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ML vs DL
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Outline
q An overview of DL components

q Historical remarks: early days of neural networks
q Modern building blocks: units, layers, activations functions, loss functions, etc.
q Reverse-mode automatic differentiation (aka backpropagation)

q Similarities and differences between GMs and NNs
q Graphical models vs. computational graphs
q Sigmoid Belief Networks as graphical models
q Deep Belief Networks and Boltzmann Machines

q Combining DL methods and GMs
q Using outputs of NNs as inputs to GMs
q GMs with potential functions represented by NNs
q NNs with structured outputs

q Bayesian Learning of NNs
q Bayesian learning of NN parameters
q Deep kernel learning
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Perceptron and Neural Nets

q From biological neuron to artificial neuron (perceptron)

q From biological neuron network to artificial neuron networks
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The perceptron learning algorithm

q Recall the nice property of sigmoid function
q Consider regression problem f: XàY, for scalar Y:
q We used to maximize the conditional data likelihood

q Here …
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xd = input

td = target output

od = observed output

wi = weight i

Batch mode:

Do until converge:

1. compute gradient ÑED[w]

2.  

Incremental mode:

Do until converge:

§ For each training example d in D
1. compute gradient ÑEd[w]

2.

where 

The perceptron learning algorithm
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“Combined logistic models”
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Backpropagation:
Reverse-mode differentiation

q Artificial neural networks are nothing more than complex functional compositions that can 
be represented by computation graphs:
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Backpropagation:
Reverse-mode differentiation

q Artificial neural networks are nothing more than complex functional compositions that can 
be represented by computation graphs:

q By applying the chain rule and using reverse accumulation, we get

q The algorithm is commonly known as backpropagation
q What if some of the functions are stochastic?
q Then use stochastic backpropagation!

(to be covered in the next part)
q Modern packages can do this automatically (more later)
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Modern building blocks of deep networks

q Activation functions
q Linear and ReLU
q Sigmoid and tanh
q Etc.
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source: 
colah.github.io

Modern building blocks of deep networks

q Activation functions
q Linear and ReLU
q Sigmoid and tanh
q Etc.

q Layers
q Fully connected
q Convolutional & pooling
q Recurrent
q ResNets
q Etc.

fully connected
convolutional

recurrent

blocks with residual connections © Eric Xing @ CMU, 2005-2020 16



Modern building blocks of deep networks

q Activation functions
q Linear and ReLU
q Sigmoid and tanh
q Etc.

q Layers
q Fully connected
q Convolutional & pooling
q Recurrent
q ResNets
q Etc.

q Loss functions
q Cross-entropy loss
q Mean squared error
q Etc.

(a part of GoogleNet)

Putting things together:
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activationloss
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Modern building blocks of deep networks

q Activation functions
q Linear and ReLU
q Sigmoid and tanh
q Etc.

q Layers
q Fully connected
q Convolutional & pooling
q Recurrent
q ResNets
q Etc.

q Loss functions
q Cross-entropy loss
q Mean squared error
q Etc.

(a part of GoogleNet)

l Arbitrary combinations of 
the basic building blocks

l Multiple loss functions –
multi-target prediction, 
transfer learning, and 
more

l Given enough data, 
deeper architectures just 
keep improving

l Representation learning:
the networks learn 
increasingly more 
abstract representations 
of the data that are 
“disentangled,” i.e., 
amenable to linear 
separation.

Putting things together:
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Feature learning

q Successful learning of intermediate representations 
[Lee et al ICML 2009, Lee et al NIPS 2009]

19
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Graphical models vs. Deep nets

Graphical models

• Representation for encoding 
meaningful knowledge and the 
associated uncertainty in a 
graphical form

Deep neural networks

l Learn representations that 
facilitate computation and 
performance on the end-metric 
(intermediate representations are 
not guaranteed to be meaningful)
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Graphical models vs. Deep nets

Graphical models

q Representation for encoding 

meaningful knowledge and the 

associated uncertainty in a 

graphical form

q Learning and inference are based 

on a rich toolbox of well-studied 

(structure-dependent) techniques 

(e.g., EM, message passing, VI, 

MCMC, etc.)

q Graphs represent models

Deep neural networks

l Learn representations that 

facilitate computation and 

performance on the end-metric 

(intermediate representations are 

not guaranteed to be meaningful)

l Learning is predominantly based 

on the gradient descent method 

(aka backpropagation);

