Carnegie Mellon University

(/4
" PETUUM

Probabilistic Graphical Models

Statistical and Algorithmic Foundations of Deep
Learning

Eric Xing
Lecture 11, February 19, 2020

Reading: see class homepage

© Eric Xing @ CMU, 2005-2020 1

) hidden layer 1 hidden layver 2 hidden laver 3
input laver

o, '
757 SRR

ST
SO

© Eric Xing @ CMU, 2005-2020 2 ‘g

% Outline

o An overview of DL components
o Historical remarks: early days of neural networks
o Modern building blocks: units, layers, activations functions, loss functions, etc.
o Reverse-mode automatic differentiation (aka backpropagation)

o Similarities and differences between GMs and NNs
o Graphical models vs. computational graphs
o Sigmoid Belief Networks as graphical models
o Deep Belief Networks and Boltzmann Machines

o Combining DL methods and GMs
o Using outputs of NNs as inputs to GMs
o GMs with potential functions represented by NNs
o NNs with structured outputs

o Bayesian Learning of NNs
o Bayesian learning of NN parameters
o Deep kernel learning

% Outline

o An overview of DL components
o Historical remarks: early days of neural networks

o Modern building blocks: units, layers, activations functions, loss functions, etc.
o Reverse-mode automatic differentiation (aka backpropagation)

(R W

U

0 O

© Eric Xing @ CMU, 2005-2020 4 g
L

Perceptron and Neural Nets

o From biological neuron to artificial neuron (perceptron)

Inputs McCulloch & Pitts
. (1943)
1

Linear Hard
\.\C‘ombmer Limiter
|:> Output

JPEcRiE

Threshold

X

o From biological neuron network to artificial neuron networks

Dendrites

Synapse

Soma

Synapse

Dendrites

Soma

Synapse /.F

. —O
:—O Z
_Q Middle Layer

Input Layer Output Layer

Output Signals

© Eric Xing @ CMU, 2005-2020

The perceptron learning algorithm

Q

Q

Q

Q

o0 = G(net) =

Recall the nice property of sigmoid function

{L——o0

-net

l+e

do

Consider regression problem f: XY, for scalar “gt —

We used to maximize the conditional data likelihood Y = f(a:) TE€

Here ...

W = arg max In H P(y;|x;;0)

— . 1 o L\ 2
= argmin 3 50~ fo0)

o(l—o)

/" The perceptron learning algorithm

OEp|u])

ow;

0 1
pu 3 2t = o)’

1
8

Z(td—0d>< §Z‘i>

Z t 80d 8’]’L€td
— —0
d) Onet; Ow;

— Z ta — 04 Od(l - od)azfi
d

(td — 04)

X4 = input
ty = target output

04 = Observed output

w; = weight i

Batch mode:
Do until converge:
1. compute gradient VEp[w]

oW =uw —nVEp|u]

Incremental mode:

Do until converge:

» For each training example d in D

1. compute gradient VE,[w]
240 = @ — NV Eq[]

where
VEq[W] = —(ta — 0a)oa(l — 04)Zq

© Eric Xing @ CMU, 2005-2020

7

.

Neural Network Model

Output
Age ’
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL Weights valzable

variables ayer
Prediction

© Eric Xing @ CMU, 2005-2020

“Combined logistic models”

Inputs
Output
Age ’
5 0.6
Gender 2
% “Probability
of

Stage beingAlive”

Dependent

Independent Weights HiddenL Weights valzable

variables ayer
Prediction

© Eric Xing @ CMU, 2005-2020

“Combined logistic models”

Output
Age ’
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL Weights vaizable

variables ayer
Prediction

© Eric Xing @ CMU, 2005-2020

10

“Combined logistic models”

Inputs
Output
Age \ ’
S
?‘\ — 0.6
Gender 2
>‘/8 “Probability
: of
Stage beingAlive”
Dependent
Independent Weights HiddenL Weights valzable

variables ayer
Prediction

© Eric Xing @ CMU, 2005-2020

1

Not really, no target for hidden units...

Age
0.6
Gender
“Probability
of
Stage beingAlive”
Dependent
Independent Weights HiddenL Weights vm{;able

variables ayer
Prediction

© Eric Xing @ CMU, 2005-2020

12

/
/ Backpropagation:
Reverse-mode differentiation

o Avrtificial neural networks are nothing more than complex functional compositions that can

be represented by computation graph 8]"
ooyl =
T) == =

ox

r @
Outputs

Input e

variables
Intermediate

computations

Backpropagation:
Reverse-mode differentiation

o Avrtificial neural networks are nothing more than complex functional compositions that can
be represented by computation graphg:

o By applying the chain rule and using reverse accumulation, we get

E Z of, 0z Z 3f7;1.z)3fz‘2 or

i1€m(N) i1€m(n) io€m (i1
o The algorithm is commonly known as backpropagation
o What if some of the functions are stochastic?

o Then use stochastic backpropagation!
(to be covered in the next part)

o Modern packages can do this autornatically (more later)

© Eric Xing @ CMU, 2005-2020

14

/
f Modern building blocks of deep networks

L . X1 W1
o Activation functions \
. W f(Wx + b
a Linear and RelL.U Xy —2 f(Wx+ b)
o Sigmoid and tanh _—
o Etc. X3 W3
5“ E“
Q. Q.
5 5 /
(o) ()
inpu't input

Linear Rectified linear (ReLU)

% Modern building blocks of deep networks

o Activation functions

a
a
a

Linear and RelL.U
Sigmoid and tanh

Etc.

o Layers

O 0 0 0 O

Fully connected
Convolutional & pooling
Recurrent

ResNets

Etc.

