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Approaches to inference

q Exact inference algorithms

q The elimination algorithm
q Message-passing algorithm (sum-product, belief propagation)
q The junction tree algorithms      

q Approximate inference techniques
q Variational algorithms

q Loopy belief propagation 
q Mean field approximation 

q Stochastic simulation / sampling methods
q Markov chain Monte Carlo methods
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How to represent a joint, or a marginal distribution?

q Closed-form representation
q E.g., 

q Sample-based representation:
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Example: naive sampling

q Construct samples according to probabilities given in a BN.
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Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose
it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0



Example: naive sampling

q Construct samples according to probabilities given in a BN.
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Alarm example: (Choose the right sampling
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, 
rare events will be very hard to garner evough
samples even after a long time or sampling ...

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0



Monte Carlo methods

q Draw random samples from the desired distribution 
q Yield a stochastic representation of a complex distribution

q marginals and other expectations can be approximated using sample-based averages

q Asymptotically exact and easy to apply to arbitrary models
q Challenges:

q how to draw samples from a given dist. (not all distributions can be trivially sampled)?
q how to make better use of the samples (not all sample are useful, or equally useful, see an 

example later)?
q how to know we've sampled enough?
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Monte Carlo methods (cond.)

q Direct Sampling 
q We have seen it.
q Very difficult to populate a high-dimensional state space

q Rejection Sampling
q Create samples like direct sampling, only count samples which is consistent with

given evidences.
q Likelihood weighting, ...

q Sample variables and calculate evidence weight. Only create the samples which
support the evidences.

q Markov chain Monte Carlo (MCMC)
q Metropolis-Hasting
q Gibbs
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Rejection sampling

q Suppose we wish to sample from dist. P(X)=P'(X)/Z.
q P(X) is difficult to sample, but P'(X) is easy to evaluate
q Sample from a simpler dist Q(X)
q Rejection sampling

q Correctness:

q Pitfall …
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Rejection sampling

q Pitfall:
q Using Q=N(µ,sq

2/d) to sample P=N(µ,sp
2/d) 

q If sq exceeds sp by 1%, and dimensional=1000,
q The optimal acceptance rate k=(sq/sp)d»1/20,000
q Big waste of samples!

q Adaptive rejection sampling
q Using envelope functions to define Q
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Unnormalized importance sampling

q Suppose sampling from P(·) is hard.
q Suppose we can sample from a "simpler" proposal distribution Q(·) 

instead.
q If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can sample from 

Q and reweight:

q What is the problem here?
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Normalized importance sampling

q Suppose we can only evaluate P'(x) = aP(x) (e.g. for an MRF).
q We can get around the nasty normalization constant a as follows:

q Now
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Weighted resampling

q Problem of importance sampling: depends on how well Q matches P
q If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small 

region, rm will be dominated by a few samples

q Note that if the high-prob mass region of Q falls into the low-prob mass region of P, the 
variance of                                  can be small even if the samples come from low-prob region of 
P and potentially erroneous .

q Solution
q Use heavy tail Q.
q Weighted resampling
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Weighted resampling

q Sampling importance resampling (SIR):
1. Draw N samples from Q: X1 … XN

2. Construct weights: w1 … wN ,

3. Sub-sample x from {X1 … XN} w.p. (w1 … wN)
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Recap of Monte Carlo so far

q Monte Carlo methods are algorithms that:
q Generate samples from a given probability distribution 
q Estimate expectations of functions                under a distribution

q Why is this useful?
q Can use samples of          to approximate          itself

q Allows us to do graphical model inference when we can’t compute
q Expectations                 reveal interesting properties about

q e.g. means and variances of
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Limitations of Monte Carlo

q Direct sampling
q Hard to get rare events in high-dimensional spaces
q Infeasible for MRFs, unless we know the normalizer Z

q Rejection sampling, Importance sampling
q Do not work well if the proposal Q(x) is very different from P(x)
q Yet constructing a Q(x) similar to P(x) can be difficult

q Making a good proposal usually requires knowledge of the analytic form of P(x) –
but if we had that, we wouldn’t even need to sample!

q Intuition: instead of a fixed proposal Q(x), what if we could use an 
adaptive proposal?
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Markov Chain Monte Carlo

q MCMC algorithms feature adaptive proposals
q Instead of Q(x’), they use Q(x’|x) where x’ is the new state being sampled, 

and x is the previous sample
q As x changes, Q(x’|x) can also change (as a function of x’)
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P(x)
Q(x)