Inference is often trivial and done 

via a “forward pass”

l Graphs represent computation
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Graphical models vs. Deep nets

Graphical models

Utility of the graph
q A vehicle for synthesizing a global loss 

function from local structure
q potential function, feature function, etc.

q A vehicle for designing sound and 
efficient inference algorithms

q Sum-product, mean-field, etc.
q A vehicle to inspire approximation and 

penalization
q Structured MF, Tree-approximation, etc.

q A vehicle for monitoring theoretical and 
empirical behavior and accuracy of 
inference

Utility of the loss function
q A major measure of quality of the 

learning algorithm and the model

X1 X2

X3

X4X5

logP (X) =

X

i

log �(xi) +

X

i,j

log (xi, xj)

! " ~$("|')
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Deep neural networks

Utility of the network
l A vehicle to conceptually synthesize 

complex decision hypothesis
l stage-wise projection and aggregation

l A vehicle for organizing computational 
operations

l stage-wise update of latent states

l A vehicle for designing processing steps 
and computing modules

l Layer-wise parallelization

l No obvious utility in evaluating DL 
inference algorithms

Utility of the Loss Function
l Global loss? Well it is complex and non-

convex...

Graphical models vs. Deep nets
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Deep neural networks

Utility of the network
l A vehicle to conceptually synthesize 

complex decision hypothesis
l stage-wise projection and aggregation

l A vehicle for organizing computational 
operations

l stage-wise update of latent states

l A vehicle for designing processing steps 
and computing modules

l Layer-wise parallelization

l No obvious utility in evaluating DL 
inference algorithms

Utility of the Loss Function
l Global loss? Well it is complex and non-

convex...
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Graphical models vs. Deep nets
DL ML (e.g., GM)

Empirical goal: e.g., classification, feature learning e.g., latent variable inference, transfer 

learning

Structure: Graphical Graphical

Objective: Something aggregated from local functions Something aggregated from local functions 

Vocabulary: Neuron, activation function, … Variable, potential function, …

Algorithm: A single, unchallenged, inference algorithm 

–

Backpropagation (BP)

A major focus of open research, many 

algorithms, and more to come

Evaluation: On a black-box score –

end performance

On almost every intermediate quantity

Implementation: Many tricks More or less standardized 

Experiments: Massive, real data

(GT unknown)

Modest, often simulated data (GT known)

<= ?>
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Graphical Models vs. Deep Nets

q So far:
q Graphical models are representations of probability distributions
q Neural networks are function approximators (with no probabilistic meaning)

q Some of the neural nets are in fact proper graphical models (i.e., 
units/neurons represent random variables):

q Boltzmann machines (Hinton & Sejnowsky, 1983)
q Restricted Boltzmann machines (Smolensky, 1986)
q Learning and Inference in sigmoid belief networks (Neal, 1992)
q Fast learning in deep belief networks (Hinton, Osindero, Teh, 2006)
q Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

q Let’s go through these models one-by-one
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I: Restricted Boltzmann Machines

q RBM is a Markov random field represented with a bi-partite graph
q All nodes in one layer/part of the graph are connected to all in the other;

no inter-layer connections

q Joint distribution:
! ", ℎ = 1

' exp +
,,-
.,-",ℎ, ++

,
0,", ++

-
1-ℎ-

Images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2005-2020 28



I: Restricted Boltzmann Machines

q Log-likelihood of a single data point (unobservables marginalized out):

log $ % = log'
(
exp '

,,.
/,.%,ℎ, +'

,
2,%, +'

.
3.ℎ. − log(6)

q Gradient of the log-likelihood w.r.t. the model parameters:
8

8/,.
log $ % ='

(
9(ℎ|%) 8

8/,.
9(%, ℎ) −'

;,(
9(%, ℎ) 8

8/,.
9(%, ℎ)

q where we have averaging over the posterior and over the joint.
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I: Restricted Boltzmann Machines

q Gradient of the log-likelihood w.r.t. the parameters (alternative form):

!
!"#$

log ( ) = +,(.|0)
!

!"#$
2(), ℎ) − +,(0,.)

