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% Two types of GMs

0 Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

P(XI, X2, X3, X4, X5, X6) X79 XS)

= P(X)) P(X3) P(X3| X)) P(X,| X3) P(X5| X>)
P(X4| X3, Xy) P(X7| Xp) P(X5| X5, X)

0 Undirected edges simply give correlations between variables (Markov
Random Field or Undirected Graphical model):

P(XI, X2, X3, X4, X5, X6) X79 XS)

= 1/Z exp{E(X))+E(X5)+E(X;, X))+E(X, X5)+E(X5 X))
+ E(Xg X3, X)+E(X7 Xe)TE(Xs X5 X4)}
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The ALARM Monitoring System:
A Case Study with two Probabilistic Inference Techniques
for Belief Networks

Ingo A. Beinlich, M.D., H. J. Suermondt, R. Martin Chavez,

Exa m p I e - Ex pe rt SVSte m s Gregory F. Cooper, M.D., Ph.D.

Section on Medical Informatics,
Stanford University School of Medicine, Stanford, California, USA

Abstract ALARM (A Logical Alarm Reduction Mechanism) is a diagnostic applica-

tion usegto explore probabilistic reasoning techniques in belief networks. ALARM

implements an alarm message system for patient monitoring; it calculates proba-

. . bilities for a differential diagnosis based on available evidence. The medical knowl-

Q Be| N | IC h et al . 1 989 edge is encoded in a graphical structure connecting 8 diagnoses, 16 findings and
13 intermediate variables. Two algorithms were applied to this belief network: (1)

d . | k | d a message-passing algorlttklxlm by Pearl ftgr probability updating in multiply con-

nected networks using the method of conditioning; and (2) the Lauritzen-

. E n COd eS m e ICa n OW e g e Spiegelhalter algorithm for local probability computations on graphical structures.
The characteristics of both algorithms are analyzed and their specific applications

o Patient monitoring system and time complexities are shown.
Introduction
a M easureme ntS The goal of the ALARM monitoring system is to provide specific text messages ad-
Bl d 1 2 O / 8 O m H :islng the u:etrh of p(;sslbl:: l;:;obltlanés. ’l"luxlis ﬂi]s al diagnostlcftasltc). lalntgi we ha\lr(e ;:#lzsgl
0 represen e relevan owledge e language of a belief networ 1),
Q 00 pl’eSSU re m g Th:is graphical rell{)xx;eseln:lauox:h [Peagl 86b] facl}itatelsgthefmtegration of qt:’alltat.lve
: and quantitative knowledge, the assessment of multiple faults, as required by our
Q H eart rate 80/ min doma(llln. and nonmonoton%c and bidirectional reasonir?g. a Y
o Respiratory rate 10/min e
Hypovolemia Anaphylaxis Pulm. Embolus
Q L > g Am':leAna.lgﬁia Kinked
insufficient IntubationTyhe Disconnection
. LVED
D Q U e ry . Volume

Vent Machine

o Pr(kinked tube=true | measurements) = 7

HR BP HR HR SAT
EKG

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (@), intermediate (Q) and

t (©) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-

diastolic volume, LV failure: left ventricular fatlure, MV: minute ventilation, PA Sat: pulmonary artery oxygen satu-

ration, PAP: pulmonary artery pressure, PCWP: pulmonary caplllary wedge pressure, Pres: breathing pressure, RR:
respiratory rate, TPR: total peripheral resistance, TV: tidal volume




% Example: The Dishonest Casino

o A casino has two dice:

o Fair die
o P(1) =P(2) =P(3) =P(5) =P(6) =1/6

0 Loaded die
o P(1)=P(2)=P@3)=P5) =110
a P(6)=1/2

o Casino player switches back-&-forth between
fair and loaded die once every 20 turns

o Game:
a You bet $1
o You roll (always with a fair die)

o Casino player rolls (maybe with fair die, maybe
with loaded die)

a Highest number wins $2




Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616566163661636165156 6 6

QUESTION
o How likely is this sequence, given our model of how the casino works?
a This is the EVALUATION problem

o What portion of the sequence was generated with the fair die, and what portion with the

loaded die?
o This is the DECODING question

o How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino
player change from fair to loaded, and back?
o Thisis the LEARNING question



