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Quick Recap on Topic Models

o Topic models are models for collections of documents.

o Word order is ignored, and documents are modeled as a mixture over
topics.

o We can do variational inference to approximate the posterior over latent
variables in these models.
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{/ Quick Recap on Topic Models — Variational Inference

a Coordinate ascent O-@| O-@ -0
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1: Initialize variational topics q(fx), k=1, ..., K.
2: repeat

3: for each documentde {1,2,..., D} do

4 Initialize variational topic assigments g(z4,), n=1,...,.N
5 repeat

6 Update variational topic proportions g(0 ;)

7: Update variational topic assigments q(zg4,), n=1,...,N
8 until Change of g(0,) is small enough

9: end for

10:  Update variational topics q(fx), k=1, ..., K.

11: until Lower bound L(g) converges



Drawback of Coordinate Ascent

o Let’'suse q(f | 1) £ qg(B) to indicate the variational topics.
o The previous algorithm can be summarized in a high level,

1: Initialize global parameters A

2: repeat

3: for each documentde{l,2,..., D} do

4 Update document-specific variational distributions
5.  end for

6: Update global parameters A.

7: until Convergence

a What if we have millions of documents? This could be very slow.



/
(/ The Lower Bound in a Different Form

o Some algebra shows the lower bound is (verity yourself)

L, O1:0) = K, log p(3) — log q(B|\)]

NG o
"

global contribution

+ > {E[logp(wy,z|8) — log a(zi|¢:)]}

X 7
i=1 . . .
per-data point contribution

a This can be simplified as

LOdrn) = FR) + D gi(A. ).
i=1



The One-parameter Lower Bound

Q

Q

Let us maximize the objective w.r.t. to parameter ¢., first

LO) = f) + ) maxgi(h, ).
=1

I

Let
¢;k = MaXe. gi (l, ¢l)
The gradient of L(A) has the following form,

ILA)  df(A) "L 0gi (A, ¢F)
A oA +; TR

This allows us to stochastic gradient algorithms to estimate A
Once A4 is estimated, each ¢; can be estimated online if needed.




% Natural Gradient

o But remember our parameter describes a distribution

— P
q
—%— gradient
—&— Riemannian gradient

0L(A) (from Honkela et al., 2010)

a Gradient La:_a IS usually not the steepest direction



Natural Gradient

o For distributions, natural gradient is the steepest direction

a Since our model is conditional conjugate, variational distribution is also in
exponential family,

g(BIN = h(B) exp {N1(B) = aW))

o The Riemannian metric describes the local curvature,

GO = E, [aloga";ﬁ'“ aloiz(f'”} = V().
a The natural gradient is as follows (please verify)
dL(A -
o = 6 =D = At ) g

i=1

o Setting g(4) = 0 gives the traditional mean-field update.



/

{/ Stochastic Variational Inference using Natural Inference

1: Initialize global parameters A, ¢ = 0.

2: Set step-size schedule p;.

3: fortr=1,...,.codo

4:  Sample a data point i ~ Unit(1,..., n).

5:  Compute the optimal local parameter ¢ (4,).

6 Perform natural gradient ascent on global parameters A,

A1 = A+ 081
— (1 — p[)/lt + 0¢ (T] + l’lt¢;’< (xl'))

7: end for



Black-box Variational Inference (BBVI)

o We have derived variational inference specific for LDA
a There are innumerable conjugate/non-conjugate models

o Can we have a solution that does not entail model-specific work?



