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Logistics

e Class webpage: http://www.cs.cmu.edu/~epxing/Class/10708-20/
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10-708 — Probabilistic Graphical Models

2020 Spring

Many of the problems in artificial intelligence, statistics, computer systems, computer vision, natural language processing,
and computational biology, among many other fields, can be viewed as the search for a coherent global conclusion from
local information. The probabilistic graphical models framework provides an unified view for this wide range of problems,
enables efficient inference, decision-making and learning in problems with a very large number of attributes and huge
datasets. This graduate-level course will provide you with a strong foundation for both applying graphical models to
complex problems and for addressing core research topics in graphical models.

= Instructor: Eric P. Xing (epxing@cs)

= Time: MW 12:00-1:20pm

= Location: Wean 7500

= Office Hours: TBA

= Piazza: https://www.piazza.com/cmu/spring2020/10708
= Gradescope: https://www.gradescope.com/courses/80181

= TAs (email, office hours):
= Xun Zheng (xzhengi@andrew, TBA)

= Ben Lengerich (blengeri@andrew, TBA)
= Haohan Wang (haohanw@andrew, TBA)
= Yiwen Yuan (yiweny@andrew, TBA)

= Xiang Si (xsi@andrew, TBA)

= Junxian He (junxiani@andrew, TBA)
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Logistics

o Textbooks:
o Daphne Koller and Nir Friedman, Probabilistic Graphical Models
M. I. Jordan, An Introduction to Probabilistic Graphical Models (chapters will be made available)

o Class announcements and discussion: Piazza
o Homework submission: Gradescope

o TAS:;

Xun Zheng
Ben Lengerich
Haohan Wang
Yiwen Yuan
Xiang Si
Junxian He

o Lecturer: Eric Xing
o Class Assistant: Amy Protos

I T I R o
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Logistics

o 4 homework assignments: 50% of grade
o Theory exercises, Implementation exercises

o Scribe duties: 10% (~once to twice for the whole semester)

o Final project: 40% of grade

o Applying PGM to the development of a real, substantial ML system

o Design and Implement a (record-breaking) distributed Logistic Regression, Gradient Boosted Tree, Deep Network, or Topic
model on Petuum and apply to ImageNet, Wikipedia, and/or other data

o Build a web-scale topic or story line tracking system for news media, or a paper recommendation system for conference
review matching
o Anonline car or people or event detector for web-images and webcam
o An automatic “what’s up here?” or “photo album” service on iPhone
o Theoretical and/or algorithmic work

o amore efficient approximate inference or optimization algorithm, e.g., based on stochastic approximation, proximal average,
or other new technigques

o adistributed sampling scheme with convergence guarantee

o 3 or4-member team to be formed in the first three weeks, proposal, mid-way report, presentation & demo, final report >
possibly conference submission !

o Bonus:
a Contribution to discussion on Piazza
o Complete mid-semester evaluation © Eric Xing @ CMU, 20052020 4 Lg



Past projects:

[% Grading - Mozilla
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"b Probabilistic Graphical Models
S

> <
H 2 10-708, Fall 2007
"p’ School of Computer Science, Camnegie-Mellon University
A A
AL
Course Project

Your class project is wm opporturity for you to explore o mteresting mullivariate snalysis problem of your choice in the context of a read world data set. Projects
can b dome by you a5 an mdiwidual, or i teams of two to three students,  Each project will also be assigned @ 708 instructor s o project consutatimentor
They wil with you on your ideas, but the fral responsibility to define and execute an interesting piece of work is yours Your project will be worth 30% of
il cliss grade, and will have two finad defuerables

1. awriteup in the form of a NIPS paper (8 pages maximum in NIPS format, inchuding references), due Dec 3, worth 60% of the project grade, and

2. aposter preseatmg your work for a special ML class poster session at the end of the semester, due Nov 30, worth 20% of the project grade.

