
10-708: Probabilistic Graphical Models 10-708, Spring 2014

8 : Learning in Fully Observed Markov Networks

Lecturer: Eric P. Xing Scribes: Meng Song, Li Zhou

1 Why We Need to Learn Undirected Graphical Models

In the previous lectures, we have talked about the structure and parameter learning for the completely
observed BNs. In the directed models, the potentials are restricted to conditional distributions which model
the dependence of a variable on its parents. However, sometimes an undirected association graph is more
informative and natural to do the modeling. For example, in domains such as computer vision, the influences
of pixels in an image are intrinsically symmetric. In biology, the gene expressions may be influenced by the
unobserved factors where we don’t have enough information to know the direction. In this lecture, we will
cover the techniques of structural learning and parameter estimation for fully observed MRF.

2 Structural Learning for Completely Observed MRF

2.1 Gaussian Graphical Models

In this section, we will introduce the neighborhood selection for undirected structural learning. To give the
background of this method, let’s first look at a typical MRF: Gaussian Graphical Model.

As what we have known, when the variables follows the multivariate Gaussian density, it can be expressed
as

p(x | µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}

where x = [x1, x2, · · · , xp]T . Without loss of generality, let µ = 0 and Q = Σ−1, then we have

p(x1, x2, · · · , xp | µ = 0, Q) =
|Q| 12

(2π)
n
2
exp{−1

2

∑
i

qii(xi)
2 −

∑
i<j

qijxixj}

Now by observation, we can find that while the lefthand side of the equation is still a joint distribution, the
righthand side now describes the structure of a MRF.

1

Z
exp{

∑
i

φ(xi) +
∑
i<j

φ(xi, xj)}

where − 1
2qii(xi)

2 can be viewed as the node potential φ(xi), and −qijxixj can be viewed as the edge potential
φ(xi, xj).

1

2 8 : Learning in Fully Observed Markov Networks

2.2 The Covariance and the Precision Matrices

Given the covariance matrix Σ and the precision matrix Q, we want to investigate the differences of their
probability and graphical model interpretation.

1. For Σ
With the assumption that x1, · · · , xp follows multivariate Gaussian distribution, xi and xj are uncor-
related means they are independent. Therefore, Σi,j = 0 ⇒ xi ⊥ xj or P (xi, xj) = P (xi)P (xj). xi
and xj are marginally independent . Through Σ, we solely concentrate on the relationship between xi
and xj regardless the other nodes in the graph.

2. For Q
Qi,j = 0 ⇒ xi ⊥ xj | x ij or P (xi, xj | x ij) = P (xi | x ij)P (xj | x ij) xi and xj are conditionally
independent given the rest of the graph. This is what we need to decide the structure of a graph.
Specifically, every non-zero entry in Q corresponds to an edge in the MRF.

To better understand the conditional independence induced by Q, we can look at P (xi, xj | x ij , Q).
When qij = 0,

P (xi, xj | x ij , Q) =
|Q| 12

(2π)
n
2
exp{−1

2

∑
k 6=i,j

qkk(xk)2 −
∑

h,g 6=i,j,h<g

qhgxhxg}︸ ︷︷ ︸
constant

exp{−1

2
(qii(xi)

2 + qjj(xj)
2)}

= P (xi | x ij , Q)P (xj | x ij , Q)

Figure 1 shows a chain graphical model. The Q matrix well captures the structure of the chain, where zero
indicates that there is no edge between the two nodes, and non-zero indicates an edge exists. However, if we
represent a graph according to the Σ matrix, we will get a clique.

Figure 1: Q and Σ Matrices for a Chain Graphical Model

2.3 The Neighborhood Selection Algorithm

Now we know that whether the entries of Q are zero or non-zero can completely encode the structure of the
graph. The next questions is how to learn the precision matrix Q. In the ideal situation, Σ is invertible, then
we can use MLE to learn Σ. However, in the real world, an common scenario is that p � n where p is the
number of features, and n is the number of samples. In this case, Σ is not invertible. Thus we are going to
learn a sparse GM by finding the non-zero entries in the sparse Q directly from data. The method we used

8 : Learning in Fully Observed Markov Networks 3

to solve this problem is called neighborhood selection algorithm (Figure 2).

