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% Summary

o Lasttime
o Conditional independence between two random variables
o Conditional independence graph (CIG):
o absence of an edge (X1,X,) => X; 1 X,|rest
o Today
o How can we read-off conditional independences from CIG?
o What is the class of distributions represented by CIG?



Notation

a Variable, value and index
a Random variable

a Random vector

a Random matrix

o Parameters



Undirected graphical models (UGM)

P(X; 96)

a Pairwise (non-causal) relationships

o Can write down model, and score specific configurations of the graph,
but no explicit way to generate samples

a Contingency constrains on node configurations



% A Canonical Example: understanding complex scene ...

air or water ?
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7 A Canonical Example

o The grid model

o Naturally arises in image processing, lattice physics, etc.

o Each node may represent a single "pixel”, or an atom

o The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc.
o Most likely joint-configurations usually correspond to a "low-energy" state
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/ Social networks
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Protein interaction networks
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Modeling Go

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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% Information retrieval




% Representation

o Defn: an undirected graphical model represents a distribution AX,,..., X))
defined by an undirected graph A, and a set of positive potential functions y,
associated with the cliques of H, s.t.

&) 2

P(.Xl,..., Hl//c(x )
ceC
where Zis known as the partition function: X @
5
7= 2 v
»X, ceC

o Also known as Markov Random F|e|o|s, Markov networks ...

a The potential function can be understood as an contingency function of its
arguments assigning "pre-probabilistic” score of their joint configuration.



/
f l. Quantitative Specification: Cliques

o For G={V,£}, a complete subgraph (clique) is a subgraph G={VcV,E<FE} such
that nodes in "are fully interconnected

o A (maximal) cligue is a complete subgraph s.t. any superset /> V'is not
complete.

o A sub-clique is a not-necessarily-maximal clique.

SNwS

a Example: e

o max-cliques = {A,B,0}, {B,C,D}
o sub-cliques = {A,B}, {C [}, ...~ all edges and singletons
o Why Cliques: a basic unit that “all dependencies” are possible, and not to be
missed




% Gibbs Distribution and Clique Potential

o Defn: an undirected graphical model represents a distribution AX,,..., X))
defined by an undirected graph A, and a set of positive pofential functions v,
associated with cliques of H, s.t.

P(x,,...,x, HW (x.) (AGibbs distribution)

ceC

where Zis known as the partition function:

Z= Z | v.(x.)

X, ceC

o Also known as Markov Random F|e|o|s, Markov networks ...

a The potential function can be understood as an contingency function of its
arguments assigning "pre-probabilistic” score of their joint configuration.



% Interpretation of Clique Potentials

CO——2

o I'he model implies XLZ Y. This independence statement implies (by definition)
that the joint must factorize as:

px.y.z)=py)px|y)p(z|y)

. Py D) =px.y)p(Z] )
o We can write this as: p(x,y,2)= px | )P(Z,y) but

o cannot have all potentials be marginals
o cannot have all potentials be conditionals

o The positive cliqgue potentials can only be thought of as general "Compatibillitl%/",
ngoodness" or "happiness” functions over their variables, but not as probability

IStributions.



; Example UGM - using max cliques

A,B,D @
o ==

e WV, (Xy24) V. (Xo34)

0 1

1

P'(xy,X5,X3,X4) = }‘//C(X124)X‘//c(xz34)

/= Zl//c(x124)xl//c(xz34)

o For discrete nodes, we Canbrz’eic’)ztresent H X;.,4) as two 3D tables instead of
one 4D table



; Example UGM - using subcliques

SNwS

" 1 | |
P (XI,XZ,X3,X4):E wlj(xzj)
i

1

~ 7 Wio (X12 W14 (X34 )W 23 (X23 W24 (X4 )W/ 34 (X34)

z= 2 |lwixyp

X1,Xp,X3,X4 1]

o We can represent A X,.,) as 5 2D tables instead of one 4D table
o Pair MRFs, a popular and simple special case




% Example UGM - canonical representation

° P(xy, X5, X3,X,)
1
Q.G :EWC(X124)XI//C(X234)
X W12 (X1 W1q (X1 W 23 (X3 )W 24 (X4 )W 34 (X34)

X Wy (X)W, (35 )3 (x3)y 4 (x4)
W, (X1p4) XY (X334)
Z = z X W1 (X1p Wig (X4 W 23 (X3 )W 24 (X4 W34 (X34)

oA A3 e Wy ()W (6 )3 (3 )W 4 (X4)

o Most general, subsume P' and P" as special cases



% ll: Independence properties:

o Now let us ask what kinds of distributions, in terms of the set of
iIndependence relationships between variables, can be represented by
undirected graphs (ignoring the details of the particular
parameterization).

a Defn: the global Markov properties of a UG H are
[(H) =X L Z|Y):sep, (X;Z|V)]




% I-maps

a Defn: Let P be a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y| Z) that hold in P (no matter
how we set the parameter-values).

a Defn: Let K be any graph object associated with a set of
independencies [(K). We say that K is an /-map for a set of
independencies |, if [(K) < |.

a We now say that G is an I-map for P if G is an [-map for I(P), where we
use [(G) as the set of independencies associated.