T addition, you must turm in & midway progress veport (5 pages maimun in MIPS format, inchiding references) descrbing the results of your first sxpecments
by Oct 31, worth 2006 of the project srade Note that, as with any conferance, the page ks are strict] Papers over tha kit will not be considered

Project Proposal:

You mmust tum in # brief project proposal (1-page mismen) by Oct 10th

You are encouraged to come up a topic directly related to your own curens research project or research topics related to graphscal models of your own mterest
that bears a non-tnvial technical P (etther th l or d), but the proposed work must be new and should not be copsed from your
previous pubkshed or unpublished work. For example, research on graphacal models that you did thas summer does not count as a class project

o We will have a prize for the best

project(s) ...

Award Winning Projects:

J. Yang, Y. Liu, E. P. Xing and A. Hauptmann, Harmonium-Based
Models for Semantic Video Representation and Classification ,
Proceedings of The Seventh SIAM International Conference on Data
Mining (SDM 2007 best paper)

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer,
Eduard Hovy, Noah A. Smith, Retrofitting Word Vectors to Semantic
Lexicons, NAACL 2015 best paper

Others ... such as KDD 2014 best paper

Other projects:

Andreas Krause, Jure Leskovec and Carlos Guestrin, Data
Association for Topic Intensity Tracking, 23rd International
Conference on Machine Learning (ICML 2006).

M. Sachan, A. Dubey, S. Srivastava, E. P. Xing and Eduard Hovy,
Spatial Compactness meets Topical Consistency: Jointly modeling
Links and Content for Community Detection , Proceedings of The 7th
ACM International Conference on Web Search and Data Mining
(WSDM 2014).

© Eric Xing @ CMU, 2005-2020 5
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http://www.cs.cmu.edu/~epxing/papers/sdm07jyang.pdf
http://www.cs.cmu.edu/~epxing/papers/2014/Sachan_Dubey_Xing_Hovy_WSDM14.pdf

4 Recap of Basic Prob. Concepts

e Representation: what is the joint probability dist. on multiple variables?
P(X,X,,X;,X,, X5, X, X5, Xy)

e How many state configurations in total? --- 28
e Are they all needed to be represented? 51 [ E ]
e Do we get any scientific/medical insight?

CH]

e [earning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?

e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and plausible
values of the probabilities?

e |Inference: If not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?

e Computing p(HA) would require summing over all 2° configurations of the unobserved variables

© Eric Xing @ CMU, 2005-2020 6 g



/
f Multivariate Distribution in High-D Space

o A possible world for cellular signal transduction:

[ReceptorA ] X, [ReceptorB ] X2

[ Kinase C ] X3 [ Kinase D ] X, [ Kinase E

()




% A Structured View From Domain Experts

0 Dependenmes among variables

____________________________________________________________________________________________

[ Kinase C ] X3 Kinase D ] X [ Kinase E j(s




4 What are graphical models?
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/
{/ Relationship between two random variables

o Many types of relationships exist:

X and Y are correlated

X and Y are dependent

X and Y are independent

X and Y are partially correlated given Z

X and Y are conditionally dependent given Z
X and Y are conditionally independent given Z
X causes Y

Y causes X

o 0O 000 O0QoO0DQOoOCo

a Many of them can be measured by an “one number summary”



/
{/ Measure of association between two random variables

a Measures of association:

Pearson’s correlation

Mutual information

Hilbert-Schmidt Independence Criterion (HSIC)
Partial correlation

U O 0 0 O

a Why StUdy them? (rather than directly diving into graphical models?)
o Gives better understanding of what graphical models really mean
o Useful when estimating graph from data (later in the course)



/
f Probability 101: Pearson’s correlation

o Normalized covariance

(XY Cov(X,Y)

N \/Var(X) \/Var(Y)

a Captures linear dependency

o Linear regression from Xto Y gives g8 = Cov(X,Y)

Var(X)

o Important properties:
o X ILYimplies p(X,Y) =0 (Why?)
o P(X,Y) =0 does not imply X IL Y (Counterexamples?)

a Q1: Is there any measure that implies independence?
o Q2: What kind of dependency should they consider?



