011). The GLUE webpage notes that there
are issues with the construction of this dataset, 7

and every trained system that’s been submitted
to GLUE has has performed worse than the 65.1
baseline accuracy of predicting the majority class.
We therefore exclude this set out of fairness to
OpenAI GPT. For our GLUE submission, we al-
ways predicted the majority class.

4.1.1 GLUE Results

To fine-tune on GLUE, we represent the input se-
quence or sequence pair as described in Section 3,
and use the final hidden vector C 2 RH corre-
sponding to the first input token ([CLS]) as the
aggregate representation. This is demonstrated vi-
sually in Figure 3 (a) and (b). The only new pa-
rameters introduced during fine-tuning is a classi-
fication layer W 2 RK⇥H , where K is the num-
ber of labels. We compute a standard classification
loss with C and W , i.e., log(softmax(CW

T)).
We use a batch size of 32 and 3 epochs over

the data for all GLUE tasks. For each task, we ran
fine-tunings with learning rates of 5e-5, 4e-5, 3e-5,
and 2e-5 and selected the one that performed best
on the Dev set. Additionally, for BERTLARGE we
found that fine-tuning was sometimes unstable on

6Note that we only report single-task fine-tuning results in
this paper. Multitask fine-tuning approach could potentially
push the results even further. For example, we did observe
substantial improvements on RTE from multi-task training
with MNLI.

7https://gluebenchmark.com/faq

small data sets (i.e., some runs would produce de-
generate results), so we ran several random restarts
and selected the model that performed best on the
Dev set. With random restarts, we use the same
pre-trained checkpoint but perform different fine-
tuning data shuffling and classifier layer initializa-
tion. We note that the GLUE data set distribution
does not include the Test labels, and we only made
a single GLUE evaluation server submission for
each BERTBASE and BERTLARGE.

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all exist-
ing systems on all tasks by a substantial margin,
obtaining 4.4% and 6.7% respective average accu-
racy improvement over the state-of-the-art. Note
that BERTBASE and OpenAI GPT are nearly iden-
tical in terms of model architecture outside of
the attention masking. For the largest and most
widely reported GLUE task, MNLI, BERT ob-
tains a 4.7% absolute accuracy improvement over
the state-of-the-art. On the official GLUE leader-
board,8 BERTLARGE obtains a score of 80.4, com-
pared to the top leaderboard system, OpenAI GPT,
which obtains 72.8 as of the date of writing.

It is interesting to observe that BERTLARGE sig-
nificantly outperforms BERTBASE across all tasks,
even those with very little training data. The effect
of BERT model size is explored more thoroughly
in Section 5.2.

4.2 SQuAD v1.1

The Standford Question Answering Dataset
(SQuAD) is a collection of 100k crowdsourced
question/answer pairs (Rajpurkar et al., 2016).
Given a question and a paragraph from Wikipedia

8https://gluebenchmark.com/leaderboard

• Huge improvements over SOTA on 12 NLP task

BERT: Pre-training Procedure

● Model architecture:
◯ A big Transformer Encoder (240M free parameters)

● Dataset:
◯ Wikipedia (2.5B words) + a collection of free ebooks (800M words)

© Eric Xing @ CMU, 2005-2019 67

BERT: Pre-training Procedure

● Model architecture:
◯ A big Transformer Encoder (240M free parameters)

● Dataset:
◯ Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
◯ masked language model (masked LM)

§ Masks some percent of words from the input and has to reconstruct those words
from context

© Eric Xing @ CMU, 2005-2019 68

BERT: Pre-training Procedure

● Masked LM

© Eric Xing @ CMU, 2005-2019 69

BERT: Pre-training Procedure

● Model architecture:
◯ A big Transformer Encoder (240M free parameters)

● Dataset:
◯ Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
◯ masked language model (masked LM)

§ Masks some percent of words from the input and has to reconstruct those words
from context

◯ Two-sentence task
§ To understand relationships between sentences
§ Concatenate two sentences A and B and predict whether B actually comes after A

in the original text

© Eric Xing @ CMU, 2005-2019 70

BERT: Pre-training Procedure

● Two sentence
task

© Eric Xing @ CMU, 2005-2019 71

BERT: Pre-training Procedure

● BERT is trained on 4 TPU pods (=256 TPU chips) in 4 days
◯ TPU: a matrix multiplication engine