Here, we apply LASSO regression to each variable iteratively to find its neighbors. In the ith iteration, one
variable is indicated as yi, and all the other variables are represented by vector xi. We want to compute
a vector θi in which the non-zero entry θji indicates an edge between the corresponding variable xji and yi.
And θi is just the ith row or column in Q. Therefore we need to solve

θ̂i = arg min
θi

l(θi) + λ‖θi‖1

where l(θi) = logP (yi | xi, θi), and Y = θTX.

(a) Pick One Node (b) Iteration

Figure 2: The Neighborhood Selection Algorithm

Having known the structure of the graph, we put Q back to the equation and perform MLE to estimate the
parameters. For the discrete nodes, we can also perform this procedure and simply use L1 regularized logistic
regression instead of L1 linear regression. Under finite data and high dimension condition, the graphical
regression algorithm is ensured to be consistency.

3 MLE for Decomposable Undirected Graphical Models

Estimating the parameters in UGM is more challenging than in DGM for the reason that the partition
function Z involves all parameters log-likelihood, thus log-likelihood is no more decomposable. In some
cases, we need to do inferences (i.e. marginalization) to learn parameters even in the fully observed case. In
this section, let’s begin with a relatively simple case, the decomposable (triangulated) UGM.

3.1 Log Likelihood with Tabular Clique Potentials

To remove Z in the log likelihood, we introduce a notation for counts. The number of times a configuration
x is observed in the dataset D can be represented as

m(x) =
∑
n

δ(x,xn)

4 8 : Learning in Fully Observed Markov Networks

and

m(xC) =
∑
xV \C

m(x)

is the count for clique C. In terms of the counts, the likelihood is given by

p(D | θ) =
∏
n

∏
x

p(x | θ)δ(x,xn)

The log likelihood is

l = log p(D | θ) =
∑
n

∑
x

δ(x,xn) log p(x | θ)

=
∑
x

∑
n

δ(x,xn) log p(x | θ)

=
∑
x

m(x) log(
1

Z

∏
C

ψC(xC))

=
∑
C

∑
xC

m(xC) logψC(xC)︸ ︷︷ ︸
l1

−N logZ︸ ︷︷ ︸
l2

We can see that the marginal counts m(xC) are the sufficient statistics for our model.

3.2 Maximum Likelihood Estimation

To find MLE, we take the derivatives of the log likelihood with respect to ψC(xC) and set it to zero. The
derivative of the first term can be obtained immediately.

∂l1
∂ψC(xC)

=
m(xC)

ψC(xC)

Then we turn to the second term

∂l2
∂ψC(xC)

=
1

Z

∂

∂ψC(xC)
(
∑
x̃

∏
D

ψD(x̃D))

=
1

Z

∑
x̃

δ(x̃C ,xC)
∂

∂ψC(xC)
(
∏
D

ψD(x̃D))

=
1

Z

∑
x̃

δ(x̃C ,xC)
∏
D 6=C

ψD(x̃D)

=
∑
x̃

δ(x̃C ,xC)
1

ψC(x̃C)

1

Z

∏
D

ψD(x̃D)

=
1

ψC(xC)

∑
x̃

δ(x̃C ,xC)p(x̃)

=
p(xC)

ψC(xC)

Note that when taking derivative of l2, xC is fixed.

8 : Learning in Fully Observed Markov Networks 5

Thus,

∂l

∂ψC(xC)
=

m(xC)

ψC(xC)
−N p(xC)

ψC(xC)
= 0

The MLE of the parameters is

p̂MLE(xC) =
m(xC)

N
= p̃(xC)

This tells us an important characterization of maximum likelihood estimates: for each clique, the model
marginals must be equal to the observed marginals (empirical counts). However, it doesn’t tell us the MLE
of the parameters, ψC(xC) themselves appear implicitly in these equations.

3.3 Decomposable Models

When a model G is decomposable, its joint distribution can be represented as

p(x) =

∏
C

ψC(xC)∏
S

ϕS(xS)

If G’s potentials are defined on maximal cliques, we can find maximum likelihood estimates by inspection.
That is, to compute the clique potentials, just set them to the empirical marginals or conditionals, i.e., the
separator must be divided into one of its neighbors.