ﬁ Black-box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES
ANY MODEL
BLACK BOX p(B.z|x)

CP 9 > VARIATIONAL
O\& INFERENCE
OO0

o Easily use variational inference with any model

o Perform inference with massive data

o No mathematical work beyond specifying the model

(Courtesy: Blei et al., 2018)



ﬁ Black-box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES
ANY MODEL
BLACK BOX p(B,z|x)

CP 9 > VARIATIONAL
O\& INFERENCE
O— O

o Sample from g(.) (or a related distribution)

a Form noisy gradients (without model-specific computation)

o Use stochastic optimization

(Courtesy: Blei et al., 2018)



/
«? Black-box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA

FAMILIES

ANY MODEL
BLACK BOX p(B.z|x)

9 9 > VARIATIONAL
O\& INFERENCE
OO0

o BBVI with the score gradient [Ranganath et al., 14]

o BBVI with the reparameterization gradient (more in lecture.12)

(Courtesy: Blei et al., 2018)



(/ BBVI with the score gradient

o Probabilistic model: x -- observed variable, z -- latent variable
o Variational distribution q(z|A)

a ELBO: L(A) 2 By, (ollog p(x, z) —log q(2)]
o Gradient w.r.t. 4 (using the log-derivative trick)
V0L = E4[Vylogg(z|A)(log p(x,z) —logq(z|A))]

Score function

o Compute noisy unbiased gradients of the ELBO with Monte Carlo
samples from the variational distribution

S
1
Vi~ < ) Vilogq(zs|A)(log p(x, z5) —logq(zs|3).

s=1

[Ranganath et a|,14] Where Zg ~ q(Z |A). ©Eric Xing @ CMU, 20052020 14 %



(/ BBVI with the score gradient
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/
ﬁ BBVI with the score gradient

o Gradient w.r.t. A (using the log-derivative trick)
ViL = E4[Vylogg(z[A)(og p(x, z) —logq(z|A))]

o Compute noisy unbiased gradients of the ELBO with Monte Carlo

samples from the variational distribution
S

1
Vi~ < ) Valogq(zs|A)(log p(x, z5) —logq(zs|2),

s=1

a Control the variance of the gradient
o Rao-Blackwellization, control variates, importance sampling, ...

o Adaptive learning rates [Duchi+ 2011; Tieleman and Hinton 2012]

(Courtesy: Blei et al., 2018)



f BBVI with the reparameterized gradient

a ELBO: L) = Egy, (»llog p(x,2) —log q(z2)]
o Assume that we can express the variational distribution with a
transformation

e ~ s(e)
s=ter) - 274

o E.Q.,
e ~ Normal(0,1)

N 2
Z2=¢o+u z ~ Normal(u,o*)

o Also assume logp(x, z) and log q(z) are ditferentiable with respect to z

(Courtesy: Blei et al., 2018)



ﬁ BBVI with the reparameterization gradient

a ELBO: L) = Egy, (»llog p(x,2) —log q(z2)]

o Assume that we can express the variational distribution with a

transformation
e ~ s(e)

z = t(e, 2) 2~ qld)

o Reparameterization gradient
VaL =Ege)[ V. llog p(x,2) —log q(2)] V,t(e, 1) ]

o Can use autodifferentiation to take gradients (especially of the model)
a Can use different transformations
o Not all distributions can be reparameterized

(Courtesy: Blei et al., 2018)
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Theory of Variational Inference




% Roadmap

o Two families of approximate inference algorithms
o Mean-field approximation (we have seen it)

o Loopy belief propagation (sum-product/message-passing on ANY graph, not
just trees)

a Are there some connections of these two approaches?

o We will re-exam them from a unified point of view based on the
variational principle:
o Loop BP: outer approximation
o Mean-field: inner approximation



; Variational Methods

o “Variational™: fancy name for optimization-based formulations
o i.e., represent the quantity of interest as the solution to an optimization problem

0 gpproximate the desired solution by relaxing/approximating the intractable
optimization problem

o Examples:

o Courant-Fischer for eigenvalues:  Apax(4) = max z' Ax
|z]|2=1

a Linear system of equations: Az =b, A= 0,2 = A"1b
o variational formulation:

1
r* = arg min {§:cTA:c — bTx}

o for large system, apply conjugate gradient method

© Eric Xing @ CMU, 2005-2020

21
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(/ Inference Problems in Graphical Models

o Undirected graphical model (MRF):
1
p(z) = - 1 vo(ze)