; Facts about I-map

a For G to be an |-map of P, it is necessary that G does not mislead us
regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may
have additional independencies that are not reflected in G

a (Perhaps unintuitive) Example:
a Two variables: (X, Y)
a P(X,Y) =P(X)P(Y)
o G = full graph
a Is G an l-map of P?



% Global Markov Independencies

o Let A/ be an undirected graph:

Xz

Xy
a B separates A and C'if every path from a nodéin Ato a node in C passes

through a node in 5. sep, (4;C|B)

o A probability distribution satisfies the global Markov property it for any disjoint
A, B, C, such that Bseparates Aand C, Ais independent of C given 5:

I(H)=1{4 L C|B:sep,, (4;C|B)]




% Local Markov independencies

o For each node X; € V, there is unique Markov blanket of X;, denoted
MB,., which is the set of neighbors of X; in the graph (those that share an
edge with X))

a Defn:
The /ocal Markov independencies associated with H is:

IAH) X LV = {Xi ) = MBy | MBy, : Vi),

In other words, X; is independent of the rest of the nodes in the graph given its immediate
neighbors



Soundness and completeness of global Markov property

a Defn: An UG His an I-map for a distribution Pit AH) < AP), i.e., P entails
(H).

a Defn: Pis a Gibbs distribution over Hif it can be represented as

Pk ) = [[welx)

ceC

a Thm (soundness): If Pis a Gibbs distribution over ~, then H is an |-map
of P,

o Thm (completeness): If msep (X Z|Y), then X L, 2| Yin some Pthat
factorizes over H.



% Other Markov properties

o For undirected graphs, we defined I-maps in terms of global Markov
properties, and will now derive local independence.

o For directed graphs, we defined [-maps in terms of local Markov
properties, and derived global independence.

a Defn: The pairwise Markov independencies associated with UG H =
(V.E) are
[(H)={X LY \{X,Y}:{X,Y} ¢ E}

o eqg., X, L X5[{X,, X5, X, )

O 0000



% Hammersley-Clifford Theorem

o It arbitrary potentials are utilized in the following product formula for

probabillities, '
P(xy,...,x,) = gnl/lc(xc)

ceC

Z=> 1]v.(x)

Xq5e.X, ceC

then the family of probability distributions obtained is exactly that set
which respects the qualitative specification (the conditional
independence relations) described earlier

o Thm: Let P be a positive distribution over V, and ~a Markov network
graph over V. If His an I-map for P, then P is a Gibbs distribution over H.




% Perfect maps

a Defn: A Markov network His a perfect map for Pif for any X Y. Zwe
have that

sep (X;ZY) o PE(XLZY)

o Thm: not every distribution has a perfect map as UGM.
o See next lecture for proof.



Exponential Form

o Constraining clique potentials to be positive could be inconvenient (e.g., the

interactions between a pair of atoms can be either attractive or repulsive). We
represent a clique potential y.(x.;) in an unconstrained form using a real-value

‘energy” function ¢@.(x.):
v (x.) = expi-4.(x.)}

For convenience, we will call ¢.(x;) a potential when no confusion arises from the context.

o This gives the joint a nice additive strcuture

P =G expi- T (x| = Sexpl- HOo)

ceC
where the sum in the exponent is called the "free energy":

H(x)=2 4.(x,)

ceC

In physics, this is called the "Boltzmann distribution”.
In statistics, this is called a log-linear model.



