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1 Introduction

The goal of classical predictive models like logistic regression or kernel-based approaches such as support
vector machines (SVM) is to find a function which assigns a label to objects given a set of features. Even
though these techniques have strong theoretical guarantees and work well on high-dimensional spaces, they
ignore the underlying structure that the features may possess as in the cases of sequences, spatial entities,
and images. Graphical models like Markov networks are able to overcome those weaknesses by directly
encoding interdependencies and thus being able to exploit the structure. However, they cannot handle
high-dimensional feature spaces and lack strong theoretical guarantees.

The strengths of these two approaches, the classical predictive models and the graphical models, can be
merged to create classifiers that both perform well in high-dimensional cases and that take advantage of the
additional information provided by the structure of the variables. Additionally, further modifications can
provide these methods with a straightforward probabilistic interpretation. In this way, additional advantages
of graphical models, such as induced sparsity, and the incorporation of latent variables and structure, can
be also be exploited.

In these notes we first review two classical predictive models: logistic regression and SVMs. Then, we show
how they were extended, first by showing how SVM maximum-margin approaches can be modified to account
for structure information. This idea lead to the development of the Maximum Margin Markov Networks
(M3N). Second, we explore how a probabilistic interpretation can be added to such models as in the case
of Maximum Entropy Discrimination (MED). Finally, we show how both the structured and probabilistic
perspectives can be merged to create the Maximum-Entropy Discrimination Networks (MaxEnDNet).

The roadmap of these developments is shown in Figure 1. In order to illustrate the benefits of M3N and
MaxEnDNet, experimental results on Optical Character Recognition (OCR) and hypertext classification
problems are shown.

2 Unstructured Predictive Models

The purpose of the classical predictive models is to learn a predictive function h(x) that maps an input
vector X ∈ RM in a high-dimensional feature space to an output Y ∈ {−1,+1} in a labeling space (which is
a discrete set of labels, most commonly binary). This is also called unstructured prediction. Generally, the
predictive function h(x) can be represented by Eq. 1

h(x) = y∗ = arg max
y∈Y

F (x,y;w) (1)

such that we can infer the optimal y∗ which maximizes the predictive loss function. In this equation,
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Figure 1: Roadmap of the development of structured probabilistic variants of the maximum-margin Support
Vector Machines (SVM). The Maximum Margin Markov Networks (M3N) are a structured version of SVMs,
while Maximum Entropy Discrimination (MED) turns the problem into a probabilistic one. The combination
of both enhancements results in the Maximum-Entropy Discrimination Networks (MaxEnDNet).

F (x,y;w) = g(wTf(x,y)) is usually defined as a log linear model which is translated to linear combination
of features defined on the data, and g(·) is a cover function on top of this. Our goal is to define ŵ as follows:

ŵ = arg min
w∈W

l(x,y;w) + λR(w) (2)

where l(x,y;w) is an arbitrary loss function, and R(w) is a shrinking or regularizing function to prevent
overfitting. Sometimes, we use it to define a constraint such as w being sparse. It is also considered to be a
prior in a Bayesian sense and thus λR(w) is a prior distribution of the weights. To make it more concrete,
let’s consider two classical predictive models: logistic regression and Support Vector Machines (SVM) [1]:

• Logistic regression: Assume that we choose the log function to be the conditional probability of the
label giving the data, meaning that we are working on a Bayesian logistic regression. In this case the
optimization problem is defined as in Eq. 3:

max
w
L(D;w)=̂

N∑
i=1

log p(yi|xi;w) +N (w) (3)

In this equation, we introduce a prior distribution N (w) on the weights and then we perform a



28 : Maximum-Margin Learning of Graphical Models 3

Bayesian estimation of the weights. Basically, Eq. 3 is equivalent to maximizing the likelihood or
maximizing a posterior distribution (MAP). Notably, the function g(·) takes the form of a sigmoid

function, g = exp(wT f)
1+exp(wT f)

. This corresponds to the predictive function defined in Eq. 2. The log loss

(as shown in Figure 2) is defined as:

lLL(x,y;w)=̂
∑
y∈Y

exp[wT f(x,y′)]−wT f(x,y) (4)

In the logistic regression approach, we can have all the benefits from the probabilistic semantics model,
such as introducing a prior distribution and adding hidden variables, if the hierarchical model is built.