% Knowledge Engineering

a Picking variables
o Observed
o Hidden
o Discrete
o Continuous

o Picking structure

o CAUSAL

o Generative

o Coupling
o Picking Probabilities
“Natural”
Zero probabilities
Orders of magnitudes

d
d
d
o Relative values



4 Hidden Markov Model

The underlying
source:

Speech signal
genome function

dice

The sequence:

Phonemes
DNA sequence
sequence of rolls
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% Probability of a parse

o QGivenasequencex = x...... Xt

()= ()= @
andaparsey =y, ......, ¥,
() () &) - @

o To find how likely is the parse:
(given our HMM and the sequence)

p(X,y) =p(x;...... Xy Vi vvven , V1) (Joint probability)
=p) pCe | y) pOn [ y1) O [ 32) <o pOrr | yen) pOer | yr)
=p) PO [ y1) ... pOrr [ yr) X pey | v) pOes [ 32) - plxr [ yr)
=p(yis ...... , 1) p(xy...... Xt| Vis oeennn, V1)

a Marginal probability: p(x)=) pxy)=) > > . [la, ,[1rGi1r)
t=2 t=1
o Posterior probability: p(y|x)= p(x,y)/ p(x)

o We will learn how to do this efficiently (polynomial time)



Bayesian Network:

o A BN is a directed graph whose nodes represent the random variables and whose edges
represent direct influence of one variable on another.

o Itis a data structure that provides the skeleton for representing a joint distribution
compactly in a factorized way;

o It offers a compact representation for a set of conditional independence assumptions
about a distribution;

o We can view the graph as encoding a generative sampling process executed by nature,
where the value for each variable is selected by nature using a distribution that depends
only on its parents. In other words, each variable is a stochastic function of its parents.
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% Bayesian Network: Factorization Theorem

o Theorem:

Given a DAG, The most general form of the probability distribution that is
consistent with the graph factors according to “node given its parents”:

P(X) = HP(XZ- X,)

where X is the set of parents of X;, d is the number of nodes (variables)
In the graph.

P(XI, Xz, X3, X4, X5’ X6’ X7’ X8)

P(X4| X3, Xy) P(X7| Xg) P(X5| X5, X)



% Specification of a directed GM

a There are two components to any GM:
a the qualitative specification
o the quantitative specification




/
f Qualitative Specification

a Where does the qualitative specification come from?

Prior knowledge of causal relationships

Prior knowledge of modular relationships

Assessment from experts

Learning from data

We simply like a certain architecture (e.g. a layered graph)

o 0o 0 o0 0o



f Local Structures & Independencies

o Common parent A > O

o Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent”

o Cascade A OB O—»C >

o Knowing B decouples A and C
‘given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

o V-structure A > 8 >

o Knowing C couples A and B
because A can "explain away" B w.r.t. C O
"If A correlates to C, then chance for B to also correlate to B will decrease”

o The language is compact, the concepts are rich!
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/
(/ A simple justification



% I-maps (Recap)

a Defn: Let P be a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y | Z) that hold in P (however
how we set the parameter-values).

a Defn: Let K be any graph object associated with a set of
independencies [(K). We say that K is an /-map for a set of
independencies |, if [(K) < |.

a We now say that G is an |I-map for P if G is an |I-map for I(P), where we
use [(G) as the set of independencies associated.