Strong measure of association

a Q1: Is there any measure that implies independence?
o A1: Yes, many! We will mention two of them today.

o Q2: What kind of dependency should they consider?
o A2: Nonlinear dependency.

o One way to construct such a measure of dependence:
a |t X 1LY then joint pdf factorizes Pxy = Px Py
o Measure “distance” between Pxy and Px Py
o distance ==0ifandonly it X 1Y



Mutual information

Q

Q

Q

Distance between two distributions?
Recall our old friend — the Kullback—Leibler divergence

dx

KL(P,Q) = / . P(z) log gig

Apply then we get another old friend — mutual information
I(X,Y) = KL(Pxy, PxPy)

Foundation of many topics later in the course
(X, Y)=0ifandonlyif X LY



(/ Hilbert-Schmidt Independence Criterion (HSIC)

a A relatively recent(?) finding by Gretton et al. 2005
a Use maximum mean discrepancy (MMD) as the distance metric

HSIC(X,Y) = MMD(Pxy, Px Py)
MMD(P, Q) = [|p(P) = pur(Q)][ 7,
pr(P) =Ez . plé(Z)] (kernel embedding of P)
) =

feature map of kernel k

¢(Z

o Looks scary! No need to know what it means for now.
a Will cover later if anyone’s interested ©

a”————--~~\
o HSIC(X,Y) = Oifand only if X 1L Y ]/\/\>




/
ﬁ But what do they have to do with graphical models?

a Marginal correlation/dependency graph for X = {x;,..., X4}
o Most primitive form of graphical models one can think of

o Connect variables that have nontrivial pairwise correlation/mutual
information/HSIC/etc.

a Not very informative. Why?
o X = height of a kid
o Y = vocabulary of a kid
o /Z =age of akid
a Q1: What is the marginal dependency graph?
o Q2: What is the graph that you think will make more sense?



/
(/ Partial correlation: accounting for other variables

o Partial correlation between X and Y given a random vector Z
o Correlation measured after eliminating linear effect of Z
o I.e. correlation between residuals from regressing Zto Xand Zto Y

_ Cov(ex,ey)
v/ Var(ex)]y/Var(ey)

ex = X — (B%Z + intercept y )

p(X,Y|Z) = plex,ey)

ey =Y — (BLZ + intercepty)

o Similar to Pearson’s correlation:
o XLY|Zimpliesp(X)Y|Z)=0
o p(X,Y|Z)=0doesnotimply XLY|Z



/
f Partial correlation graphs

a Partial correlation graph for X = {x,..., X;}
o A more informative graphical model than marginal dependency graph

o Connect variables with nontrivial partial correlation given the rest
o Recall the height-vocab-age example (assuming everything is linear)

o A deeper look at the d x d partial correlation matrix R with
Rij = p(Xi, X;|1X_ij)

o Looks scary! (S0 many regressions to run?!)
o But turns out R is just some version of inverse covariance matrix e
o Homework © Q..

Rij = ————"
’ \/@Z’L\/@]j




% Conditional independence

o How do we measure conditional (in)dependence?

o After seeing strong dependency measures and partial correlation, conditional
iIndependency appears to be harder than we thought...

o Ancient wisdom: if something is hard, assume Gaussian.

o If (X, Y, Z) are jointly Gaussian, p(X,Y | Z) =0ifandonlyif X LY | Z
o We will see later that many papers with Gaussian assumption rely on this fact,
even though it is rarely explicitly stated



Measure of association between X and Y

/" Short Summary /\

Marginal Non-marginal (partial)
/\ R
Linear Nonlinear Linear Nonlinear
Pearson’s correlation dist(Pxy, Px Py) Partial correlation Conditional independence
KL divergence Max mean discrepancy
/ What’s next?
Mutual information Hilbert-Schmidt Independence Criterion

© Eric Xing @ CMU, 2005-2020 20 Lg



; Lecture 2: Conditional independence graph

o Go by many different names
Conditional independence graphs (CIG)
Markov networks (MN)