N , cec
o The quantities of interest:
a marginal distributions: p(x;) = Z p(z)
Z 4 ,3752
o normalization constant (partition function): 7

a Question: how to represent these quantities in a variational form?

o Use tools from (1) exponential families; (2) convex analysis



{/ Exponential Families

a Canonical parameterization
po(x1, - xm) =expl0 o(x) — A()

Y

Canonical Parameters Sufficient Statistics Log partition Function

o Log normalization constant:
A(9) = log/exp{9T<b(x)}d:E
it is a convex function (Prop 3.1)

o Effective canonical parameters:

,.:{ncmfﬂln < m}

© Eric Xing @ CMU, 2005-2020 23 g
L



Graphical Models as Exponential Families

o Undirected graphical model (I\/IRF)'
p(x; 0) H Y (xc;00)

o MRF in an exponential form:

p(x;0) = exp { > log(xc;fc) — log 2(9)}

ceC

o log ¥ (xc; 0c) can be written in a /inearform after some parameterization



/
f Example: Gaussian MRF

a Consider a zero-mean multivariate Gaussian distribution that respects
the Markov property of a graph

a Hammersley-Clifford theorem states that the precision matrix A = Y talso respects

the graph structure
1 2 1
3 ‘
5 5
4

11111

(a) (b)
o Gaussian MRF in the exponential form

p(x) = exp {% (0, xxT) — A(@)}  where © = —A

o Sufficient statistics are
{xga S € V; Lslt, (Sat) = E}



{/ Example: Discrete MRF

C 1 ifaxsg =9
7 Indicators: [(xs) = 5=
0O otherwise

O

O

Parameters: 0s ={0s.5,5 € Xs}

05t (51357 Zlft)
975(337§)ﬂ4 i N 98(568)
O O O
O—O—=0O
O—0O O
O O O

o In exponential form

p(x;0) oc exp 4

O

Ost = {est;jka (]7 k) € Xs X Xt}

ZZHS_]I[ 373 =+ Z estjk]l Ls Hk(xt)

(sEV (s,t)eE

\




/
(/ Why Exponential Families?

o Computing the expectation of sufficient statistics (mean parameters) given the
canonical parameters yields the marginals

psij = Epll;(Xs)] =P[Xs =j] Vjed,
Mst;jk = Ep[]lst;jk(X87Xt)] — IP)[XS — jaXt — k] \V/(],k) € Xs € ‘)C:tﬂ- |

o Computing the normalizer yields the log partition function (or log likelihood
function)

log Z(0) = A(6)



Computing Mean Parameter: Bernoulli

o A single Bernoulli random variable @ 0

p(z;0) = exp{fz — A(0)},z € {0,1}, A(6) = log(1 + €?)

a Inference = Computing the mean parameter

69

u(6) =Eo[X] =1-p(X =1;0) +0-p(X = 0:0) = 7/

o Want to do it in a variational manner: cast the procedure of computing
mean (summation) in an optimization-based formulation



/
(/ Conjugate Dual Function

a Given any function f(8) , its conjugate dual function is:

() = Sl;p{<9,u> — f(0)}

f(6)

v 0 —£ )
a Conjugate dual is always a convex function: point-wise supremum of a
class of linear functions g

© Eric Xing @ CMU, 2005-2020 29



/
(/ Dual of the Dual is the Original

a Under some technical condition on f (convex and lower semi-
continuous), the dual of dual is itself:

f=0")
f(0) =sup {0, ) — f*(p)}

L

o For log partition function

A(0) = sup{(0, ) — A* ()}, 0€Q

v
o The dual variable p has a natural interpretation as the mean parameters



Computing Mean Parameter: Bernoulli

A*() = sup {6 — log[1 + exp(0)]}

a The conjugate ocR
0
e
o Stationary condition = 0 (n=VA®))
2 I € (0.1), ) =tog () 4°() = peoglu) + (1= ) o1~
a If pé10,1], A%(p) = 400
) plogp + (1 — p)log(l — ) if p € [0, 1]
a We have A () = { .
+00 otherwise.
a The variational form: A(0) = max,,cro1) {10 — A" (1)}
0
&

a The optimum is achieved at #(0) = This is the mean!