• Support Vector Machines (SVM): SVMs are also known as support vector networks and have
been successful in their ability of using kernels, allowing for classification in high-dimensional feature
spaces. In addition, SVMs are also appealing due to the existence of strong generalization guarantees,
derived from the margin-maximizing properties of their learning algorithm. In SVMs, we solve the
following problem:

min
w,ξ

1

2
wTw + C

N∑
i=1

ξi

s.t. ∀i, ∀y′ 6= yi : wT∆fi(y
′) ≥ 1− ξiξi ≥ 0

(5)

In this equation, we are minimizing an l2 regularized weight vectorwTw while minimizing the predictive
margin loss

∑N
i=1 ξi. We also consider all training data to induce margin constraints. If we have N

training samples, there are N constraints. In term of SVMs, the function g(·) is defined as an indicator
function (g(·) = 1), since SVMs are linear predictors. The corresponding predictive function is defined
in Eq. 2, and the hinge loss (as shown in Figure 2) is defined as:

lMM (x,y;w)=̂max
y∈Y

wT f(x,y′)−wT f(x,y) + l′(y′,y) (6)

In machine learning research, SVMs have a number of key advantages like the kernel tricks, which make
the computation fast even with a huge numbers of features and also helps us work with nonparametric
predictors. In addition, it has dual sparsity which is related to the use of a small subset of the training
data. This means that only a few support vectors are used for determining the decision boundary.
Furthermore, there are many strong empirical results in the literate on a wide range of application
areas.

Besides the unstructured predictive models mentioned above, which are not every useful in some real appli-
cations where the data has an underlying structure and where labels are dependent in complex ways. Such
is the case of speech tagging and image segmentation. An alternative approach is offered by the probabilistic
framework, and specifically by probabilistic graphical models. For example, we can learn a hidden Markov
model (HMM) [1] or a conditional random field (CRF) [2] over the labels and features of a sequence, and
then use a probabilistic inference algorithm to find the label. In such structure predictive models, the input
is a feature matrix and the output is label matrix. Let’s consider a case of sequentially structure data with
handwriting recognition problem, a sample of which is shown in Figure 3. An example of a graphical model
applied in this case is shown in Figure 4.

We have a sequence of x variables, each of which is a vector of pixel values, and a corresponding sequence
of y variables, each of which can take on 26 values (the letters of the alphabet). The conditional probability
of y given x is a product of node and edge potentials as follows:
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Figure 2: An illustration of log loss and hinge loss functions.

Figure 3: Handwriting recognition example (a) entire word (b) character (part of the word).

Figure 4: A graphical model over characters.

P (y|x) ∝
∏
i

φ(xi, yi)φ(yi, yi+1) (7)

where φ(xi, yi) = exp[
∑
α wαfα(xi, yi)] and φ(yi, yi+ 1) = exp[

∑
β wβfβ(yi, yi+1)].

The node potentials roughly correspond to emission probabilities in a HMM, while the edge potentials
correspond to transition probabilities. Notably, these potentials do not need to sum to 1 as in HMMs,
but simply need to be positive functions. A natural way to represent potentials is by using a log linear
combination of basic functions. The basic functions here are indicator functions asking a question like is
“current the letter a ’z’ and the next one an ’a’?”

From the example in Figure 3, it is easy to recognize that the word is ”brace”; however, it is hard to label
the character in Figure 3(b) as to be ’r’ or ’c’ in isolation. In this example, there is a model over characters
that is already explicitly built (as shown in Figure 4), which helps to tell how confident a current label is
based on the previous one. For example, if we already recognize ’b’ at the beginning, then ’r’ occurring after
’b’ is more confident than ’c’ occurring after ’b’.
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Image segmentation using CRF is another example of a predictive problem in which different labels can
connect with some kind of potential function that encourages them to share labels among neighboring
pixels. Parsing of sentences is also an example which has to follow syntactic validity of a tree. It is hard to
make correct predictions if the tree structure is ignored by only considering the leaves independently.