/ /

A

fully connected

convolutional

@ ® ® (hTD
[->__—] = l :l =l » A
6 & & . &
recurrent

HAH-

blocks with residual connections ~ ®xreem e g

Modern building blocks of deep networks

o Activation functions
o Linear and RelL,U
o Sigmoid and tanh
o Etc.

o Layers

o Fully connected
Convolutional & pooling
Recurrent
ResNets
Etc.

o Loss functions
o Cross-entropy loss
o Mean squared error
o Etc.

a
a
a
a

Putting things together:

loss ——>
|

concatenation

fully connected
—

33333333

convolutional

Conv Coev Conv v
1x1+14S A3 +1{S Sx5+1(S; Ix1+1(S] 1x1+14S]
4
V)

avg& max
pooling

(a part of GoogleNet)

© Eric Xing @ CMU, 2005-2020 17

Modern building blocks of deep networks

o Activation functions
o Linear and RelL,U
o Sigmoid and tanh
o Etc.

o Layers

Fully connected
Convolutional & pooling
Recurrent

ResNets

Etc.

o Loss functions
o Cross-entropy loss
o Mean squared error
o Etc.

O 0 0 0 O

Putting things together:

(a part of GoogleNet)

Arbitrary combinations of
the basic building blocks

Multiple loss functions —
multi-target prediction,
transfer learning, and
more

Given enough data,
deeper architectures just
keep improving

Representation learning:
the networks learn
increasingly more
abstract representations
of the data that are
“disentangled,” i.e.,
amenable to linear
separation.

© Eric Xing @ CMU, 2005-2020 18

.

Feature learning

a Successful learning of intermediate representations

[Lee et al ICML 2009, Lee et al NIPS 2009]

I AVSe =V T pEte

High-level
linguistic representations

A e L R T

Arbitrary combinations of
the basic building blocks

Multiple loss functions —
multi-target prediction,
transfer learning, and
more

Given enough data,
deeper architectures just
keep improving

Representation learning:
the networks learn
increasingly more
abstract representations
of the data that are
“disentangled,” i.e.,
amenable to linear
separation.

© Eric Xing @ CMU, 2005-2020 19

% Outline

U
a

a
a

o Similarities and differences between GMs and NNs
o Graphical models vs. computational graphs
o Sigmoid Belief Networks as graphical models
o Deep Belief Networks and Boltzmann Machines

U

0 O

4 Graphical models vs. Deep nets

Graphical models

* Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

Topic proportions

“ uit N : F
Topic assignments ! \
opooooo l‘.

Learning and inference in the brain, .‘._ Lo
Erigpn K \
The Welcome Departmert of Imaging Nouroscierce, Insitute of Neur ‘-_ |

Deep neural networks

e Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

Inpuc layer (S1) 4 feature maps

(CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

IFH i °
) . & =l "“‘E] r‘

© Eric Xing @ CMU, 2005-2020

21

Graphical models

o Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

o Learning and inference are based
on a rich toolbox of well-studied
(structure-dependent) techniques
(e.g., EM, message passing, VI,
MCMC, etc.)

o Graphs represent models

% Graphical models vs. Deep nets

Deep neural networks

e Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

e Learning is predominantly based
on the gradient descent method
(aka backpropagation);

Inference is often trivial and done
via a “forward pass”

e Graphs represent computation

© Eric Xing @ CMU, 2005-2020

22

4 Graphical models vs. Deep nets

Utility of the graph

o A vehicle for synthesizing a global loss
function from local structure

o potential function, feature function, etc.
o A vehicle for designing sound and

efficient inference algorithms mu) = [[me ()
o Sum-product, mean-field, etc. ; ceN(i\a
a A vehicle to inspire approximation and = - ”a(X«)“fu(X«),eI\](%u("')
penalization E
o Structured MF, Tree-approximation, etc. (%)= Z JoXa) U)’”w
o A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference 2:= {0 € RYA(D) < +00)
. : H)~P(H|V ol _
Utility of the loss function QU~PHIY) o8
a A major measure of quality of the Bo™ ¥ g
learning algorithm and the model 2 o o
UF) := {0€Q| 0 =0V (s;t) €E}. QT) := {0 € Q|4 =0V (s,t) ¢ E(T)}

0= argmaxyP (V)

© Eric Xing @ CMU, 2005-2020 23

4 Graphical models vs. Deep nets

I' accord sur la zone économique européenne a été signé en aoQt

I I 1 I I I I I i i I I

Bf—»|B8+—=|B}t—=|B}—|B}t—|B}—=|B}—>|Bl—=|B}l=|B}l=|BI=|Bt=|B}—|B}—=|B

RER-SanE

—! A —| A —] A —! A — A —| A —! A — A — A — A —! A —

I | I I 1 | | I |]

the agreement on the European Economic Area was signed in August

Op3

il

Images from Distill.pub

p

ax i)

Deep neural networks

Utility of the network
e A vehicle to conceptually synthesize
complex decision hypothesis
o stage-wise projection and aggregation
e A vehicle for organizing computational
operations
o stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules
o Layer-wise parallelization
e No obvious utility in evaluating DL
inference algorithms
Utility of the Loss Function

e Global loss? Well it is complex and non-
convex...