1+e? -



Computation of Conjugate Dual

Q

Q

Q

Q

Q

Q

Given an exponential family ;
p(xh cee s Imy 9) — €Xp {Zez¢z(x) o
1=1

The dual function A* () == sup {(u, 8) — A(H)}
ISIY)

The stationary condition: p—VA®O) = 0

Derivatives of A yields mean parameters

0A
0 =Efor(0)] = [ oi(2)

The stationary condition becomes = Eg[p(X)]
Question: for whichuz € R? does it have a solution () ?



Computation of Conjugate Dual

Q

Q

Q

Q

Let’'s assume there is a solution g(y,) such that ; =By, [¢(X)]

The dual has the form

A*(p) = (O(u),n) — A0
= Egu) [(O(1), o(X)
= [Eg(y [log p(X;0(u)]

)
) — A(O(n)]

The entropy is defined as

So the dual is A*(p) =

—H(p(z;6(p)) Wwhen there is a solution 6(u)



% Remark

a The last few identities are not coincidental but rely on a deep theory in
general exponential family.
o The dual function is the negative entropy function
o The mean parameter is restricted
o Solving the optimization returns the mean parameter and log partition function

o Next step: develop this framework for general exponential
families/graphical models.

o However,
o Computing the conjugate dual (entropy) is in general intractable
o The constrain set of mean parameter is hard to characterize
o Hence we need approximation



/
(/ Complexity of Computing Conjugate Dual

a The dual function is implicitly defined:

po —= (VA

0(n)

|

—H(pe(u))

—= A*(n)

a Solving the inverse mapping 1 = [Eg|¢(X )] for canonical parameters 6(u) is nontrivial

o Evaluating the negative entropy requires high-dimensional integration (summation)

a Question: for which u € R* does it have a solution 8(x)? i.e., the domain

of A™(u) .

o the ones in marginal polytope!



ﬁ Marginal Polytope

a For any distribution p(x)and a set of sufficient statistics ¢(x) , define a
vector of mean parameters

— E ¢z /¢z
5 P(T)is not necessarily an exponential family
a The set of all realizable mean parameters

M:={peR*|Ips.t. Efop(X)]=pl.

o Itis aconvex set

o For discrete exponential families, this is called marginal polytope



Convex Polytope

a Convex hull representation
M = {,u € ]R”| Z olx)p(x) = p, for some p(x) = 0, Z plr) = 1}

re A reX’m
fa
= (‘(}111-'{{}(.1'). r € .1””}

o Half-plane representation

o Minkowski-Weyl Theorem: any non-empty convex polytope can be
characterized by a finite collection of linear inequality constraints

M = {,” e RYal ju>bj, Vj e ._:a'}. ./

where | 7| is finite.



% Example: Two-node Ising Model

a Sufficient statistics: ¢(~T) L= (551733275513?2)

a Mean parameters: 1 =P(X1 =1), 10 =P(X5 = 1)

=P(X;1=1,Xo=1
o Two-node Ising model Hz (X ? )

o Convex hull representation
conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

o Half-plane representation
H1 H12
M2 H12
H12 0
L+ p12 [+ o

VAR AV AV AV]




% Marginal Polytope for General Graphs

o Still doable for connected binary
graphs with 3 nodes: 16 constraints

o For tree graphical models, the number
of half-planes (facet complexity) grows
only /inearl/y in the graph size

o General graphs?

o extremely hard to characterize the
marginal polytope

© Eric Xing @ CMU, 2005-2020 39 %



Variational Principle (Theorem 3.4)

o The dual function takes the form

A*( ) _ _H<p9(l~b)) if IR M?°
: +00 if ¢ M.