!
!"#$

2(), ℎ)

q Both expectations can be approximated via sampling
q Sampling from the posterior is exact (RBM factorizes over ℎ given ))
q Sampling from the joint is done via MCMC (e.g., Gibbs sampling)
q In the neural networks literature:

q computing the first term is called the clamped / wake / positive phase
(the network is “awake” since it conditions on the visible variables)

q Computing the second term is called the unclamped / sleep / free / negative phase
(the network is “asleep” since it samples the visible variables from the joint;
metaphorically, it is ”dreaming” the visible inputs)
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I: Restricted Boltzmann Machines

q Gradient of the log-likelihood w.r.t. the parameters (alternative form):

!
!"#$

log ( ) = +,(.|0)
!

!"#$
2(), ℎ) − +,(0,.)

!
!"#$

2(), ℎ)

q Learning is done by optimizing the log-likelihood of the model for a given 
data via stochastic gradient descent (SGD)

q Estimation of the second term (the negative phase) heavily relies on the 
mixing properties of the Markov chain

q This often causes slow convergence and requires extra computation
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• Sigmoid belief nets are simply Bayesian networks over binary variables with conditional 
probabilities represented by sigmoid functions:

! "# $ "# = & "# '
() ∈ + (,

-#.".

• Bayesian networks exhibit a phenomenon called “explain away effect”

II: Sigmoid Belief Networks

If A correlates with C, then the chance of B correlating 
with C decreases. ⇒ A and B become correlated given C.

from Neal, 
1992
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• Sigmoid belief nets are simply Bayesian networks over binary variables with conditional 
probabilities represented by sigmoid functions:

! "# $ "# = & "# '
() ∈ + (,

-#.".

• Bayesian networks exhibit a phenomenon called “explain away effect”

II: Sigmoid Belief Networks

from Neal, 
1992

Note:
Due to the “explain away effect,” when we 
condition on the visible layer in belief networks, 
hidden variables all become dependent.
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Sigmoid Belief Networks:
Learning and Inference

• Neal proposed Monte Carlo methods for learning and inference (Neal, 1992):

• Conditional distributions:

• No negative phase as in RBM!
• Convergence is very slow,

especially for large belief nets,
due to the intricate
“explain-away” effects…

Approximated with Gibbs sampling

log derivative

prob. of the visibles
via marginalization 

Bayes rule + 
rearrange sums

Plug-in the actual 
sigmoid form of the 
conditional prob.

Equations from Neal, 1992 © Eric Xing @ CMU, 2005-2020 34



RBMs are infinite belief networks

• Recall the expression for the gradient of the log likelihood for RBM:
!

!"#$
log ( ) = +,(.|0)

!
!"#$

2(), ℎ) − +,(0,.)
!

!"#$
2(), ℎ)

• To make a gradient update of the model parameters, we need compute 
the expectations via sampling.
• We can sample exactly from the posterior in the first term
• We run block Gibbs sampling to approximately sample from the joint distribution

images from Marcus Frean, MLSS Tutorial 2010 sampling steps © Eric Xing @ CMU, 2005-2020 35



RBMs are infinite belief networks

•Gibbs sampling: alternate between sampling hidden and visible variables

•Conditional distributions !(#|ℎ) and ! ℎ # are represented by sigmoids
• Thus, we can think of Gibbs sampling from the joint distribution represented by 

an RBM as a top-down propagation in an infinitely deep sigmoid belief network!

images from Marcus Frean, MLSS Tutorial 2010

sampling steps
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RBMs are infinite belief networks

• RBMs are equivalent to infinitely deep belief networks

• Sampling from this is the same as sampling from
the network on the right

images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2005-2020 37



RBMs are infinite belief networks

• RBMs are equivalent to infinitely deep belief networks
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RBMs are infinite belief networks

• RBMs are equivalent to infinitely deep belief networks

•When we train an RBM, we are really training an infinitely deep brief net!
• It is just that the weights of all layers are tied.
• If the weights are “untied” to some extent, we get a Deep Belief Network.
images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2005-2020 39



III: Deep Belief Nets

•DBNs are hybrid graphical models (chain graphs):
• Exact inference in DBNs is problematic due to explaining away effect
• Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
• Approximate inference is feed-forward

Now weights are untied!
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Deep Belief Networks

•DBNs represent a joint probability distribution
! ", ℎ%, ℎ&, ℎ' = ! ℎ&, ℎ' ! ℎ% ℎ& !("|ℎ%)

•Note that ! ℎ&, ℎ' is an RBM and the conditionals ! ℎ% ℎ&
and !("|ℎ%) are represented in the sigmoid form
• The model is trained by optimizing the log likelihood for a 

given data log ! "