3 Structure Predictive Models

In the case of probabilistic graphical models, we can define and learn a joint probabilistic model over the
set of label variables. For example, we have already learnt Hidden Markov Model (HMM) [1] or Conditional
Random Field (CRF) [2] on previous lectures. These distributions are defined over the labels and features
of a sequence, and then a probabilistic inference algorithm is used to classify the instances. It is easy to see
that these methods are able to exploit the correlation between different labels and effectively take advantage
of the structure of the problem. However, the performance of these probabilistic graphical models is not on
the same level of generalization accuracy as SVMs, especially when kernel features are used.

Max-Margin Markov Networks (M3N) are then proposed. They make use of both frameworks of kernel-based
and probabilistic classifiers. M3N is also known as a counterpart of SVM in the structured prediction domain,
meaning that M3N is trained with the same procedure as CRFs using a large margin principle. That’s why
these networks are sometimes called structured SVMs instead of Markov Networks. M3N defines a log-linear
Markov network over a set of label variables. A margin-based optimization problem is also defined in this
approach. In the M3N model, the goal is to learn the predictive function h(·) which is built on maximizing
the score function. It is defined as follows:

h(x) = arg max
y∈Y(x)

s(x,y) (8)

where the score function can be defined as a linear combination of feature as given by Eq. 9. In the simple
case, the function g(·) is set as an indicator (g(·) = 1).

s(x,y) = g[wT f(x,y)] = g

[∑
p

wT f(xp, yp)

]
(9)

Let’s consider the training procedure of M3N with x being the vector representing the input, and y the
vector representing the labels. Let y∗ be the predicted labels. When we are predicting multiple labels, we
incorporate not only the {0, 1} loss I but also the proportion of the incorrect labels predicted. If {x,y∗}
are the training examples, the objective function is to maximize the loss function in Eq. 10:

y∗ = arg max
y

wT f(x,y) (10)

Furthermore, we also want to make the prediction risk (the SVM risk) as small as possible as shown in Eq.
11. That means, among many solutions for w, the best one is also maximizing the margin γ.

wT f(x,y∗) > wT f(x,y) + γ, ∀y 6= y∗ (11)

On the other hand, we would like the margin between y∗ and y, l(y∗,y), to scale linearly to the number of
wrong labels in y. The M3N framework is then defined as follows:
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min γ

s.t. ||w|| ≤ 1;wT f(x,y∗) ≥ wT f(x,y) + γl(y∗,y), ∀x ∈ X and ∀y
(12)

where l(y∗,y) =
∑l
i I(yi 6= y∗i ) in which yi are the labels in the training data and y∗i are the predicted labels.

Using a standard transformation to eliminate γ, we can get the following quadratic program:

max
1

2
||w||2

s.t. wT f(x,y∗) ≥ wT f(x,y) + l(y∗,y), ∀x ∈ X and ∀y
(13)

However, the number of constraints is exponential in size of the structure. An alternative option is to add
only the most violated constraint. Let

y′ = arg max
y 6=y∗

wT f(xi,y) + l(yi,y) (14)

We can then add the constraint:

wT f(xi,y) ≥ wT f(xi,y
′) + l(yi,y) (15)

Then the optimization problem becomes:

max
1

2
||w||2

s.t. wT f(x,y∗) ≥ max
y 6=y∗

wT f(x,y) + l(y∗,y), ∀x ∈ X and ∀y
(16)

This formulation only needs a polynomial number of constraints and can handle a more general loss function.
In order to solve the above problem, the minimization in the constraint needs to be converted from a discrete
to a continuous form before we can invoke a QP solver.

Let zi(m) be the indicator variable for the class corresponding to node i and label m. Let zij(m,n) be
the indicator variable for the joint class of nodes (i, j) with labels (m,n). Then the right hand side of the
constraint in Eq.16 can be rewritten as follows:

max
y 6=y∗

wT f(x,y) + l(y∗,y)

= max
z

∑
j,m

zj(m)
[
wT fnode(xj ,m) + lj(m)

]
+

∑
j,k,m,n

zjk(m,n)
[
wT fedge(xjk,m, n) + ljk(m,n)

]
= max

z
(FTw + l)Tz

s.t.
∑
m

zj(m) = 1;
∑
n

zjk(m,n) = zj(n); zj(m) ≥ 0; zjk(m,n) ≥ 0

(17)