Importance sampling with 
a (bad) proposal Q(x)

P(x)
Q(x2|x1)

MCMC with adaptive 
proposal Q(x’|x)

x1 x2

Q(x3|x2)

x3

Q(x4|x3)

x1 x2x3



Metropolis-Hastings

q Let’s see how MCMC works in practice
q Later, we’ll look at the theoretical aspects

q Metropolis-Hastings algorithm
q Draws a sample x’ from Q(x’|x), where x is the previous sample
q The new sample x’ is accepted or rejected with some probability A(x’|x)

q This acceptance probability is

q A(x’|x) is like a ratio of importance sampling weights
q P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x
q We divide the importance weight for x’ by that of x
q Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately

q A(x’|x) ensures that, after sufficiently many draws, our samples will come from the true 
distribution P(x) – we shall learn why later in this lecture
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The MH Algorithm

1. Initialize starting state x(0), set t =0
2. Burn-in: while samples have “not converged”

q x=x(t)

q t =t +1,
q sample x* ~ Q(x*|x)  // draw from proposal
q sample u ~ Uniform(0,1) // draw acceptance threshold
q

- if
q x(t) = x*  // transition

- else
q x(t) = x // stay in current state 

q Take samples from P(x): Reset t=0, for t =1:N
q x(t+1) ß Draw sample (x(t))

© Eric Xing @ CMU, 2005-2020 18

÷÷
ø

ö
çç
è

æ
=<

)|*()(
*)|(*)(,1min)|*(
xxQxP
xxQxPxxAu Function 

Draw sample (x(t))



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Q(x1|x0)

x1



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

x0

Q(x2|x1)

x1 x2



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3

We reject because P(x’)/Q(x’|x2) < 1 and
P(x2)/Q(x2|x’) > 1, hence A(x’|x2) is close to zero!



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

x0

Q(x3|x2)

x1 x2

x3
x4



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

Draw, accept x5

x0

Q(x3|x2)

x1 x2

x3
x4 x5



The MH Algorithm

q Example:
q Let Q(x’|x) be a Gaussian centered on x
q We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

Draw, accept x5

x0

Q(x3|x2)

x1 x2

x3
x4 x5

The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)!



Theoretical aspects of MCMC

q The MH algorithm has a “burn-in” period
q Why do we throw away samples from burn-in?

q Why are the MH samples guaranteed to be from P(x)?
q The proposal Q(x’|x) keeps changing with the value of x; how do we know the 

samples will eventually come from P(x)?

q What is the connection between Markov Chains and MCMC?
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Markov Chains

q A Markov Chain is a sequence of random variables x(1),x(2),…,x(n) with the 
Markov Property

q is known as the transition kernel
q The next state depends only on the preceding state – recall HMMs!
q Note: the r.v.s x(i) can be vectors

q We define x(t) to be the t-th sample of all variables in a graphical model
q X(t) represents the entire state of the graphical model at time t

q We study homogeneous Markov Chains, in which the transition kernel                            
is fixed with time

q To emphasize this, we will call the kernel               , where x is the previous state and 
x’ is the next state
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MC Concepts

q To understand MCs, we need to define a few concepts:
q Probability distributions over states:              is a distribution over the state of 

the system x, at time t
q When dealing with MCs, we don’t think of the system as being in one state, but as having a 

distribution over states
q For graphical models, remember that x represents all variables

q Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transition entire distributions:

q At time t, state x has probability mass π(t)(x). The transition probability redistributes this mass 
to other states x’.

q Stationary distributions:           is stationary if it does not change under the 
transition kernel:                                          , for all x’

© Eric Xing @ CMU, 2005-2020 29

)()( xtp

å ¢=¢+
x

tt xxTxx )|()()( )()1( pp
)|( xxT ¢

)(xp
å ¢=¢

x
xxTxx )|()()( pp



MC Concepts

q Stationary distributions are of great importance in MCMC. To understand 
them, we need to define some notions:

q Irreducible: an MC is irreducible if you can get from any state x to any other 
state x’ with probability > 0 in a finite number of steps

q i.e. there are no unreachable parts of the state space
q Aperiodic: an MC is aperiodic if you can return to any state x at any time

q Periodic MCs have states that need ≥2 time steps to return to (cycles)
q Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

q Ergodicity is important: it implies you can reach the stationary distribution
,no matter the initial distribution

q All good MCMC algorithms must satisfy ergodicity, so that you can’t initialize 
in a way that will never converge
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MC Concepts

q Reversible (detailed balance): an MC is reversible if there exists a 
distribution           such that the detailed balance condition is satisfied:

q Probability of x’→x is the same as x→x’

q Reversible MCs always have a stationary distribution! Proof:

q The last line is the definition of a stationary distribution!
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Why does Metropolis-Hastings work?