© Eric Xing @ CMU, 2005-2020

24

/
f Graphical models vs. Deep nets

Utility of the graph
o A vehicle for synthesizing a global loss

function from local structure
o potential function, feature function, etc.

o A vehicle for designing sound and
efficient inference algorithms
o Sum-product, mean-field, etc.

o A vehicle to inspire approximation and
penalization

o Structured MF, Tree-approximation, etc.

o A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function

o A major measure of quality of the
learning algorithm and the model

Utility of the network
e A vehicle to conceptually synthesize
complex decision hypothesis
stage-wise projection and aggregation
e A vehicle for organizing computational
operations
stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules
Layer-wise parallelization
e No obvious utility in evaluating DL
inference algorithms
Utility of the Loss Function

e Global loss? Well it is complex and non-
CONVeX...

© Eric Xing @ CMU, 2005-2020

25

<
S ?

Empirical goal: e.g., classification, feature learning e.g., latent variable inference, transfer
learning

Structure: Graphical Graphical

Objective: Something aggregated from local functions Something aggregated from local functions

Vocabulary: Neuron, activation function, ... Variable, potential function, ...

Algorithm: A single, unchallenged, inference algorithm A major focus of open research, many

- algorithms, and more to come
Backpropagation (BP)

Evaluation: On a black-box score — On almost every intermediate quantity
end performance
Implementation: Many tricks More or less standardized
Experiments: Massive, real data Modest, often simulated data (GT known)
(GT unknown) ¢

© Eric Xing @ CMU, 2005-2020 26

'

? Graphical Models vs. Deep Nets

o So far:
o Graphical models are representations of probability distributions
o Neural networks are function approximators (with no probabilistic meaning)

o Some of the neural nets are in fact proper graphical models (i.e.,
units/neurons represent random variables):
Boltzmann machines (Hinton & Sejnowsky, 1983)
Restricted Boltzmann machines (Smolensky, 1986)
Learning and Inference in sigmoid belief networks (Neal, 1992)
Fast learning in deep belief networks (Hinton, Osindero, Teh, 20006)
Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

o Let's go through these models one-by-one

o 0 O 0O O

% I: Restricted Boltzmann Machines

o RBM is a Markov random field represented with a bi-partite graph

a All nodes in one layer/part of the graph are connected to all in the other;
no inter-layer connections

80000000

| .*.._'\....5.:.:‘.,._/, . weight: w;;
X factor: exp(v; wi; h;)

o Joint distribution:
1
P(U, h) = E exp {z Wijvihi + 2 bivi + z thj}
L,j L J

Images from Marcus Frean, MLSS Tutorial 2010 o vt Xing @ OMU, 20052020 28 Jg

% I: Restricted Boltzmann Machines

o Log-likelihood of a single data point (unobservables marginalized out):

logL(v) = logz: exp {z w;jvih; + 2 b;v; + 2 cih; — log(Z)}
h i,j i j

o Gradient of the log-likelihood w.r.t. the model parameters:

logL(v)=2P(h|v) 0 P(v,h)—zp(v,h) 0
h v,h

L] L]

P(v,h
T (v,h)

o where we have averaging over the posterior and over the joint.

Images from Marcus Frean, MLSS Tutorial 2010 o Eri Xing @ OMU, 20052020 29

; I: Restricted Boltzmann Machines

a Gradient of the log-likelihood w.r.t. the parameters (alternative form):

0 0
0—108L(U) = Epn) [a—P(V h)] Ep(v,n) [-P (v, h)]

Both expectations can be approximated via sampling
Sampling from the posterior is exact (RBM factorizes over h given v)
Sampling from the joint is done via MCMC (e.g., Gibbs sampling)

In the neural networks literature:
o computing the first term is called the clamped / wake / positive phase
(the network is “awake” since it conditions on the visible variables)
o Computing the second term is called the unclamped / sleep / free / negative phase

(the network is “asleep” since it samples the visible variables from the joint;
metaphorically, it is "dreaming” the visible inputs)

© Eric Xing @ CMU, 2005-2020 30 g
L

% I: Restricted Boltzmann Machines

a Gradient of the log-likelihood w.r.t. the parameters (alternative form):

0 0
——log L(v) = Epnpv) [—P(V h)] Epw,n) [—P(V h)
ow;; ow;;

o Learning is done by optimizing the log-likelihood of the model for a given
data via stochastic gradient descent (SGD)

a Estimation of the second term (the negative phase) heavily relies on the
mixing properties of the Markov chain

o This often causes slow convergence and requires extra computation

II: Sigmoid Belief Networks
OOOQO Hidden units

Hidden units OOOO Symptoms ‘ OOOQO Diseases
OQOO t OOOQO Symptoms
) \\ OOQO Hidden units } OOQOQ Hidden units
O000 QOO0 } OOOO Hidden units
Symptoms Diseases OOQOQO Diseases ; OOOO Symptoms
OOOQ Diseases from Neal,