o O(n) satisfies = Eo(u) [¢(X)]
o The log partition function has the variational form

A(0) = sup {071 — A" (1)}

a Forall g e Q, the above optimization problem is attained uniquely at
that satisfies ;(6) € M°

pu(0) = Eolo(X)]



/
(/ Example: Two-node Ising Model

o The distribution
o Sufficient statistics

o The marginal polytope

a The dual has an explicit form

X1 X
p(x;0) < exp{f1x1 + 0222 + 012212} C C

o(x) = {w1, 29, 7125)

M1

is characterized by 2
H12

L+ pi2

AVAR AVAR AV AV,

12

12
0

p1 + 2

A*(p) = pizlog pig + (1 — pa2) log(py — pi2) + (p2 — p12) log(pe — pi2)
+(1 + p12 — p1 — p2) log(l + p12 — pr — p2)

o The variational problem AlO) =~ max {11+ 022 + 012012 — A (p)}

{p1,p2,p12}€

o [The optimum is attained at

p1(0)

exp{f1} + exp{61 + 02 + 612}

T 14 exp{01} + exp{O>} + exp{O; + 02 + 012}



% Variational Principle

o Exact variational formulation

A(6) = sup {07 — A% (1)}

a M the marginal polytope, difficult to characterize
a A™: the negative entropy function, no explicit form

o Mean field method: non-convex inner bound and exact form of entropy

o Bethe approximation and loopy belief propagation: polyhedral outer
bound and non-convex Bethe approximation



Mean Field Approximation



/
f Tractable Subgraphs

a For an exponential family with sufficient statistics ¢ defined on graph G,
the set of realizable mean parameter set

M(G;¢) :={p e R* | Ip s.t. Ey[op(X)] = pu}
o ldea: restrict pto a subset of distributions associated with a tractable

subgraph Q= {r,a c RY|A(0) < m}
&~ O e
o o
FO : © © © 1 :
5 o
© o 0

QFy) = {0 €Q |0, =0Y (s,t) € B}, QT) = {0 €Q[ =0V (s,t) ¢ E(T)}.

c Xing @ CMU, 2005-2020 44



Mean Field Methods

o For a given tractable subgraph F, a subset of canonical parameters is

M(F;¢) := {1 € R* | 7 = Eg[¢(X)] for some 0 € Q(F)}
o Inner approximation
M(F;¢)° € M(G; $)°

o Mean field solves the relaxed problem

max_{{r,6) - A7(7))

Ap = A*‘MF(G) is the exact dual function restricted to Mg (G)



Example: Naive Mean Field for Ising Model

o Ising model in {0,1} representation

4 5 6
O O O
p(x) exp{ g rs0, + E xsxtﬁst}

seV (s,t)eE O O O
7 8 9
o Mean parameters L2 3y
ps = E [ Xs] =P Xs=1] forall seV, and
4 5 6
pst = Ep[ X Xy] = P[(Xs, Xt) = (1,1)] for all (s,t) € E. O O O
a For fully disconnected graph F, o o 0

Mp(G):={71 € RIVIHIE] 10 <75 <1,Vs €V, 7y =757%,¥(s,t) € E}

o The dual decomposes into sum, one for each node

Ap(7) =) [rslogTs + (1 — 75) log(1 — 7))



Example: Naive Mean Field for Ising Model

Q

Q

Q

Q

Mean field problem

A(9) > 0sTs Ost7sm — Af
()_(7'1 ..... Ir?na}e([oum{z Ts T Z t7s7e — Ap(7 )}

(s,t)eE

The same objective function as in free energy based approach

The naive mean field update equations

Tg < O (93 + Z 937t>

teN(s)

Also yields lower bound on log partition function



/
ﬁ Geometry of Mean Field

o Mean field optimization is always non-convex for any exponential family
INn which the state space x™ is finite

o Recall the marginal polytope is a convex hull "'\ o(e)
M(G) = conv{gp(e);e € X™} ’ /

o Mpr(G) contains all the extreme points

o Ifitis a strict subset, then it must be non-convex “A’

o Example: two-node Ising model

Mp(G)={0<711 <1,0< 7 < 1,712 = 7172}
o It has a parabolic cross section along 71 = 79, hence non-convex