Markov random fields (MRF)

Undirected graphical models (UG)

Q
Q
Q
Q

o Many interesting properties, widely used in physics, statistics, computer
vision, NLP, deep learning, bioinformatics, coding theory, finance, ...

| [ | 7
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i © Eric Xi CMU, 2005-2020
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; Lecture 3: Directed graphical models

o Another major class of models, also has many names:
o Directed graphical models

Directed acyclic graphs (DAQG) (eysiic model exists but hard to work with)

Bayesian networks (BN)

Structural equation models (SEM) P(Xyg) = P(X,)P(X,)P(X;3 | X, Xp)P(Xs | Xo)P(Xs | X)

Structural causal models (SCM) PXel X5, Xy)P(X7 | X o) P(X| X5, X )

U 0O 0 0 O

o Powerful language to express
structured knowledge




/
ﬁ Lecture 4-13 (tentative): Inference and Learning

a Given a graphical model representing our knowledge

o Inference:

What is the marginal/conditional density?

What is the mean of the marginal/conditional?

What is the mode of the marginal/conditional?

Can we draw samples from the marginal/conditional?

U O 0 0 O

o Learning: Statistical parameter estimation and model selection



Lecture 15-end (tentative): Modern GMs

o 0 O 0 O O

Q

Relationship between deep learning and graphical models
Deep generative models and their unified view
Reinforcement learning as probabilistic inference

GMs on functions and sets

Bayesian nonparametrics

Large-scale algorithms and systems

2-3 open slots:
o We will list several candidate topics
o Your voice matters!



/
f Why graphical models

o A language for communication
o A language for computation
o A language for development

a Origins:
o Wright 1920’s

o Independently developed by Spiegelhalter and Lauritzen in statistics and
Pearl in computer science in the late 1980’s



Probabilistic Graphical Models

o If X/'s are conditionally independent (as described by a PGM), the joint can be factored
to a product of simpler terms, e.g.,

P(Xb XZ) XS’ X4) X5’ X6) X7’ X8)

= P(X;) P(X3) P(X3| X7) P(Xy| X3) P(X5] X3)
P(X4| X3, Xy) P(X7| Xg) P(X5| X5, Xo)

o Why we may favor a PGM?

Q Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

a Modular combination of heterogeneous parts — data fusion

a Bayesian Philosophy

e Knowledge meets data -,

26



% Why graphical models

o Probability theory provides the glue whereby the parts are combined, ensuring
that the system as a whole is consistent, and providing ways to interface
models to data.

o The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

0 Many of the classical multivariate probabilistic systems studied in fields such as
statistics, systems engineering, information theory, pattern recognition and

statistical mechanics are special cases of the general graphical model
formalism

o The graphical model framework provides a way to view all of these systems as

instances of a common underlying formalism.
--- M. Jordan

© Eric Xing @ CMU, 2005-2020 27 Lg



Questions?




% Appendix



What Are Graphical Models?

Graph Model
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Reasoning under uncertainty!
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% The Fundamental Questions

o Representation
o How to capture/model uncertainties in possible worlds?
o How to encode our domain knowledge/assumptions/constraints?

o Inference
o How do | answer questions/queries
according to my model and/or based
given data”?

e.g.: P(X,|D)

o Learning

o What model is "right’
for my data?

eg.: M= arg max F(O;M)




4 Recap of Basic Prob. Concepts

e Representation: what is the joint probability dist. on multiple variables?
P(X,X,,X;,X,, X5, X, X5, Xy)

e How many state configurations in total? --- 28
e Are they all needed to be represented? 51 [ E ]
e Do we get any scientific/medical insight?