. L1992
« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

P(xi|m(x)) = o x; z WijX;
xj € T(x;)
« Bayesian networks exhibit a phenomenon called “explain away effect”

CA O B > If A correlates with C, then the chance of B correlating
with C decreases. = A and B become correlated given C.
<>

© Eric Xing @ CMU, 2005-2020

II: Sigmoid Belief Networks
OOOQO Hidden units

Hidden units OOOO Symptoms ‘ OOOQO Diseases
OQOO t OOOQO Symptoms
) \\ OOQO Hidden units } OOQOQ Hidden units
O000 QOO0 } OOOO Hidden units
Symptoms Diseases OOQOQO Diseases ; OOOO Symptoms
OOOQ Diseases from Neal,

. L1992
« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

P(xi|m(x)) = o x; z WijX;
xj € T(x;)
« Bayesian networks exhibit a phenomenon called “explain away effect”

Due to the “explain away effect,” when we

condition on the visible layer in belief networks,
O hidden variables all become dependent.

Sigmoid Belief Networks:
Learning and Inference

« Neal proposed Monte Carlo methods for learning and inference (Neal, 1992):

oL _ 3 1 OP(V =)
dwi, ~ P(V =7) owij
Approximated with Gibbs sampling ot
L Z—l-— Z5»P(§= (h, 7))
« Conditional distributions: S PV =v) & owy
P(Si=x|S;=s;:]#1) = Y 3 PS=(h5) |V =4
veT 1 OP(S = (h,7))
Siw; o XW ;i TR ‘ —
(Jz<; j J) }:Ir ((j k<§#ik Jk)) P(S = (h,v)) Oty
i ZZP(§=§|I~/=5) ~l] OP(S =5)
- . T T P(S =5%) ow;;
 No negative phase as in RBM!

« Convergence is very slow, sl e T
especially for large belief nets, e 6(5*21 — 90 (s; %@I:ff'skwik)
due to the intricate e el g
“explain-away” effects... =YY PGS =5V =9 sisjo(-s7 T sewn)-

vET 5 k<i

Equations from Neal, 1992 © Eric Xing @ CMU, 2005-2020

34

RBMs are infinite belief networks

* Recall the expression for the gradient of the log likelihood for RBM:
0 0
p log L(v) = Epp) [P(v, h)] — Epwn) [P(v, h)]
Wij

aWij aWU
* To make a gradient update of the model parameters, we need compute

the expectations via sampling.
» We can sample exactly from the posterior in the first term
» We run block Gibbs sampling to approximately sample from the joint distribution

images from Marcus Frean, MLSS Tutorial 2010 sampling steps o vt Xing @ OMU, 20052020 35

RBMs are infinite belief networks

» Gibbs sampling: alternate between sampling hidden and visible variables

« Conditional distributions P(v|h) and P(h|v) are represented by sigmoids

* Thus, we can think of Gibbs sampling from the joint distribution represented by
an RBM as a top-down propagation in an infinitely deep sigmoid belief network!

images from Marcus Frean, MLSS Tutorial 2010 o vt Xing @ OMU, 20052020 36 g

RBMs are infinite belief networks

« RBMs are equivalent to infinitely deep belief networks

to generate: and so on...
. 5
v,.f!‘“, Y_}"!,,“;\,,P‘\",Y \\ VL(E
W NIRRT |3
visible layer il /‘X / Yo
w’ Y
« Sampling from this is the same as sampling from W \J
the network on the right ”
Y
w
visible layer

images from Marcus Frean, MLSS Tutorial 2010 o Erio Xing @ MU, 20052020 37 Lg

/ RBMs are infinite belief networks

« RBMs are equivalent to infinitely deep belief networks

and so on...
o
\E:
®
0
Yo
Y
Y
Y to generate:
000000 |
visible layer visible layer v f NM vusnble*layer

images from Marcus Frean, MLSS Tutorial 2010 o Eric Xing @ CMU, 2005.2020

38

RBMs are infinite belief networks

« RBMs are equivalent to infinitely deep belief networks

and so on...
¢ g
Q
% Xy m
Wie / | o
P[4 A&
AN ‘
Wr [\ D%
V rw w9
L X K I X
¢ N\\KY")/J/ RBM
w w : \ ‘;’\;»I'\,‘ \?x, \
o Y @ @ A
W7 ¢)F‘N %’(W.’ /T(\\ o \ x RBM t
; o gen
w WIKKN | / DY | w w \/ |
S - Y ir Y W I
O *EU visible Iayer *-& \"t’ visibie layer W& \g o e :& Q’\) b,*ly

* When we train an RBM, we are really training an infinitely deep brief net!
e |t is just that the weights of all layers are tied.

* |[f the weights are “untied” to some extent, we get a Deep Beliet Network.

images from Marcus Frean, MLSS Tutorial 2010 © vt Xin @ GHU, 2006.2020

39

3

lll: Deep Belief Nets

Deep Belief Network

Now weights are untied!