Bethe Approximation
and Sum-Product



/

Sum-Product/Belief Propagation Algorithm

o Message passing rule: 5
Mts(xs) — R Z{¢St(x37$2)wt(x;) H Mut xt }

Ty ueN(t)/s {

o Marginals:

o Exact for trees, but approximate for loopy graphs (so called loopy belief
propagation)

o Question:
o How is the algorithm on trees related to variational principle?
o What is the algorithm doing for graphs with cycles?



Tree Graphical Models

a Discrete variables x. € {0,1,...,ms —1}0on a treeT = (V, E)

[(xs) fors=1,...n, jed&;
Iik(zs,z¢) for(s,t)e B, (j, k)€ Xsx X,

o Sufficient statistics:

o Exponential representation of distribution:
p(x;0) exp{Z@s(aﬁs) + Z Qst(xs,xt)}

seV (s,t)EE
where 0 (xs) = ZjeXs Hs;j]lj(xs) (and similarly for Os¢(xs, xt))

o Mean parameters are marginal probabillities:
Ms:j = EP[H](X3>] = P[XS :]] \V/j S XS, ,us(ajs) — Z Ms;j]lj(xs) — P(Xs — xs)

JEXs
Hst;jk = Ep[ﬂst;jkz(Xs;Xt)] — P[XS =], Xt = k] V(],k) €Xs € ‘X:tﬂ'
Mst(x87xt) — Z ,ust;jkﬂjk(xsaxt) — IP)(XS — ':C87Xt — xt)

(j,k) EX X Xy ©Eric Xing @ CMU, 2005-2020



(/ Marginal Polytope for Trees

o Recall marginal polytope for general graphs
M(G) = {p € R* | Ip with marginals ps.;, tst.k

a By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

M(T) = {M >0 > ps(rs) =1, pat(ws, ) = Ms(l’s)}

a In particular, if u € M(T)) then

,Lbst -7737-7715
has the corresponding marginals  Pu(z Hus Ts) H :
seV t)eE s )1t ()



/
(/ Decomposition of Entropy for Trees

o For trees, the entropy decomposes as
H(p(z;p)) = = pla;p)logp(w; )

- ( _ ,us(xs)logﬂs(%)> -

seV x

A\ S

Hs(ps)

. S: (S:Nst(CUs,xt)lOg Mst(xaxt) )

(s,t)EE  Ts,T¢ fs (xs),ut(xt>

7

Isi(pst), KL-Divergence

= ZHS(,Us)_ Z Lot (pst)

seV (s,t)eE

a The dual function has an explicit form  A*(u) = —H (p(x; p))



Exact Variational Principle for Trees

a Variational formulation

A(f) = max {<07N>+ZHS(MS) Z ]St(/ist>}

HeEM(T) seV (s,t)el

o Assign Lagrange multiplier Ass for the normalization constraint
Css(p) :==1=>_, ns(zs) =0 and A\ (z,) for each marginalization constraint

Cts<a7s§ ,u) F= ,us(xs) — th Mst(x& xt) =0

o The Lagrangian has the form
L, A) = (0, 1) + Z H(ps) — Z Tse(pst) + Z AssCss (1)

seV (s,t)EE seV

D DN HIPFIERIEHEA R PPNCHIENEN)