% Facts about I-map

a For G to be an |-map of P, it is necessary that G does not mislead us
regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may
have additional independencies that are not reflected in G

X Y |PX.)Y)
o Example: 2 g7 0.08
P, 20 gyl 0.32
xl yf 0.12
xt oyt 0.48
QO
@ X Y | PX,Y)
¥ Y 0.4
Gy Gx_y Gy _x P, 20yt 0.3
zt oy 0.2
;1?1 1

Y 0.1
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% What is in I(G) ---

local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose nodes represent
random variables X, . . ., X

n

local Markov assumptions

o Defn:

Let Pa,, denote the parents of X; in G, and NonDescendants,,denote the variables in the graph
that are not descendants of X;. Then G encodes the following set of Jocal condiitional
Independence assumptions /{ G):

I£G): {X; L NonDescenaants, | Pay, : V i),

In other words, each node X; is independent of its nondescendants given its parents.
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% Graph separation criterion

o D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are D-separated (conditionally independent)
given z it they are separated in the moralized ancestral graph

o Example:

original graph ancestral moral ancestral



% What is in I(G) ---
Global Markov properties of BN

o X is d-separated (directed-separated) from Z given Y if we can't send a ball from any
node in X to any node in Z using the "Bayes-ball algoritnm illustrated bellow (and plus
some boundary conditions):

== U —{ _
= « Defn: I{6)=all independence
@ ) properties that correspond to d-
separation:
TANP
T - 1(G)=1{X L Z|¥ : dseps(X; 2|1)]

(b)
va/g CK /Q « D-separation is sound and
s \O/ complete
v (more details later)

(a) (b)



% Example:

o Complete the [(G) of this graph:

X4




% Toward quantitative specification of probability
distribution

o Separation properties in the graph imply independence properties about
the associated variables

o The Equivalence Theorem
For a graph G,

Let Dy denote the family of all distributions that satisfy [(G),
Let D, denote the family of all distributions that factor according to G,

Then D,=Ds. PX)=]]PX, X,)

i=l:d

o For the graph to be useful, any conditional independence properties we
can derive from the graph should hold for the probability distribution that
the graph represents



% Conditional probability tables (CPTs)

0.75

0.25

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’%b0 a’%b? a'b? a'b?
cO 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
cO c
0.3 |05
07 0.5




% Conditional probability density func. (CPDs)

P(a,b,c.d) =
A~N(p,, Z;) B~N(up, %) P(a)P(b)P(c|a,b)P(d|c)
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C~N(A+B, %)

‘ D~N(u4+C, 2,)
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Summary of BN semantics

a Defn: A Bayesian networkis a pair (G, P) where P factorizes over G, and
where P is specified as set of CPDs associated with G’s nodes.

a Conditional independencies imply factorization

a Factorization according to G implies the associated conditional
iIndependencies.

a Are there other independences that hold for every distribution P that
factorizes over G7



% Soundness and completeness

D-separation is sound and "‘complete” w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) < I(P).

"Completeness”:
‘Claim": For any distribution P that factorizes over G, if (X L Y | Z) € I(P) then d-seps(X; Y | 2).

Contrapositive of the completeness statement

a 'If Xand Y are not d-separated given Z in G, then X and Y are depenaent in all
distributions P that factorize over G."

a Is this true?



/
(/ Distributional equivalence and l-equivalence

o All independence in |4(G) will be captured in I{(G), is the reverse true?
o Are "'not-independence’ from G all honored in P; ?



/
(/ Distributional equivalence and l-equivalence

o All independence in |4(G) will be captured in I{(G), is the reverse true?
o Are "'not-independence’ from G all honored in P; ?



/" Soundness and completeness

o Contrapositive of the completeness statement

o 'lf Xand Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize
over G.'

o Is this true?

o No. Even if a distribution factorizes over G, it can still contain additional independencies
that are not reflected in the structure

o Example: graph A->B, for actually independent A and B
(the independence can be captured by some subtle way A b

. . 0
of parameterization) Zl gj 82

o Thm: Let G be a BN graph. If X and Y are not d-separated given Zin G, then Xand Y
are dependent in some distribution P that factorizes over G.

© Eric Xing @ CMU, 2005-2020 29



o Theorem : For almost all distributions P that factorize over G, i.e., for all
distributions except for a set of "measure zero" in the space of CPD
parameterizations, we have that I(P) = (G)



% Uniqueness of BN

o Very different BN graphs can actually be equivalent, in that they encode
precisely the same set of conditional independence assertions.

\

(a) (b) (C) (d)
(XLY]|2).