Challenges:
• Exact inference in DBNs is problematic due to explain away effect
• Training is done in two stages:
• greedy pre-training + ad-hoc fine-tuning; no proper joint training

• Approximate inference is feed-forward (bottom-up)
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• Pre-train and freeze the 1st RBM
• Stack another RBM on top and train it

• The weights weights 2+ layers remain tied
•We repeat this procedure: pre-train and untie

the weights layer-by-layer…

DBN: Layer-wise pre-training

images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2005-2020 42



•We repeat this procedure: pre-train and untie
the weights layer-by-layer:
• The weights of 3+ layers remain tied

• and so forth
• From the optimization perspective, this procedure loosely corresponds

to an approximate block-coordinate accent on the log-likelihood

DBN: Layer-wise pre-training

images from Marcus Frean, MLSS Tutorial 2010
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• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic 
model per se
•However, the layers of representations could perhaps be

useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN → autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

images from Hinton & Salakhutdinov, 2006
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• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic 
model per se
•However, the layers of representations could perhaps be

useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting B: Supervised learning (DBN → classifier)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create a feedforward classifier
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

Some intuitions about how pre-training works:
Erhan et al.: Why Does Unsupervised Pre-training Help Deep Learning? JMLR, 2010 © Eric Xing @ CMU, 2005-2020 47



Deep Belief Nets and Boltzmann Machines

• DBNs are hybrid graphical models (chain graphs):
• Inference in DBNs is problematic due to explaining away effect
• Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
• Approximate inference is feed-forward

© Eric Xing @ CMU, 2005-2020 48



Deep Belief Nets and Boltzmann Machines

• DBMs are fully un-directed models (Markov random fields):
• Can be trained similarly as RBMs via MCMC (Hinton & Sejnowski, 1983)
• Use a variational approximation of the data distribution for faster training

(Salakhutdinov & Hinton, 2009)
• Similarly, can be used to initialize other networks for downstream tasks
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Graphical models vs. Deep networks
q A few critical points to note about all these models:

q The primary goal of deep generative models is to represent the distribution of 
the observable variables. Adding layers of hidden variables allows to 
represent increasingly more complex distributions.

q Hidden variables are secondary (auxiliary) elements used to facilitate learning 
of complex dependencies between the observables.

q Training of the model is ad-hoc, but what matters is the quality of learned 
hidden representations.

q Representations are judged by their usefulness on a downstream task (the 
probabilistic meaning of the model is often discarded at the end).

q In contrast, classical graphical models are often concerned with the 
correctness of learning and inference of all variables

© Eric Xing @ CMU, 2005-2020 50



GMFr

GMFb

BP

An old study of belief networks 
from the GM standpoint

Mean-field partitions of a sigmoid belief network for subsequent GMF inference

Study focused on only inference/learning accuracy, speed, and partition 

[Xing, Russell, Jordan, UAI 2003]
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“Optimize” how to optimize via truncation & re-opt

q Energy-based modeling of the structured output (CRF)

q Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

!"

!#

!$

!%
!&

!'
(

We can backprop through the optimization steps
since they are just a sequence of computations

Relevant recent paper:
Anrychowicz et al.: Learning to learn by 
gradient descent by gradient descent. 2016.
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Dealing with structured prediction

q Energy-based modeling of the structured output (CRF)

q Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

q We can think of y* as some non-linear differentiable function of the inputs and 
weights → impose some loss and optimize it as any other standard 
computation graph using backprop!

q Similarly, message passing based inference algorithms can be truncated and 
converted into computational graphs (Domke, 2011; Stoyanov et al., 2011)
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Conclusion
q DL & GM: the fields are similar in the beginning (structure, energy, etc.), 

and then diverge to their own signature pipelines
q DL: most effort is directed to comparing different architectures and their 

components (models are driven by evaluating empirical performance on 
a downstream tasks)

q DL models are good at learning robust hierarchical representations from the data and 
suitable for simple reasoning (call it “low-level cognition”)

q GM: the effort is directed towards improving inference accuracy and 
convergence speed

q GMs are best for provably correct inference and suitable for high-level complex 
reasoning tasks (call it “high-level cognition”)

q Convergence of both fields is very promising!
q Next part: a unified view of deep generative models in the GM interpretation
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Supplementary
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Outline
q An overview of DL components