% Example: Boltzmann machines

ONpS

a A fully connected graph with pairwise (edge) potentials on binary-valued
nodes (for x, e{~1+1}or x, €{0,1} ) is called a Boltzmann machine

| )
P(x1,X;,X3,X4) = 26Xp< Z%’ (xi,xi)}
LY

= %exp< ZHU.xl.xj +Zal.xl. +C}
ij i

o Hence the overall energy function has the form:
H(x)=) (3, =)0, (x; — ) = (x~ )" O(x~ )




% Ising models

o Nodes are arranged in a regular topology (often a regular packing grid) and
connected only to their geometric neighbors.

p(X)= —exp{ > 0,XX,+ ZQOX }

i,jeN;

o Same as sparse Boltzmann machine, where 6,0 iff /,j are neighbors.

o €.g., hodes are pixels, potential funchon encourages nearby pixels to have similar
intensities.

o Potts model: multi-state Ising model.



% Restricted Boltzmann Machines

)")‘\"\

p(x, k| 6) =expl Y 04(x) > 0.8,(h)+ > .04 (x.h,)- A®) | "

hidden units

visible units




/ Restricted Boltzmann Machines

The Harmonium (Smolensky —'86)

)") \ /\

Smolensky (’86), Proposed the architechture.

Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan (’02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)

hidden units

visible units

© Eric Xing @ CMU, 2005-2020
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% Properties of RBM

o Factors are marginally dependent.

ao Factors are conditionally /ndependent given
observations on the visible nodes.

P(lIw)=1], P({;|w)

o lterative Gibbs sampling.

o Learning with contrastive divergence



% A Constructive Definition
h

v/

X

Poa () < [expl 0,¢,(h)) |

X how do we couple them?

Poa (0] [expl 61(x) }
p(x.h|0)=expl D 01(x)+ D A&,(h)+ 2 FT ()W, &) | ¥
I j i,j ©Eric Xing @ CMU, 20052020 34



% A Constructive Definition

g pxm)=] ] px ),

p(x, ) =expl .0, fu(x)+4,({0,}) |

0,=0,+> Wrg, (h)=0,+> Wig.(h)
Jjb J

xi p(h | X) — Hp(hj | X) vector of local
J

coupling in the sufficient statistics

log-domain with

shifted parameters p(hj | x) = GXp{ Zﬂtjbgjb (hj) +Bj({/ijb}) }
b

ijb = Ayt ZVVlébﬁa (x;) = Aj + ZWijbfi(xi)

(features)

They map to the RBM random field:

p(x.h|60)=expl Y07,()+ 24,8, (h)+ 2 J (x)W,,&,(h,) )

Xing @ CMU, 2005-2020



% An RBM for Text Modeling

h; = 3: topic j has strength 3
hER, (h)=Y W x

i " i

x;=n: word i has count n

x, €1
words counts

p(h|x) ZHNormalhj[ D, %l ]

ij o

pxy=[TBi, [ v, s |

> Lrexp(a,; +X Wih;)

= p(X) OCexp{(Zi ax -logl'(x,)-logI'(N -x, ))+ 3 Zj (ZZ. W. x, )2 }

l,]



% Conditional Random Fields

G o Discriminative
@ @ @ 2,(y]x) = : exp{zecfc(X,yc)}

ﬂ Z(6,x)

(X
Doesn’t assume that features are
) independent
x) ) ) .. &)
[

o When labeling X; future observations are
taken into account




% Conditional Models

o Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

o Specify the probability of possible label sequences given an observation sequence

o Allow arbitrary, non-independent features on the observation sequence
X

o The probability of a transition between labels may depend on past and
future observations

o Relax strong independence assumptions in generative models



; Conditional Distribution

o If the graph G=(V, E) of Y is a tree, the conditional distribution over the
label sequence Y =y, given X =x, by the Hammersley Clifford theorem
of random fields is:

Po(y| %) oc eXp( > Afileyl.x)+ D ﬂkgk(v,ylv,X)j
eckE k vel k

— X is a data sequence

— yis alabel sequence

— Vvis avertex from vertex set V = set of label random variables
- elis an edge from edge set E over V

- Iyand gy are given and fixed. g is a Boolean vertex feature; 7 is a Boolean edge feature
—  kis the number of features

— 0= Ay A e 11,)i A4 and 1y gre parameters to be estimated
—  Y|eis the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v

n
© Eric Xing @ CMU, 2005-2020 39 g
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Conditional Distribution (cont’d)

o CRFs use the observation-dependent normalization Z(x) for the

conditional distributions:

Po(Y1X)= 1 exp[zlkfk(eaweax)*'Zﬂkgk(V,Y|vaX)