Figure 3 gives us an example of a three node chain model. Its probability can be written as

p(x1, x2, x3) =
1

Z
ψ12(x1, x2)ψ23(x2, x3)

The maximum likelihood estimates of its clique potentials can be given as

ψ̃12,MLE(x1, x2) = p̃(x1, x2)

ψ̃23,MLE(x2, x3) =
p̃(x2, x3)

p̃(x2)

which also implies that Z = 1.

Figure 3: A Three Node Markov Chain

4 MLE for Non-decomposable Undirected Graphical Models

For now we know how to do MLE for decomposable graphical model, however if the clique potential does not
directly correspond to the clique marginal, then the graph is non-decomposable. How can we do MLE for

6 8 : Learning in Fully Observed Markov Networks

non-decomposable graphical model? If the potentials are tabular, we can use Iterative Proportional Fitting
(IPF) algorithm and if the potentials are themselves functions of their own parameters, then we can use
Generalized Iterative Scaling (GIS) algorithm.

4.1 Iterative Proportional Fitting

Iterative Proportional Fitting (IPF) can be used when the potentials in the undirected graphical model are
tabular. It is an iterative algorithm, and hoping that the iterations can converge to a ‘fixed point’ – the
solution for the original implicit equations. One nice thing about IPF is that it is not only a fixed-point
algorithm, but also a a coordinate ascent algorithm, so it is guaranteed to converge.

Let’s first derive the update rule for each iteration. Set the derivative of likelihood function equal to 0, we
can get

m(xc)

Nψc(xc)
=

p(xc)

ψc(xc)

we can rewrite m(xc)
N as p̃(xc), the empirical marginal of xc, so

p̃(xc)

ψc(xc)
=

p(xc)

ψc(xc)

Note that our goal ψc(xc) is on both side of the equation, so we can not solving it in closed-form from this
equation, however we can fix ψc(xc) on the right side and solve for it on the left hand side. At the end we
create a rule for iterative update:

ψ(t+1)
c (xc) = ψ(t)

c (xc)
p̃(xc)

p(t)(xc)

Also note that in the equation above, p(t)(xc) is the clique marginal, not the empirical marginal, so we have
to do inference for p(t)(xc) in each iteration. We do the update for all the cliques in each iteration. and
it can be proved that it is a coordinate ascent algorithm, where the coordinates are parameters of clique
potentials:
First we take the derivative of the log likelihood with respect to the coordinate ψc(xc), for fixed c and varying
xc.

∂l

∂ψc(xc)
=
m(xc)

ψc(xc)
− N

Z

∑
x̂

δ(x̂c, xc)
∏
D 6=C

ψD(x̂D)

To reflect that D is being fixed, we can add an iteration superscript to ψD on the right side.

∂l

∂ψc(xc)
=

m(xc)

ψ
(t+1)
c (xc)

− N

Z(t+1)

∑
x̂

δ(x̂c, xc)
∏
D 6=C

ψ
(t)
D (x̂D)

Also, one of IPF’s properties is that Z remains constant during the iteration, so Z(t+1) = Z(t), so

∂l

∂ψc(xc)
=

m(xc)

ψ
(t+1)
c (xc)

− N

Z(t+1)

∑
x̂

δ(x̂c, xc)
∏
D 6=C

ψ
(t)
D (x̂D)

=
m(xc)

ψ
(t+1)
c (xc)

− N

Z(t)

∑
x̂

δ(x̂c, xc)
∏
D 6=C

ψ
(t)
D (x̂D)

=
m(xc)

ψ
(t+1)
c (xc)

− N

ψ(t)(xc)

∑
x̂

δ(x̂c, xc)
1

Z(t)

∏
D

ψ
(t)
D (x̂D)

=
m(xc)

ψ
(t+1)
c (xc)

− N

ψ(t)(xc)
p(t)(xc).

8 : Learning in Fully Observed Markov Networks 7

Now we can see that the IPF update function would set the derivative of log-likelihood above to zero, so the
algorithm is coordinate ascent, it will increase the log-likelihood and finally converge to a global maximum.

4.2 Feature Based Model

For most of the graphical model we deal with, the potentials will not be tabular, but will themselves be
functions of some parameters. This is because for large cliques, defining tabular potential functions are
exponentially costly for inference and would have exponential numbers of parameters to learn. With limited
data and time, it is impossible to learn when cliques become very large. Feature-based Clique potentials
solve this problem by using a less general parameterization of the clique potentials, that is, for each potential,
it defines a set of feature on it, so the parameter space is now the space of features, which can be controlled
by ourselves.