CH]

e [earning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?

e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and plausible
values of the probabilities?

e |Inference: If not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?

e Computing p(HA) would require summing over all 2° configurations of the unobserved variables

© Eric Xing @ CMU, 2005-2020 33



; What is a Graphical Model?
--- Multivariate Distribution in High-D Space

o A possible world for cellular signal transduction:

[ReceptorA ] X, [ReceptorB ] X2

[ Kinase C ] X3 [ Kinase D ] Xy [ Kinase E X

()




% GM: Structure Simplifies Representation

0 Dependenmes among variables

____________________________________________________________________________________________

[ Kinase C ] X3 Kinase D ] X [ Kinase E j(s




Probabilistic Graphical Models

o If X/'s are conditionally independent (as described by a PGM), the joint can be factored
to a product of simpler terms, e.g.,
P(Xb XZ) XS’ X4) X5’ X6) X7’ X8)

= P(X;) P(X3) P(X3| X7) P(Xy| X3) P(X5] X3)
P(X4| X3, Xy) P(X7| Xg) P(X5| X5, Xo)

Stay tune for what are these independencies!

o Why we may favor a PGM?
Q Incorporation of domain knowledge and causal (logical) structures
1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !

© Eric Xing @ CMU, 2005-2020
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% GM: Data Integration

Receptor B

Kinase D Kinase E

© Eric Xing @ CMU, 2005-2020 37



/
ﬁ More Data Integration

o Text + Image + Network = Holistic Social Media

a Genome + Proteome + Transcriptome + Phenome + ... = PanOmic Biology



Probabilistic Graphical Models

o If X/'s are conditionally independent (as described by a PGM), the joint can be factored
to a product of simpler terms, e.g.,

P(Xb XZ) XS’ X4) X5’ X6) X7’ XS)
= P(X3) P(X4| X2) P(X5| X3)

o Why we may favor a PGM?

Q Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

a Modular combination of heterogeneous parts — data fusion

© Eric Xing @ CMU, 2005-2020 39 Lg



% Rational Statistical Inference

The Bayes Theorem:

Likelihood Prior

Posterior 3
probability l probability

N p(d|h)p(h) Fge
hld)= ey o o

h'eH '

Sum over space of hypotheses

o This allows us to capture uncertainty about the model in a principled way

o But how can we specify and represent a complicated model?
o Typically the number of genes need to be modeled are in the order of thousands!




% GM: MLE and Bayesian Learning

o Probabilistic statements of @ is conditioned on the values of the observed variables

Aops and prior p( |z)

(A,BCDE,..
A= (ABCDE,..

(A,B,C.D,E..

)=(LEFTE,...)
)=(LETTE...)

)=ETTLE...)

- <

Bayes

= [0 @A, 1) do

|

. p(@

/é; X) < p(AfI @)p(@ X)

posterior likelihood  prior cw, sz

M

3



Probabilistic Graphical Models

o If X/'s are conditionally independent (as described by a PGM), the joint can be factored to a

product of simpler terms, e.g.,

P(Xb X29 XS’ X49 X5’ X69 X7’ X8)

LA ' ' % = P(X)) P(X3) P(X;| X)) P(X,| X3) P(X5| X>)
P(X4| X3, Xy) P(X7| X5) P(X5| X5, X¢)

:
o Why we may favor a PGM?
0 Incorporation of domain knowledge and causal (logical) structures

o Modular combination of heterogeneous parts — data fusion

. . 2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
o Bayesian Philosophy

e Knowledge meets data

-0 = @00

© Eric Xing @ CMU, 2005-2020
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% So What Is a PGM After All?

In a nutshell:

PGM = Multivariate Statistics + Structure

GM

Multivariate Obj. Func. + Structure



So What Is a PGM After All?

o The informal blurb:

o Itis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with

recJ) O] [ E]

—>

P(X1,X5.X35,X 4, X5,X,.X7,Xg) P(Xy5) = P(X))P(Xp)P(X;5 | X,1Xp)P(X 4| X)P(X5 | X)
. . P(X6|X3,X4)P(X7|X6)P(X8|X5,X6)
o A more formal description:
o It refers to a family of distributions on a set of random variables that are compatible
with all the probabilistic independence propositions encoded by a graph that
connects these variables

© Eric Xing @ CMU, 2005-2020
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% Two types of GMs

e Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

P(XI, X2, X3, X4, X5, X6) X79 XS)