● = 64 V100 GPUs, Infiniband network, 5.3 days

● = a standard 4 GPU desktop with RTX 2080Ti, 99 days

© Eric Xing @ CMU, 2005-2019 72source: Tim Dettmers

Word Embedding on Texar

● A general-purpose text generation toolkit on TensorFlow

© Eric Xing @ CMU, 2005-2019 73

Word Embedding on Texar

© Eric Xing @ CMU, 2005-2019 74

● Word2vec, Glove

Word Embedding on Texar

© Eric Xing @ CMU, 2005-2019 75

● Word2vec, Glove ● BERT

Seq2seq Attention on Texar

© Eric Xing @ CMU, 2005-2019 76

 1 # Read data

2 dataset = PairedTextData(data_hparams)
3 batch = DataIterator(dataset).get_next()
4
5 # Encode
6 embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams)
7 encoder = TransformerEncoder(hparams=encoder_hparams)
8 enc_outputs = encoder(embedder(batch['source_text_ids']),
9 batch['source_length'])

10
11 # Decode
12 decoder = AttentionRNNDecoder(memory=enc_outputs,
13 hparams=decoder_hparams)
14 outputs, length, _ = decoder(inputs=embedder(batch['target_text_ids']),
15 seq_length=batch['target_length']-1)
16
17 # Loss
18 loss = sequence_sparse_softmax_cross_entropy(
19 labels=batch['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)
20

1 source_embedder: WordEmbedder
2 source_embedder_hparams:
3 dim: 300
4 encoder: UnidirectionalRNNEncoder
5 encoder_hparams:
6 rnn_cell:
7 type: BasicLSTMCell
8 kwargs:
9 num_units: 300

10 num_layers: 1
11 dropout:
12 output_dropout: 0.5
13 variational_recurrent: True
14 embedder_share: True
15 decoder: AttentionRNNDecoder
16 decoder_hparams:
17 attention:
18 type: LuongAttention
19 beam_search_width: 5
20 optimization: …

Seq2seq Attention on Texar

© Eric Xing @ CMU, 2005-2019 77

 1 # Read data

2 dataset = PairedTextData(data_hparams)
3 batch = DataIterator(dataset).get_next()
4
5 # Encode
6 embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams)
7 encoder = TransformerEncoder(hparams=encoder_hparams)
8 enc_outputs = encoder(embedder(batch['source_text_ids']),
9 batch['source_length'])

10
11 # Decode
12 decoder = AttentionRNNDecoder(memory=enc_outputs,
13 hparams=decoder_hparams)
14 outputs, length, _ = decoder(inputs=embedder(batch['target_text_ids']),
15 seq_length=batch['target_length']-1)
16
17 # Loss
18 loss = sequence_sparse_softmax_cross_entropy(
19 labels=batch['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)
20

1 source_embedder: WordEmbedder
2 source_embedder_hparams:
3 dim: 300
4 encoder: UnidirectionalRNNEncoder
5 encoder_hparams:
6 rnn_cell:
7 type: BasicLSTMCell
8 kwargs:
9 num_units: 300

10 num_layers: 1
11 dropout:
12 output_dropout: 0.5
13 variational_recurrent: True
14 embedder_share: True
15 decoder: AttentionRNNDecoder
16 decoder_hparams:
17 attention:
18 type: LuongAttention
19 beam_search_width: 5
20 optimization: …

Takeaways

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
◯ LSTM designed for long-range dependency, vanishing gradients
◯ RNNs not only for sequence data, but also 2D sequences, Trees, graphs

● Attention Mechanisms
◯ Three core elements: (Query, Key, Value)
◯ Many variants based on alignment score functions
◯ Attention on Text and Images

● Transformers: Multi-head Attention
◯ Transformer: encoder-decoder
◯ BERT: pre-trained text representation
◯ GPT-2: pre-trained language model

© Eric Xing @ CMU, 2005-2019 78