q Historical remarks: early days of neural networks
q Modern building blocks: units, layers, activations functions, loss functions, etc.
q Reverse-mode automatic differentiation (aka backpropagation)

q Similarities and differences between GMs and NNs
q Graphical models vs. computational graphs
q Sigmoid Belief Networks as graphical models
q Deep Belief Networks and Boltzmann Machines

q Combining DL methods and GMs
q Using outputs of NNs as inputs to GMs
q GMs with potential functions represented by NNs
q NNs with structured outputs

q Bayesian Learning of NNs
q Bayesian learning of NN parameters
q Deep kernel learning
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Combining sequential NNs and GMs

slide courtesy: Matt Gormley © Eric Xing @ CMU, 2005-2020 57



Combining sequential NNs and GMs

slide courtesy: Matt Gormley © Eric Xing @ CMU, 2005-2020 58



Hybrid NNs + conditional GMs

q In a standard CRF, each of the factor cells is a parameter.
q In a hybrid model, these values are computed by a neural network.

slide courtesy: Matt Gormley © Eric Xing @ CMU, 2005-2020 59



Hybrid NNs + conditional GMs

slide courtesy: Matt Gormley © Eric Xing @ CMU, 2005-2020 60



Hybrid NNs + conditional GMs

slide courtesy: Matt Gormley © Eric Xing @ CMU, 2005-2020 61



Using GMs as Prediction Explanations

Al-Shedivat, Dubey, Xing, arXiv, 2017

Satellite imagery Meaningful attributes
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Using GMs as Prediction Explanations

Al-Shedivat, Dubey, Xing, arXiv, 2017

Satellite imagery Area attributes

How do we build a powerful predictive model whose
predictions we can interpret in terms of

semantically meaningful features?
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Contextual Explanation Networks (CENs)
Context

E
n
co
d
e
r

Explanation Prediction

Al-Shedivat, Dubey, Xing, arXiv, 2017
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Arbitrary 
neural net

Parameters of a 
graphical model

Notes:
• The final prediction is 

made by a linear GM.
• Each coefficient 

assigns a weight to a 
meaningful attribute.

• Allows us to judge 
predictions in terms of 
GMs produced by the 
context encoder.
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Contextual Explanation Networks (CENs)

• General idea: Use deep neural nets to generate parameters for graphical models 
applicable in a given context (e.g., for a given patient).
• Produced GMs are used to make the final prediction ⇒ 100% fidelity and consistency.
• GMs are built on top of semantically meaningful variables (not deep embeddings!) 

and can be used as explanations for each prediction.

Al-Shedivat, Dubey, Xing, arXiv, 
2017
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CEN: Implementation Details

Workflow:
• Maintain a (sparse) dictionary of GM parameters.
• Process complex inputs (images, text, time series, etc.) using deep nets; use soft 

attention to either select or combine models from the dictionary.
• Use constructed GMs (e.g., CRFs) to make predictions.
• Inspect GM parameters to understand the reasoning behind predictions.
Al-Shedivat, Dubey, Xing, arXiv, 
2017
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Results: imagery as context

Based on the imagery, CEN learns to select different models for urban and rural 
areasAl-Shedivat, Dubey, Xing, arXiv, 

2017
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Results: classical image & text datasets

Al-Shedivat, Dubey, Xing, arXiv, 
2017

Same performance as vanilla deep 
networks; no compute overhead.

Predicting via explanation regularizes the 
model when there is not enough data.
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Results: classical image & text datasets

Al-Shedivat, Dubey, Xing, arXiv, 
2017

Semi-
supervised
training

Only 
supervised 
training (!!)
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CEN architectures for survival analysis

Al-Shedivat, Dubey, Xing, arXiv, 
2017

Produce a CRF that  
predicts a sequence of 
survival indicators over 
future time intervals.