For example, consider a clique: three consecutive characters in a string of English text. The full joint clique
potential would be 263− 1, because we have 26 letters in English, and this is a huge potential space. But we
can define features based on the three characters, such as whether they are ‘ing’ or ‘ion’, and each feature
has only 2 possible values as they are binary. So suppose we define n features, we only have to estimate
n parameters. Of course we can define more complicated feature than binary feature, such as continuous
features.

Let’s represent clique potentials as ψc(xc) = exp(
∑
k θkfk(xc)), we can treat each feature function as a

‘micropotential’ function. Also note that if the feature functions are indicator function per combination of
xc, we can recover the standard tabular potential. To combine feature into the probability model:

p(x) =
1

Z(θ)

∏
c

ψc(Xc)

=
1

Z(θ)
exp

∑
c

∑
k

θkfk(xc)

we can simplify this form to

p(x) =
1

Z(θ)
exp

∑
i

θifi(xci)

This is the form of exponential family model, and features are sufficient statistics. So now our goal is to find
MLE under the above form.

4.3 Generalized Iterative Scaling

One method to solve this problem is Generalized Iterative Scaling (GIS) algorithm. It is also a iterative
algorithm and try to attack the lower bound of the scaled likelihood function. Scaled likelihood function of
UGM can be expressed as:

l̂(θ;D) = l(θ;D)/N

=
∑
x

p̂(x)logp(x|θ)

=
∑
x

p̂(x)
∑
i

θifi(x)− logZ(θ)

8 8 : Learning in Fully Observed Markov Networks

Z(θ) is in the log, and we want to get rid of the log, so we can use the linear upper bound of logarithm
logZ(θ) ≤ µZ(θ)− logµ− 1. This bound holds for all µ, so we can set µ = Z−1(θ(t)). Now we have:

l̂(θ;D) ≥
∑
x

p̂(x)
∑
i

θifi(x)− Z(θ)

Z(θ(t))
− logZ(θ(t)) + 1

We can see that now the first part of the equation is a linear combination of coefficient that we want to learn,

and the second part Z(θ) is now not in logarithm form. We define ∆θ
(t)
i = θi − θ(t)

i , that is the difference

between old and new version of θ. Then we can plug ∆θ
(t)
i into the lower bound:

l̂(θ;D) ≥
∑
x

p̂(x)
∑
i

θifi(x)− Z(θ)

Z(θ(t))
− logZ(θ(t)) + 1

=
∑
i

θi
∑
x

p̂(x)fi(x)−
∑
x

p(x|θ(t))exp
∑
i

∆θ
(t)
i fi(x)− logZ(θ(t)) + 1

We assume fi(x) ≥ 0 and
∑
i fi(x) = 1, then we can have a inequality which has similar form as Jense’s

inequality: exp(
∑
i πixi) ≤

∑
i πiexp(xi). so we can get the fi(x) out of the exp in the above equation, so

we have:

l̂(θ;D) ≥
∑
i

θi
∑
x

p̂(x)fi(x)−
∑
x

p(x|θ(t))
∑
i

fi(x)exp∆θ
(t)
i − logZ(θ(t)) + 1

Take the derivative and set it to zero we can have the closed-form solution of ∆θ:

e∆θ
(t)
i =

∑
x p̂(x)fi(x)∑
x p

(t)(x)fi(x)
Z(θ(t))

We also have a relationship between the update function of ∆θ and total distribution:

θ
(t+1)
i = θ

(t)
i + ∆θ

(t)
i

p(t+1)(x) = p(t)
∏
i

e∆θ
(t)
i fi(x)

so the update rule for GIS is:

p(t+1)(x) = p(t)(x)
∏
i

(

∑
x p̂(x)fi(x)∑
x p

(t)(x)fi(x)
)(fi(x))

θ
(t+1)
i = θ

(t)
i + log(

∑
x p̂(x)fi(x)∑
x p

(t)(x)fi(x)
)

Similar to IPF, GIS also has to do inference in each iteration, that is to compute the expectation over the
feature function

∑
x p

(x)(x)fi(x), so estimate a fully observed MRF can be very difficult.