q Recall that we draw a sample x’ according to Q(x’|x), and then 
accept/reject according to A(x’|x).

q In other words, the transition kernel is

q We can prove that MH satisfies detailed balance
q Recall that

q Notice this implies the following:
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Why does Metropolis-Hastings work?

q Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have

q The last line is exactly the detailed balance condition
q In other words, the MH algorithm leads to a stationary distribution P(x)
q Recall we defined P(x) to be the true distribution of x
q Thus, the MH algorithm eventually converges to the true distribution!
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Caveats

q Although MH eventually converges to the true distribution P(x), we have 
no guarantees as to when this will occur

q The burn-in period represents the un-converged part of the Markov Chain –
that’s why we throw those samples away!

q Knowing when to halt burn-in is an art. We will look at some techniques later 
in this lecture.
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Gibbs Sampling

q Gibbs Sampling is an MCMC algorithm that samples each random 
variable of a graphical model, one at a time

q GS is a special case of the MH algorithm

q GS algorithms…
q Are fairly easy to derive for many graphical models (e.g. mixture models, 

Latent Dirichlet allocation)
q Have reasonable computation and memory requirements, because they 

sample one r.v. at a time
q Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the 

sampling variance
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Gibbs Sampling

q The GS algorithm:
1. Suppose the graphical model contains variables x1,…,xn
2. Initialize starting values for x1,…,xn
3. Do until convergence:

1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable xi in order:

1. Sample x from P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of xi given the 
current values of all other variables

2. Update xi ← x

q When we update xi, we immediately use its new value for sampling other 
variables xj
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Markov Blankets

q The conditional P(xi | x1, …, xi-1, xi+1, …, xn) looks intimidating, but recall 
Markov Blankets:

q Let MB(xi) be the Markov Blanket of xi, then

q For a BN, the Markov Blanket of x is the set              containing its 
parents, children, and co-parents

q For an MRF, the Markov Blanket of x is its immediate neighbors
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Gibbs Sampling: An Example

q Consider the alarm network
q Assume we sample variables in the order B,E,A,J,M
q Initialize all variables at t = 0 to False
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t B E A J M
0 F F F F F
1
2
3
4



Gibbs Sampling: An Example

q Sampling P(B|A,E) at t = 1: Using Bayes Rule,

q (A,E) = (F,F), so we compute the following, and sample B = F
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t B E A J M
0 F F F F F
1 F
2
3
4
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Gibbs Sampling: An Example

q Sampling P(E|A,B): Using Bayes Rule,

q (A,B) = (F,F), so we compute the following, and sample E = T
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t B E A J M
0 F F F F F
1 F T
2
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Gibbs Sampling: An Example

q Sampling P(A|B,E,J,M): Using Bayes Rule,

q (B,E,J,M) = (F,T,F,F), so we compute the following, and sample A = F
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t B E A J M
0 F F F F F
1 F T F
2
3
4
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Gibbs Sampling: An Example

q Sampling P(J|A): No need to apply Bayes Rule

q A = F, so we compute the following, and sample J = T
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Gibbs Sampling: An Example

q Sampling P(M|A): No need to apply Bayes Rule

q A = F, so we compute the following, and sample M = F
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Gibbs Sampling: An Example

q Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M 
…
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t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
3
4



Gibbs Sampling: An Example

q Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M 
…

q And similarly for t = 3, 4, etc.
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t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
3 T F T F T
4 T F T F F



Topic Models: Collapsed Gibbs 
(Tom Griffiths & Mark Steyvers)

q Collapsed Gibbs sampling
q Popular inference algorithm for topic models
q Integrate out topic vectors π and topics B
q Only need to sample word-topic assignments z