Encode a sequence of 
observations for a patient
(e.g., vitals/tests measured in ICU).
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Results: survival analysis
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Outline

q An overview of the DL components
q Historical remarks: early days of neural networks
q Modern building blocks: units, layers, activations functions, loss functions, etc.
q Reverse-mode automatic differentiation (aka backpropagation)

q Similarities and differences between GMs and NNs
q Graphical models vs. computational graphs
q Sigmoid Belief Networks as graphical models
q Deep Belief Networks and Boltzmann Machines

q Combining DL methods and GMs
q Using outputs of NNs as inputs to GMs
q GMs with potential functions represented by NNs
q NNs with structured outputs

q Bayesian Learning of NNs
q Bayesian learning of NN parameters
q Deep kernel learning
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Bayesian learning of NNs

q A neural network as a probabilistic model:
q Likelihood: ! " #, %

q Categorical distribution for classification ⇒ cross-entropy loss
q Gaussian distribution for regression ⇒ squared loss

q Prior on parameters: ! %
q Maximum a posteriori (MAP) solution:

q %'() = argmax0 log ! " #, % !(%)
q Gaussian prior ⇒ L2 regularization
q Laplace prior ⇒ L1 regularization

q Bayesian learning [MacKay 1992, Neal 1996, de Freitas 2003]

q Posterior: ! % #, "
q Variational inference with approximate posterior 5(%)

Weight Uncertainty in Neural Networks

H1 H2 H3 1

X 1

Y

0.5 0.1 0.7 1.3

1.40.3

1.2

0.10.1 0.2

H1 H2 H3 1

X 1

Y

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

is related to recent methods in deep, generative modelling
(Kingma and Welling, 2014; Rezende et al., 2014; Gregor
et al., 2014), where variational inference has been applied
to stochastic hidden units of an autoencoder. Whilst the
number of stochastic hidden units might be in the order of
thousands, the number of weights in a neural network is
easily two orders of magnitude larger, making the optimisa-
tion problem much larger scale. Uncertainty in the hidden
units allows the expression of uncertainty about a particular
observation, uncertainty in the weights is complementary
in that it captures uncertainty about which neural network
is appropriate, leading to regularisation of the weights and
model averaging.

This uncertainty can be used to drive exploration in contex-
tual bandit problems using Thompson sampling (Thomp-
son, 1933; Chapelle and Li, 2011; Agrawal and Goyal,
2012; May et al., 2012). Weights with greater uncertainty
introduce more variability into the decisions made by the
network, leading naturally to exploration. As more data are
observed, the uncertainty can decrease, allowing the deci-
sions made by the network to become more deterministic
as the environment is better understood.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces notation and standard learning in neural
networks, Section 3 describes variational Bayesian learn-
ing for neural networks and our contributions, Section 4
describes the application to contextual bandit problems,
whilst Section 5 contains empirical results on a classifica-
tion, a regression and a bandit problem. We conclude with
a brief discussion in Section 6.

2. Point Estimates of Neural Networks

We view a neural network as a probabilistic model
P (y|x,w): given an input x 2 Rp a neural network as-
signs a probability to each possible output y 2 Y , using
the set of parameters or weights w. For classification, Y is
a set of classes and P (y|x,w) is a categorical distribution –
this corresponds to the cross-entropy or softmax loss, when

the parameters of the categorical distribution are passed
through the exponential function then re-normalised. For
regression Y is R and P (y|x,w) is a Gaussian distribution
– this corresponds to a squared loss.

Inputs x are mapped onto the parameters of a distribu-
tion on Y by several successive layers of linear transforma-
tion (given by w) interleaved with element-wise non-linear
transforms.

The weights can be learnt by maximum likelihood estima-
tion (MLE): given a set of training examples D = (x

i

,y

i

)

i

,
the MLE weights wMLE are given by:

w

MLE
= argmax

w
logP (D|w)

= argmax

w

X

i

logP (y

i

|x
i

,w).

This is typically achieved by gradient descent (e.g., back-
propagation), where we assume that logP (D|w) is differ-
entiable in w.

Regularisation can be introduced by placing a prior upon
the weights w and finding the maximum a posteriori
(MAP) weights wMAP:

w

MAP
= argmax

w
logP (w|D)

= argmax

w
logP (D|w) + logP (w).

If w are given a Gaussian prior, this yields L2 regularisa-
tion (or weight decay). If w are given a Laplace prior, then
L1 regularisation is recovered.

3. Being Bayesian by Backpropagation

Bayesian inference for neural networks calculates the pos-
terior distribution of the weights given the training data,
P (w|D). This distribution answers predictive queries
about unseen data by taking expectations: the predictive
distribution of an unknown label ˆ

y of a test data item ˆ

x,
is given by P (

ˆ

y|ˆx) = E
P (w|D)[P (

ˆ

y|ˆx,w)]. Each pos-
sible configuration of the weights, weighted according to
the posterior distribution, makes a prediction about the un-
known label given the test data item ˆ

x. Thus taking an
expectation under the posterior distribution on weights is
equivalent to using an ensemble of an uncountably infi-
nite number of neural networks. Unfortunately, this is in-
tractable for neural networks of any practical size.