Z(X) ecEk veV k

o Z(x) Is a normalization over the data sequence x

J



% Conditional Random Fields

1
Pa(}/ ‘ X) - Z(Q,X) exp{zecé(xﬁyc)}

c

a Allow arbitrary dependencies on input
o Cligue dependencies on labels

o Use approximate inference for general
graphs

© Eric Xing @ CMU, 2005-2020 M Lg



% Summary: Conditional Independence Semantics in an MRF

a Structure: an undirected graph

o Meaning: a node is conditionally
independent of every other node in the
network given its Directed neighbors

o Local contingency functions (potentials)
and the cliques in the graph completely
determine the joint dist.

o Give correlations between variables, but
no explicit way to generate samples




Summary

o Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”,
‘synergism”, etc. between entities

o Local and global independence properties identifiable via graph separation criteria
o Defined on cligue potentials

o Can be used to define either joint or conditional distributions

o Generally intractable to compute likelihood due to presence of “partition function”

o Therefore not only inference, but also likelihood-based learning is difficult in general
o Important special cases:

o Ising models

o RBM

o CRF

o Learning GM structures:
o the Chow-Liu Algorithm

© Eric Xing @ CMU, 2005-2020
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/
(/ Supplementary:



; Where is the graph structure come from?

The goal:

o Given set of independent samples (assignments of random variables),
find the best (the most likely?) graphical model topology

ML Structural Learning for completely observed GMs

O O > &
DO O > D> A
O @

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

(B, E,A,C, R)=(F,T,T,T, F) © Eric Xing @ CMU, 2005-2020



% Information Theoretic Interpretation of ML

¢ (0,,G; D) =log p(D|6,,G)

- logH (H p('xn,l’ | Xn,;r,-(G) ’ 6i|7r,—(G) )j
- Z (Z log p('xn,i | Xn,ﬁi(G) ’ 61'|7r1-(G) )j

count(x,,X, )
:MZ Z o 10gP(XiXﬁ,(G)>Hz’m(G>)j

M

b\ XioXm(6)

=MD | D P(x.X, q)log p(x;| Xﬁ,(G)’ezm(G))J

P\ NioXr(6)

From sum over data points to sum over count of variable states

© Eric Xing @ CMU, 2005-2020 Lg



% Information Theoretic Interpretation of ML (con'd)

¢ (0;,G;D)=log p(D|6,,G)

—MZ( ZP(X Xﬁ(G))logp('x |X7z(G) ﬂ(G))J

7i (G)

R p(xﬂxﬁ»(G)’ ilﬂ»(G)) p(x;)
=M p(x.,x_ . )log — ’ —!
Z xl.,;[(m o p(X;;,.(G)) p(x,)

. p(x;, X1.(G) 9i|77-(G)) . .
=M P(x;, X, ) log — |- M p(x;)log p(x;)
Z Z(G) o p(Xﬂi(G))p(xi) Z xz

= MZ[(x X, ()~ MZ H(x,)

Decomposable score and a function of the graph structure



; Structural Search

a How many graphs over 7 nodes? 0@2")
o How many trees over nnodes? o)

a But it turns out that we can find exact solution of an optimal tree (under
MLE)!

o Trick: in a tree each node has only one parent!
o Chow-liu algorithm



% Chow-Liu tree learning algorithm

a Objection function:
¢ (05,G;D)=log p(D|6;,G)

:sz(xiaxni(G))_MZ[:[(xi)

C(G) =M Y 1(x, X, )

o Chow-Liu:

o For each pair of variable x; and x;

o Compute empirical distribution: HXL X)) = count(x;, ;)
12 ]

M

T A ﬁ(xl.,x.)
](XlﬁX): p(xlﬂx)log A A :
! Z T p(x)p(x))

o Compute mutual information:

a Define a graph with node x;, ..., x, o
o Edge (l,)) gets weight

I(X,, X))

© Eric Xing @ CMU, 2005-2020 Lg



% Chow-Liu algorithm (con'd)

a Objection function:
¢ (05,G; D) =log p(D16;,G)

2 A —
=MD 1(x,,X, ) —MY H(x)

C(G)=M Y 1(x, X, )

a Chow-Liu:
Optimal tree BN
o Compute maximum weight spanning tree

o Direction in BN: pick any node as root, do breadth-first-search to define
directions

a l-equivalence: (A)

B ©

® €
C(G) — I(A, B) + [(A, C) + [(C, D) + I(C, E) © Eric Xing @ CMU, 2005-2020 Lg




/
{/ Structure Learning for general graphs

o [heorem:

o The problem of learning a BN structure with at most @ parents is
NP-hard for any (fixed) a>2

o Most structure learning approaches use heuristics
o Exploit score decomposition
o Two heuristics that exploit decomposition in different ways

o Greedy search through space of node-orders

o Local search of graph structures