= P(X)) P(X3) P(X3| X)) P(X,| X3) P(X5| X>)
P(X4| X3, Xy) P(X7| Xp) P(X5| X5, X)

e Undirected edges simply give correlations between variables (Markov
Random Field or Undirected Graphical model):

P(XI, X2, X3, X4, X5, X6) X79 XS)

= 1/Z exp{E(X))+E(X5)+E(X;, X))+E(X, X5)+E(X5 X))
+ E(Xg X3, X)+E(X7 Xe)TE(Xs X5 Xp)}

© Eric Xing @ CMU, 2005-2020
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% Bayesian Networks

o Structure: DAG Ancestor

o Meaning: a node is conditionall

independent of every other node in 7

the network outside its Markov Yi
blanket

o Local conditional distributions
(CPD) and the DAG completely
determine the joint dist.

o Give causality relationships, and

facilitate a generative process Children's co-parent |

Descendent




% Markov Random Fields

o Structure: undirected graph

o Meaning: a node is conditionally
independent of every other node in the
network given its Directed neighbors

o Local contingency functions
(potentials) and the cliques in the
graph completely determine the joint

ISt

o Give correlations between variables,
but no explicit way to generate

samples




% Towards structural specification of probability distribution

o Separation properties in the graph imply independence properties about
the associated variables

o For the graph to be useful, any conditional independence properties we
can derive from the graph should hold for the probability distribution that
the graph represents

o The Equivalence Theorem
For a graph G,

Let D4 denote the family of all distributions that satisfy [(G),
Let D, denote the family of all distributions that factor according to G,
Then D{=D..



% GMs are your old friends

Parametric and nonparametric methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

m,S
O
X X
X Y
O O
Q Q
X X
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/ An (incomplete) genealogy
of graphical models

(Picture by Zoubin
Ghahramani and
Sam Roweis)
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Boltizmann
Machines
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Quantization
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Mix
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Factorial HMM
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Mixture of
Factor Analyzers

/
Factor Analysis
N

dyn

Linear
Dynamical

nonlin

Nonlinear
Dynamical
Systems

mix - mixture
red-dim : reduced
dimension
dyn :dynamics
distrib : distributed
representation

nonlin - nonlinear
switch : switching

Mixture of
HMMs=s

\

Switching
State-space
Models

%
Systermns {SSMs) m‘

Mixture of
LDSs




% Fancier GMs: reinforcement learning

a Partially observed Markov decision processes (POMDP)
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Fancier GMs: machine translation

ol Faouw 204 froa London » 5747,

intend to Begin om the firet of Febreary
usrestricted subm arfare. Ve ohsll sadesvos
fn opite of this 1o Xeep the United Btates of
americe neutrsl. Ia the event of this not ewcceed~
ing, we maxe Mexico & propossl of silisnce on the
follewing besie: make war together, 3ske peace
togetier, gemerous finsscisl support and am under=
etaaaing on our part that Mexico te to reconquer
the lost territory in Texas, New Mexico, and
arfzens. The ssttlesent ia detail 1o left to you.
— You w11l Infors the Preoident of the sbove moet
secretly &8 9003 68 the outbresk of war with the
et Blates of ABTIcA 18 certain and aed the
fon that he hosld, oa hie own Imitistive,
o sdberence and st the ssme
tween Japan and ourcelves. Pleses
attestion to the fact that
o now

esll the President
the ruthless smployeest of our submsri
offere ths prospect of ceapellimg Engliné im &
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e The HM-BiTAM model
(B. Zhao and E.P Xing,
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% Fancier GMs: genetic pedigree
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/
(/ Fancier GMs: solid state physics

Ising/Potts model



Application of GMs

o 000000 o0 o0 o

Machine Learning
Computational statistics

Computer vision and graphics

Natural language processing

Informational retrieval

Robotic control

Decision making under uncertainty
Error-control codes

Computational biology

Genetics and medical diagnosis/prognosis
Finance and economics

Etc.
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