Previously Hinton and Van Camp (1993) and Graves
(2011) suggested finding a variational approximation to the
Bayesian posterior distribution on the weights. Variational
learning finds the parameters ✓ of a distribution on the
weights q(w|✓) that minimises the Kullback-Leibler (KL)

Figure courtesy: Blundell et al, 
2016
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Bayesian learning of NNs

q Variational inference (in a nutshell):

where !" ∼ $(!); KL term can be approximated similarly
q We can define $ ! as a diagonal Gaussian or full-covariance Gaussian
q Alternatively, $ ! can be defined implicitly, e.g. via dropout [Gal & Ghahramani, 2016]

q Dropping out neurons is equivalent to zeroing out
columns of the parameter matrices (i.e., weights)

q '( = 0 corresponds to +-th column of , being dropped out
⇒ the procedure is equivalent to dropout of unit + [Hinton et al., 2012]

q Variational parameters are {,, 0}

min5 6 7, ! = KL $ ! || ; ! 7 − E5(!)[log ;(7|!)]

min5 6 7, ! = KL $ ! || ; ! 7 −C
(
log ;(7|!()

! = , ⋅ diag G ,
G ∼ Bernoulli(;)
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“Infinitely Wide” Deep Models 

q We have seen that an ”infinitely deep” network can be explained by a proper GM, How 
about an “infinitely wide” one?

q Consider a neural network with a Gaussian prior on its weights an infinitely many hidden 
neurons in the intermediate layer.

q Turns out, if we have a certain Gaussian prior on the
weights of such infinite network, it will be equivalent
to a Gaussian process [Neal 1996].

q Gaussian process (GP) is a distribution over functions:

q When used for prediction, GPs account for correlations between the data points and 
can output well-calibrated predictive uncertainty estimates.

Infinitely 
many hidden 
units
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Gaussian Process and Deep Kernel Learning

q Consider a neural network with a Gaussian prior on its weights an infinitely many hidden neurons 
in the intermediate layer.

q Certain classes of Gaussian priors for neural networks with infinitely many hidden units converge 
to Gaussian processes [Neal 1996]

q Deep kernel [Wilson et al., 2016]
q Combines the inductive biases of deep model architectures with the non-parametric flexibility of Gaussian processes

where !"# = %('", '# )

q Starting from a base kernel %('", '#|+), transform the inputs ' as 

q Learn both kernel and neural parameters +, , jointly by optimizing marginal log-likelihood (or its variational lower-bound).
q Fast learning and inference with local kernel interpolation, structured inducing points, and Monte Carlo approximations

- . + = /(.|0('), !)
- 1 . = /(1|., 234)

% '", '# + → %(6 '", , , 6('#, ,)|+, ,)

Infinitely many 
hidden units
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Gaussian Process and Deep Kernel Learning

q By adding GP as a layer to a deep neural net, we can think of it as 
adding an infinite hidden layer with a particular prior on the weights

q Deep kernel learning [Wilson et al., 2016]
q Combines the inductive biases of

deep models with the non-parametric
flexibility of Gaussian processes

q GPs add powerful regularization to
the network

q Additionally, they provide predictive
uncertainty estimates
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Deep kernel learning on sequential data
What if we have data of 
sequential nature?

Can we still apply the same 
reasoning and build rich 
nonparametric models on top 
recurrent nets?
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The answer is YES!

By adding a GP layer to a recurrent 
network, we effectively correlate 
samples across time and get 
predictions along with well 
calibrated uncertainty estimates.

To train such model using 
stochastic techniques however 
requires some additional care (see 
our paper).

Al-Shedivat et al., JMLR, 2017

Deep kernel learning on sequential data
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Lane prediction: LSTM vs GP-LSTM
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Deep kernel learning on sequential data
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Al-Shedivat et al., JMLR, 2017
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Lead vehicle prediction: LSTM vs GP-LSTM
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Deep kernel learning on sequential data

Al-Shedivat et al., JMLR, 2017
© Eric Xing @ CMU, 2005-2020 81