4 l-equivalence

o Defn: Two BN graphs G1 and G2 over X are /-equivalentif (G1) = [(G2).

o The set of all graphs over X is partitioned into a set of mutually exclusive and exhaustive /-equivalence
classes, which are the set of equivalence classes induced by the I-equivalence relation.

%%x% 2

(d)

o Any distribution P that can be factorized over one of these graphs can be factorized over the other.

o Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than
an equivalent one.

o This observation has important implications with respect to our ability to determine the directionality of
influence.

© Eric Xing @ CMU, 2005-2020 32



/
f Simple BNs:

Conditionally Independent Observations

Model parameters

@O--DD o



% The “Plate” Micro

Model parameters

@ Data = {y4,...y.}

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner



/
f Hidden Markov Model:

from static to dynamic mixture models

Static mixture Dynamic mixture




Definition (of HMM)

Q

Observation space
Alphabetic set:
Euclidean space:

Index set of hidden states
1={12,-- M}
Transition probabilities between any two states
p(}/r :;I'|y7‘/—1 :l)za/',ja
or p(y; | yi,=1)~Multinomial(g, ,.a,,.....a, , ) Vi 1.
Start probabilities

p(yy) ~ Multinomial(ﬁl,ﬂz,...,ﬂM )
Emission probabilities associated with each state

C= {CI,CZ,---,CK}

RS

x. | y! =1) ~ Multinomiallb. ,,b.,,....b , Vi el.
or in general: P61y =1 </:1 /1 /,/<)

px. |yl =1)~f(16,)Viel

2
()

© Eric Xing @ CMU, 2005-2020
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Probability of a parse

andaparsey =y, ......, Vi,
o To find how likely is the parse:
(given our HMM and the sequence)

o Given asequencex = Xx;...... Xt @ @ @
) () (x5) -

p(X,y) =p(xq...... XTy Vi evvee , V1) (Joint probability)
=p) pxi [ ) pO2 [ y) p(xa | 2) .. pOrr | yr1) pler | 1)
=p) POn [ y) .. pOrr | yr) X p(xy [ 1) plxa [ 32) - p(xr | yr)
=pOi, ...... , 1) p(xq...... XT| V1o vvennn , VT)

2
()



/  Summary:
Representing Multivariate Distribution

0 Representation: what is the joint probability dist. on multiple variables?
P(X,, X5, X5, X4, X5, X, X7,Xg,)

o How many state configurations in total? --- 28
0 Are they all needed to be represented? D) E)
o Do we get any scientific/medical insight?
. . H )
QO Factored representation: the chain-rule
P(X1>X25X3’X4’X5’XG’X7’X8)
:P(XI)P(XZ |X1)P(X3 |X1’X2)P(X4 |X15X2’X3)P(X5|X17X2’X3’X4)P(X6 |X1’X2’X3’X4’X5)
P(X7 ‘X17X2:X3’X49X57X6)P(X8 ’X19X29X3:X47X5’X69X7)
a This factorization is true for any distribution and any variable ordering
o Do we save any parameterization cost?
o If Xi's are independent: (A X/e)= AX,))
P(X(, X0, X3, X g, X5, X, X7, X3) > What do we gain?

= P(X,)P(X,)P(X3)P(X4)P(X5)P(X4)P(X7)P(Xg) = [ [ P(X)) >  What do we lose?

© Eric Xing @ CMU, 2005-2020
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; Summary: take home messages

a Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over
G, and where P is specified as set of local conditional probability dist.
CPDs associated with G’s nodes.

o A BN capture “causality”, “generative schemes”, “asymmetric
influences”, etc., between entities

o Local and global independence properties identifiable via d- separation
criteria (Bayes ball)

o Computing joint likelihood amounts multiplying CPDs
o But computing marginal can be difficult
o Thus inference is in general hard

o Important special cases:
o Hidden Markov models
o Tree models



A few myths about graphical models

a They require a localist semantics for the nodes
o They require a causal semantics for the edges

o They are necessarily Bayesian 5

o They are intractable

¥