(s, t)EE  x¢ Ts




/
(/ Lagrangian Derivation

o Taking the derivatives of the Lagrangian w.r.t. us and pst

oL
— 83 xs - log/,lzs 'CCS —|_ A S :'US —|_ C
s (2 = log (@) + 3 Nulr
(9[1 /«Lst(373737t) /
— 98 S —1 — A s\Ls) — )\s + C
Drioe (10, 7) t(xs, zt) — log IRERTACS ts(Ts) t(t)

o Setting them to zeros yields

ps(Ts) o< exp{fs(zs)} H ?XP{)‘tS(xSZ}

teN (s) Mt:(ra:s)

ps(Ts,xe) o exp{0s(xs) + O (xt) + Ost (s, x¢) } X

H exp {)\us(azs)} H exp {Avt(iﬁt)}

weEN (s)\t veEN (t)\s



/
4 Lagrangian Derivation (continued)

o Adjusting the Lagrange multipliers or messages to enforce

Cis(s; ) = ps(ws) — th pst(Ts, x¢) = 0
yields

Mis(xs) < ZGXP{Qt(wt)-I-@st(a?s,wt)} H Myt (xt)
Tt weEN (t)\s

a Conclusion: the message passing updates are a Lagrange method to
solve the stationary condition of the variational formulation



ﬁ BP on Arbitrary Graphs

o Two main difficulties of the variational formulation
A(0) = sup {67 — A*(u)}

peM
o The marginal polytope A is hard to characterize, so let’s use the tree-based outer bound

L(G) = {T >0 7o(ms) =1,) Tat(ws, 1) = Ts(xs)}

These locally consistent vectors 7 are called pseudo-marginals.

o Exact entropy _A*( ) acks explicit form, so let’'s approximate it by the exact expression for
trees

_A*( )NHBethe ZH Ts Z Ist Tst

seV (s,t)eEE



Bethe Variational Problem (BVP)

o Combining these two ingredient leads to the Bethe variational problem
(BVP):

0.7+ B ) = 3 Tl

seV (s,t)eE

o A simple structured problem (differentiable & constraint set is a simple
convex polytope)

o Loopy BP can be derived as am iterative method for solving a Lagrangian
formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

o A set of pseudo-marginals given by Loopy BP fixed point in any graph if and
only if they are local stationary points of BVP



Geometry of BP

a Consider the following assignment of pseudo-marginals
a Can easily verify 7 € L(G)
a However, 7 € M(G) (need a bit more work)

o Tree-based outer bound 0
a Forany graph, M(G) C L(G)
iz
o Equality holds if and only if the graph is a tree -/

o Question: does solution to the BVP ever fall into the gap?

o Yes, for any element of outer bound L(G), it is possible to construct \ /
a distribution with it as a BP fixed point (Wainwright et. al. 2003)




/

(/ Inexactness of Bethe Entropy Approximation

a Consider a fully connected graph with

ps(zs) = (0.5 0.5] for s=1,2,3,4 (D (4
(0.5 0
Ust(Ts, Tt) = 0 05 V (s,t) € E. @ @

a Itis globally valid: 7 € M(G) realized by the distribution that places mass 1/2
on each of configuration (0,0,0,0) and (1,1,1,1)

9 Hpethe(pt) = 4log2 — 6log2 = —2log?2 < 0,
0 —A*(u) =log2 > 0.



% Remark

o This connection provides a principled basis for applying the sum-
product algorithm for loopy graphs

o However,

o Although there is always a fixed point of loopy BP, there is no guarantees on the convergence
of the algorithm on loopy graphs

o The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the
global optimum

o Generally, no guarantees that ABethe(?) is a lower bound of A ()

o Nevertheless,

o The connection and understanding suggest a number of avenues for improving upon the
ordinary sum-product algorithm, via progressively better approximations to the entropy function
and outer bounds on the marginal polytope (Kikuchi clustering)
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Summary

o Variational methods in general turn inference into an optimization problem via
exponential families and convex duality

o The exact variational principle is intractable to solve; there are two distinct components
for approximations:

o Either inner or outer bound to the marginal polytope
o Various approximation to the entropy function

Mean field: non-convex inner bound and exact form of entropy
BP: polyhedral outer bound and non-convex Bethe approximation

o Kikuchi and variants: tighter polyhedral outer bounds and better entropy
approximations (Yedidia et. al. 2002)
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