Algorithm:
For all variables z = z1, z2, …, zn

Draw zi(t+1) from P(zi|z-i, w)
where z-i = z1(t+1), z2(t+1),…, zi-1(t+1), zi+1(t), …, zn(t)
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Collapsed Gibbs sampling

q What is P(zi|z-i, w)?
q It is a product of two Dirichlet-Multinomial conditional distributions:
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Collapsed Gibbs sampling

q What is P(zi|z-i, w)?
q It is a product of two Dirichlet-Multinomial conditional distributions:
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Gibbs Sampling is a special case of MH

q The GS proposal distribution is

q Where x-i denotes all variables except xi
q Applying MH to this proposal, we find that samples are always accepted 

(which is exactly what GS does):

q GS is simply MH with a proposal that is always accepted!
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Practical Aspects of MCMC

q How do we know if our proposal Q(x’|x) is any good?
q Monitor the acceptance rate
q Plot the autocorrelation function

q How do we know when to stop burn-in?
q Plot the sample values vs time
q Plot the log-likelihood vs time
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Acceptance Rate

q Choosing the proposal Q(x’|x) is a tradeoff:
q “Narrow”, low-variance proposals have high acceptance, but take many iterations to 

explore P(x) fully because the proposed x are too close
q “Wide”, high-variance proposals have the potential to explore much of P(x), but many 

proposals are rejected which slows down the sampler

q A good Q(x’|x) proposes distant samples x’ with a sufficiently high acceptance 
rate
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Acceptance Rate

q Acceptance rate is the fraction of samples that MH accepts.
q General guideline: proposals should have ~0.5 acceptance rate [1]

q Gaussian special case:
q If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is ~0.45 for 

D=1 dimension and approaches ~0.23 as D tends to infinity [2]
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[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Autocorrelation function

q MCMC chains always show autocorrelation (AC)
q AC means that adjacent samples in time are highly correlated

q We quantify AC with the autocorrelation function of an r.v. x:
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Autocorrelation function

q The first-order AC Rx(1) can be used to estimate the Sample Size Inflation 
Factor (SSIF):

q If we took n samples with SSIF sx, then the effective sample size is n/sx
q High autocorrelation leads to smaller effective sample size!
q We want proposals Q(x’|x) with low autocorrelation
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Sample Values vs Time

q Monitor convergence by plotting samples (of r.v.s) from multiple MH runs 
(chains)

q If the chains are well-mixed (left), they are probably converged
q If the chains are poorly-mixed (right), we should continue burn-in
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Log-likelihood vs Time

q Many graphical models are high-dimensional
q Hard to visualize all r.v. chains at once

q Instead, plot the complete log-likelihood vs. time
q The complete log-likelihood is an r.v. that depends on all model r.v.s
q Generally, the log-likelihood will climb, then eventually plateau
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Summary: Monte Carlo Methods

q Direct Sampling 
q Very difficult to populate a high-dimensional state space

q Rejection Sampling
q Create samples like direct sampling, only count samples which is consistent

with given evidences.
q Likelihood weighting, ...

q Sample variables and calculate evidence weight. Only create the samples
which support the evidences.

q Markov chain Monte Carlo (MCMC)
q Metropolis-Hasting
q Gibbs
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Summary: Markov Chain Monte Carlo

q Markov Chain Monte Carlo methods use adaptive proposals Q(x’|x) to 
sample from the true distribution P(x)

q Metropolis-Hastings allows you to specify any proposal Q(x’|x)
q But choosing a good Q(x’|x) requires care

q Gibbs sampling sets the proposal Q(x’|x) to the conditional distribution 
P(x’|x)

q Acceptance rate always 1!
q But remember that high acceptance usually entails slow exploration
q In fact, there are better MCMC algorithms for certain models

q Knowing when to halt burn-in is an art © Eric Xing @ CMU, 2005-2020 67



Supplementary
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Rao-Blackwellised sampling

q Sampling in high dimensional spaces causes high variance in the estimate.
q RB idea: sample some variables Xp, and conditional on that, compute expected 

value of rest Xd analytically:

q This has lower variance, because of the identity:
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Rao-Blackwellised sampling

q Sampling in high dimensional spaces causes high variance in the estimate.
q RB idea: sample some variables Xp, and conditional on that, compute expected 

value of rest Xd analytically:

q This has lower variance, because of the identity:

q Hence                                             , so                                       is a lower 
variance estimator.
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