« DBNs are hybrid graphical models (chain graphs):

« Exact inference in DBNs is problematic due to explaining away effect
 Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training

« Approximate inference is feed-forward

/
ﬁ Deep Belief Networks

Deep Belief Network < DBNs represent a joint probability distribution
P(v,ht, h2, h3) = P(h?, h3)P(h|h2)P(v|h1)

 Note that P(h?, h?) is an RBM and the conditionals P(h'|h?)
and P(v|h'!) are represented in the sigmoid form

* The model is trained by optimizing the log likelihood for a
given data log P(v)

Challenges:
« Exact inference in DBNs is problematic due to explain away effect
* Training is done in two stages:
« greedy pre-training + ad-hoc fine-tuning; no proper joint training
* Approximate inference is feed-forward (DOUtOM-UP) oommmmn o g

DBN: Layer-wise pre-training

and so on...

* Pre-train and freeze the 1st RBM
» Stack another RBM on top and train it

visible layer

* The weights weights 2+ layers remain tied

« We repeat this procedure: pre-train and untie
the weights layer-by-layer...

images from Marcus Frean, MLSS Tutorial 2010 o Ere Xing @ OMU. 20052020 42

DBN: Layer-wise pre-training

* We repeat this procedure: pre-train and untie
the weights layer-by-layer:

* The weights of 3+ layers remain tied

e and so forth

One pass, non-iterative

and so on...

w3’
gD
A N S s P

w3

* From the optimization perspective, this procequre loosely corresponas
o an approximate block-coordinate accent on the log-likelihood

images from Marcus Frean, MLSS Tutorial 2010

DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic

model per se e T
* However, the layers of representations could perhaps be O o R

useful for some other downstream tasks! S |

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder) ! 2000 .RBME

1. Pre-train a stack of RBMs in a greedy layer-wise fashion

2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

RBM
Pretraining

images from Hinton & Salakhutdinov, 2006

© Eric Xing @ CMU, 2005-2020

DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probab|l|st|c

model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

images from Hinton & Salakhutdinov, 2006

Unrolling

DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic

model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN — autoencoder)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

images from Hinton & Salakhutdinov, 2006

Fine-tuning

.

DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic

model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting B: Supervised learning (DBN — classifier)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create a feedforward classifier
3. Fine-tune the parameters by optimizing the reconstruction error

Some intuitions about how pre-training works:
Erhan et al.: Why Does Unsupervised Pre-training Help Deep Learning? JMLR, 2010

(/ Deep Belief Nets and Boltzmann Machines
Deep Belief Network

« DBNs are hybrid graphical models (chain graphs):
 Inference in DBNSs is problematic due to explaining away effect
 Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
« Approximate inference is feed-forward

(/ Deep Belief Nets and Boltzmann Machines

Deep Belief Network Deep Boltzmann Machine

« DBMs are fully un-directed models (Markov random fields):

« Can be trained similarly as RBMs via MCMC (Hinton & Sejnowski, 1983)

« Use a variational approximation of the data distribution for faster training
(Salakhutdinov & Hinton, 2009)

« Similarly, can be used to initialize other networks for downstream tasks

% Graphical models vs. Deep networks

a A few critical points to note about all these models:

o The primary goal of deep generative models is to represent the distribution of
the observable variables. Adding layers of hidden variables allows to
represent increasingly more complex distributions.

o Hidden variables are secondary (auxiliary) elements used to facilitate learning
of complex dependencies between the observables.

o Training of the model is ad-hoc, but what matters is the quality of learned
hidden representations.

o Representations are judged by their usefulness on a downstream task (the
probabilistic meaning of the model is often discarded at the end).

o In contrast, classical graphical models are often concerned with the
correctness of learning and inference of all variables

}/ An old study of belief networks

from the GM standpoint

[Xing, Russell, Jordan, UAI 2003]

Mean-field partitions of a sigmoid belief network for subsequent GMF inference

= ‘-R:' 7 --*.;ta*—“!-"-ss

sleleléle]s]e]e}

P

"""""""""""""""""""

e e T o 1y T A Tt k3 e il Sl ok ot e S iy B 3 B e o

SO000000LOL 00000000 OD

Study focused on only inference/learning accuracy, speed, and partition

Singleton marginal error

0.5
0.4 [GMF,
GMF,
03 [BP |
0.2r T 1
[
0.1) 1
" no obs with obs

140

120+

100+

80

60~

40+

20+

0"

CPU time

[.|

no obs with obs

% “Optimize” how to optimize via truncation & re-opt

o Energy-based modeling of the structured output (CRF)

y*(x;w) := argmin E(y, x; W)

y
a Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y* (x; w) = opt-alg E(y, x; W)

We can backprop through the optimization steps
since they are just a sequence of computations

Relevant recent paper:
Anrychowicz et al.: Learning to learn by
gradient descent by gradient descent. 2016.

Eric Xing @ CMU, 2005-2020

Dealing with structured prediction

o Energy-based modeling of the structured output (CRF)
y*(x;w) := argmin E(y, x; W)
y
o Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y* (x; w) = opt-alg E(y, x; w)
y
o We can think of y* as some non-linear differentiable function of the inputs and
weights — impose some |0ss and optimize it as any other standard
computation graph using backprop!
o Similarly, message passing based inference algorithms can be truncated and
converted into computational graphs (Domke, 2011; Stoyanov et al., 2011)

© Eric Xing @ CMU, 2005-2020 53

s

% Conclusion

o DL & GM: the fields are similar in the beginning (structure, energy, etc.),
and then diverge to their own signature pipelines

o DL: most effort is directed to comparing different architectures and their
components (models are driven by evaluating empirical performance on

a downstream tasks)

o DL models are good at learning robust hierarchical representations from the data and
suitable for simple reasoning (call it “low-level cognition”)

o GM: the effort is directed towards improving inference accuracy and

convergence speed

o GMs are best for provably correct inference and suitable for high-level complex
reasoning tasks (call it “high-level cognition”)

a Convergence of both fields is very promising!
o Next part: a unified view of deep generative models in the GM interpretation

© Eric Xing @ CMU, 2005-2020

4
" PETUUM

Supplementary

% Outline

U
a

a
a

Q
a
a
a

o Combining DL methods and GMs

o Using outputs of NNs as inputs to GMs
o GMs with potential functions represented by NNs
o NNs with structured outputs

0 O

% Combining sequential NNs and GMs

H ybrid: RNN + HMM

5 b 6

L_.__ L___ L___ L___

slide courtesy: Matt Gormley

/
{/ Combining sequential NNs and GMs

et ale 7‘0\3)

Hybrid: RNN + HMM KD

The model, inference, and
learning can be analogous to

our NN + HMM hybrid D—()

* Objective: log-likelihood g g g

e Model: HMM/Gaussian - . - :
emissions

* Inference: forward-
backward algorithm

* Learning: SGD with
gradient by
backpropagation

ﬁ Hybrid NNs + conditional GMs
O mOm = ?

1
P

S

v
- N
n|4 vin|p|d n|s vin(p|d
p |0.1 Vg ea].21.3 P 0.1 v.lal:4l2]:3
d 0.1 ni.8lala|o d |0.2 n .8 |Eiie
pilad 3313 plailal:2]3
d|.2|.8|/0]|0 d|(.2|.8]|0]0

- @ © © 06 ¢

a In a standard CRF, each of the factor cells is a parameter.
o |In a hybrid model, these values are computed by a neural network.

% Hybrid NNs + conditional GMs
Hybrid: Neural Net + CRF

Forward computation

N

v
n vin/p d
b v 2|.3
d n/slalalo
3

|0

/
(/ Hybrid NNs + conditional GMs

41)
Westo™ »

O Hybrid: CNN + CRF

“NN + SLL” i —

* Model: Convolutional el i ddH ‘
Neural Network w - L
(CNN) with linear- i .
chain CRF J \

o

* Training objective:

maximize sentence- e
level likelihood (SLL) o

Figure from (Collobert & Weston, 2011)

© Eric Xing @ CMU, 2005-2020 61 g
L 4

4 Using GMs as Prediction Explanations

Satellite imagery

Meaningful attributes

01 Nightlight intensity
02 Is urban

03 Has electricity

04 Has generator

05 Avg. temperature
06 Avg. percipitation

07 Vegetation

08 Avg. vegetation inc.

09 Avg. vegetation dec.
10 Avg. dist. to market
11 Avg. dist. to road
12 Num. of rooms

13 Dist. to water src.
14 Water usage p/ day
15 Is water payed

16 HH type: BQ

© Eric Xing @ CMU, 2005-2020

62

% Using GMs as Prediction Explanations

How do we build a powerful predictive model whose
predictions we can interpret in terms of
semantically meaningful features?

4 Contextual Explanation Networks (CENSs)

made by a linear GM.

« Each coefficient
assigns a weight to a
meaningful attribute.

 Allows us to judge
predictions in terms of
GMs produced by the
context encoder.

Context Explanation Prediction
- 03| 05| -0.2 —| Not poor
)
= ParamefNotesa
g S I I B graphical Thedglal prediction is
-

Encoder
Unreliable water
Walls: Unburnt bricks
Roof: Thatch, Straw
Has electricity
Attributes

Water src: Public tap

Instance 2

—_ Poor

o

.

© Eric Xing @ CMU, 2005-2020 64 Lg

Contextual Explanation Networks (CENSs)

» family history of diabetes

Medical notes (context):
» reqular smoker
» [no previous heart attacks]

High blood Previous
pressure heart attack

(a)

« General idea: Use deep neural nets to generate parameters for graphical models
applicable in a given context (e.g., for a given patient).

* Produced GMs are used to make the final prediction = 100% fidelity and consistency.

* GMs are built on top of semantically meaningful variables (not deep embeddings!)
and can be used as explanations for each prediction.

s

CEN: Implementation Details

- T TR IR IR SN G SRS ORGSR, OER R AR TR T AR e |

| | Dictionary

I \ I EEEEEEEEE)

I = Crrrrrrrng dot

| [_ ' IIlllllILlH

| [e == | EEEEEEEEE
s s EEEEEE

- e ' IV

| — |

| | }

| i |

| Context Attention '

Workflow:

* Maintain a (sparse) dictionary of GM parameters.

* Process complex inputs (images, text, time series, etc.) using deep nets; use soft
attention to either select or combine models from the dictionary.

» Use constructed GMs (e.g., CRFs) to make predictions.
* Inspect GM parameters to understand the reasoning behind predictions.

© Eric Xing @ CMU, 2005-2020 66 Lg

4 Results: imagery as context

Nightight ntesity] F o7 Uganda: Contextual Models
“ i 0.6 Arua H ks
Has electricity 0.4 3 E! g= o= "o
| 8 . - : M2
. 0.0 - U0 "= = = o8
-0.1 | 0.4 Vegetation ° B .
—0.4 €04 h-:}/;'-"ﬁ_lai'i :- =:-
& B -
-0.3 -0.3 Is water payed | —08 .E 0.3 Gulu e Sismem n'E mE "
. }—] E =. ==- = - =.. .: =2 e -.
- o L] L
0.5 0.2 Roof Thatch, Straw /\;“'l KaSeSj Lizotne - =" jﬂ "o = M1
=) L) EaEm
N = " e el s " UEE"
= .= - e [] m -.- - III.
Walls: Unburnt bricks g 0.3 summ .= .. s = B :i- l==.-=: . -
g .E m . | | -E-.-=.. ..-==- E= | | : m
()] = = o L | W
Water src: Public tap = Sroaa LI .' L " i
g(p.g a --'. - - .IE - 3 lganga
N mEE = .= L 1
Water: Unreliable i ﬁ = l- Benare Kampala (caplta|)
I = .n.. - -

e
—

(a) v ©

Based on the imagery, CEN learns to select different models for urban and rural
areas

© Eric Xing @ CMU, 2005-2020 67

/" Results: classical image & text datasets

MNIST CIFAR10 | MNIST IMDB
Model Err (%) | Model Err (%) 10 —4— LSTM
P
LRpx 8.00 | LRpx1 60.1 ~
LRhnog 2.98 | LRhog 48.6 2
CNN 0.75 | VGG 9.4 8 5,
)
MoEpx1 1.23 | MoEpn 13.0 A
CENpx1 0.76 | CENpx1 9.6 0 5 10 15 0 10 20 30 40
CENhog 0.73 | CENjoq 9.2 Train set size (%) Train set size (%)
Same performance as vanilla deep Predicting via explanation regularizes the
networks; no compute overhead. model when there is not enough data.

© Eric Xing @ CMU, 2005-2020 68 g
L

% Results: classical image & text datasets

Method Error
Paragraph Vector (Le and Mikolov, 2014) 7.42%
SA-LSTM with joint training (Dai and Le, 2015) 14.70%
LSTM with tuning and dropout (Dai and Le, 2015) 13.50%
LSTM initialized with word2vec embeddings (Dai and Le, 2015) 10.00%
SA-LSTM with linear gain (Dai and Le, 2015) 9.17%
LM-TM (Dai and Le, 2015) 7.64%
SA-LSTM (Dai and Le, 2015) 7.24%
Virtual Adversarial (Miyato et al., 2016) 5.94 + 0.12%
TopicRNN (Dieng et al., 2017) 6.28 %
CEN-bow 5.92 1+ 0.05 %
CEN-topic 6.25 + 0.09 %

Semi-
supervised
training

Only
supervised
training (!!)

© Eric Xing @ CMU, 2005-2020 69

/
{/ CEN architectures for survival analysis

ANAMAAA AT & / !)i

@» @ @-» @ Produce a CRF that
predicts a sequence of

survival indicators over

future time intervals.

Encode a sequence of
observations for a patient
(e.g., vitals/tests measured in ICU).

/" Results: survival analysis

SUPPORT?2 PhysioNet Challenge 2012
Model Acc@Q25 Acc@Q50 Acc@Q75 RAE | Model Acc@25 Acc@Q50 Acc@Q75 RAE
Cox 84.1 73.7 47.6 0.90 | Cox 93.0 69.6 49.1 0.24
Aalen 87.1 66.2 45.8 0.98 | Aalen 93.3 78.7 57.1 0.31
CRF 84.4 89.3 79.2 0.59 | CRF 93.2 85.1 65.6 0.14
MLP-CRF 87.7 89.6 80.1 0.62 | LSTM-CRF 93.9 86.3 68.1 0.11
MLP-CEN 85.5 90.8 81.9 0.56 | LSTM-CEN 94 .8 87.5 70.1 0.09
Patient ID: 3520 (Died) Patient ID: 1100 (Survived)
dementia] l 4
avtisst |l 2
slos i]
hday R | a I 0
ca_yes 2
sfdm2 Coma or intub EINERRRCEREDE © § Il il
sfdm2._SIP>=30 LAMINILE i -
0 10 20 30 40 50 0 10 20 30 40 50

Time after leaving hospital (weeks)

Time after leaving hospital (weeks)

© Eric Xing @ CMU, 2005-2020

71

Outline

(M

(M W

a
a
a

o Bayesian Learning of NNs
o Bayesian learning of NN parameters
o Deep kernel learning

© Eric Xing @ CMU, 2005-2020

72

s

% Bayesian learning of NNs

o A neural network as a probabilistic model:

o Likelihood: p(y|x, 8)
o Categorical distribution for classification = cross-entropy loss
o Gaussian distribution for regression = squared loss
o Prior on parameters: p(0)

o Maximum a posteriori (MAP) solution:
a OMAP = argmaxy log p(y|x, 0)p(0)
o Gaussian prior = L2 regularization
o Laplace prior = L1 regularization

o Bayesian learning [MacKay 1992, Neal 1996, de Freitas 2003]
o Posterior: p(0]x,y)
o Variational inference with approximate posterior (@)

© Eric Xing @ CMU, 2005-2020 73 g
L

Bayesian learning of NNs

Q

Variational inference (in a nutshell):
ming F(D,8) = KL(q(6)| p(8]D)) — Eqg)[log p(D|6)]

ming F(D,0) = KL(q(8)|| p(61D)) =) log p(D|6))
where 0; ~ q(0); KL term can be approximated similarly

We can define q(@) as a diagonal Gaussian or full-covariance Gaussian

Alternatively, g(8) can be defined implicitly, e.g. via dropout [Gal & Ghahramani, 2016]

0 = M - diag(z),
z ~ Bernoulli(p)

Dropping out neurons is equivalent to zeroing out
columns of the parameter matrices (i.e., weights)

z; = 0 corresponds to i-th column of M being dropped out
= the procedure is equivalent to dropout of unit i [Hinton et al., 2012]

Variational parameters are {M, p}

© Eric Xing @ CMU, 2005-2020

74

s

% “Infinitely Wide” Deep Models

o We have seen that an "infinitely deep” network can be explained by a proper GM, How
about an “infinitely wide” one?

o Consider a neural network with a Gaussian prior on its weights an infinitely many hidden
neurons in the intermediate layer. /gl

o Turns out, if we have a certain Gaussian prior on the Infinitely
weights of such infinite network, it will be equivalent many hidden
to a Gaussian process [Neal 1996]. units

o Gaussian process (GP) is a distribution over functions:
m(x) = E[f(x)],
k(x,x") = E[(f(x) —m(x))(f(x") —m(x))],
f(x) ~ GP(m(x),k(x,x")).

o When used for prediction, GPs account for correlations between the data points and
can output well-calibrated predictive uncertainty estimates. g

© Eric Xing @ CMU, 2005-2020

4 Gaussian Process and Deep Kernel Learning

o Consider a neural network with a Gaussian prior on its weights an infinitely many hidden neurons
in the intermediate layer. i

Infinitely many
hidden units

o Certain classes of Gaussian priors for neural networks with infinitely many hidden units converge
to Gaussian processes [Neal 1996]

o Deep kernel [Wilson et al., 2016]
o Combines the inductive biases of deep model architectures with the non-parametric flexibility of Gaussian processes
k(xl-,xj|qb) - k(g(x;,0),9(x;,0)|[$,0) where K;; = k(x;, x;)

= K
o Starting from a base kernel k(x;, xj|¢), transform the inputs x as gglf)) _]“Qf(()]:“;”léx_)l'))

o Learn both kernel and neural parameters {¢, 8} jointly by optimizing marginal log-likelihood (or its variational lower-bound).
o Fast learning and inference with local kernel interpolation, structured inducing points, and Monte Carlo approximations

© Eric Xing @ CMU, 2005-2020 76 g
L

Gaussian Process and Deep Kernel Learning

o By adding GP as a layer to a deep neural net, we can think of it as

adding an infinite hidden layer with a particular prior on the weights

. W
o Deep kernel learning [wilson et al., 2016] ——
: : : : Input layer
o Combines the inductive biases of -

deep models with the non-parametric
flexibility of Gaussian processes

o GPs add powerful regularization to
the network

o Additionally, they provide predictive
uncertainty estimates

T

Irp

o WS
A

Hidden layers

h]
/ m Output layer
o —
\1

(10)

\\) Y1
\
/

/ \ '
/‘/ yp

he(0)

oo layer

© Eric Xing @ CMU, 2005-2020 77

s

Deep kernel learning on sequential data

What if we have data of
sequential nature?

Can we still apply the sam
reasoning and build rich
nonparametric models on
recurrent nets?

% Deep kernel learning on sequential data

The answer is YES!

By adding a GP layer to a recurrent
network, we effectively correlate
samples across time and get
predictions along with well
calibrated uncertainty estimates.

To train such model using
stochastic techniques however
requires some additional care (see
our paper).

/
ﬁ Deep kernel learning on sequential data

Lane prediction: LSTM vs GP-LSTM

50

Front distance, m
[\) w e~
(@) (@) (e)

—
=

Ut

m
NN W e
o o O

Front distance,
=

e}

Side distance, m

© Eric Xing @ CMU, 2005-2020 80 g
L

/
(/ Deep kernel learning on sequential data

Lead vehicle prediction: LSTM vs GP-LSTM

100
u . o =11I L =::l B =11. . =I:.
= % A A A T
3 . n w® .l
S 60 LN LR .
-— .. ~
g . i, I,
£ " n
S - -
c 20
0 -5 0 5 =5 0 5 =5 0 5 =5 0 5 =5 0 b}

100 & -
@ﬁ . .““.\.
E80 .‘
d ‘-_-_-_—_::‘. ___________
o
S 60 .
G “
-o 40 /1‘_
< ﬁ‘k\
2 20 @ >
LL 7
0— 5 0 5 -5 0 5 -5 0 0 - ; L) | 0 |

Side distance, m

© Eric Xing @ CMU, 2005-2020 81 %
L 4