Since all the constraint in Eqs. 17(d-g) can be represented as Az = b, the optimization problem now
becomes:
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max (FTw + l)Tz

s.t. Az = b
(18)

Thus, the problem defined in Eq. 16 is defined in the new formulation as follows:

max
1

2
||w||2

s.t. wT f(x,y∗) ≥ max
z≥0,Ax=b

qTz
(19)

where qT = wTF + lT . This has integer z solutions for chains and trees, but general fractional solutions for
untriangulated networks. Using strong Lagrangian duality, we can write:

max
z≥0,Ax=b

qTz = min
ATµ≥q

bTµ (20)

The problem now becomes:

max
1

2
||w||2

s.t. wT f(x,y∗) ≥ bTµ;ATµ ≥ q
(21)

In order to show the advantages of M3N over the unstructured predictive models, let’s consider two following
experiments on Optical Character Recognition (OCR) and hypertext classification.

• Experimental result 1 (OCR): Let’s consider the OCR problem with three different models, namely
multi-class SVMs, CRFs, and M3N under three cases: raw pixels, quadratic kernels, and cubic kernels.
With the first model, multi-class SVMs (26 outputs), the dependencies between the labels are ignored
since there is no way to coordinate them and the test error is 27% for the raw pixels. Herein, the
average per-character test error is used over 10 folds.

The second model as a first order CRFs which exploits correlations between adjacent letters. Next, we
use a M3N with the same set of basic functions as the CRFs, achieving a significant reduction in error
even before using kernels as can be seen in Figure 5(a).

Then we compared kernel-based approaches using simple polynomial kernels which consider all pixel
pairs and triplets. Kernel SVMs do significantly better than even the CRF. When we incorporate these
kernels into M3N, we get a large additional boost.

Overall, our model exploits the advantages of both the high-dimensional kernels and the sequential
structure of the problem to gain a 45% error reduction over CRFs and 33% over kernel SVMs as shown
in Figure 5(b).

• Experimental result 2 (Hypertext classification): In this experiment, a WebKB dataset is used,
which contains four CS departments websites (Cornell, Texas, Washington, and Wisconsin) with 1300
pages and 3500 links. Each page is labeled with one of course, faculty, student, project, and other.
Three CS departments are used for training and the fourth one is used for testing.

There are three different models used in this experiments. The first one is a linear SVM that classifies
each page based on the bag of words it contains. The second one is a relational Markov network
(RelMN) which has an edge between hyperlinked pages. This model captures very strong correlations
between the labels of linked pages and achieves a significant gain over the SVM. Note that inference
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(a) (b)

Figure 5: (a) Test error of multi-class SVMs, CRFs, and M3N with the raw pixels feature; (b) Test error of
multi-class SVMs, CRFs, and M3N with the raw pixels feature, quadratic kernel and cubic kernel.

in this model is intractable, so we used loopy belief propagation. The third model is M3N which uses
the relaxed dual and is used without the clique-tree constraints. It achieves an error reduction of 19%
over the Markov network with the same features as shown in Figure 6.

(a) (b)

Figure 6: (a) Loopy belief propagation; (b) Test error of SVM, RelMN and M3N

4 Maximum Entropy Discrimination Graphical Models

4.1 Maximum Entropy Discrimination

Maximum Entropy Discrimination (MED) was proposed by [3] looking to combine the strengths of both
likelihood-based estimation and maximum margin learning. This fused methodology is desirable in cases
where you would like to apply classification with a kernel or a non-parametric approach, like in SVMs, and
that is also able to handle partially observed data or hidden variables as in graphical models like HMMs or
CRFs [4]. Instead of simply finding the weight vector w for classification, MED is made probabilistic by
learning the distribution of the weights P (w). Inference can then be performed through model averaging:
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ŷ = sign

∫
p(w)F (w)dw (22)

The learning problem, in the case of binary classification, can be formulated as a minimum entropy problem
through the minimization of the divergence of the posterior from an arbitrary prior. This approach helps
in directly reducing the randomness (entropy) of the transformation, which is the analogous process of
minimizing the norm of the weights in the original SVM formulation. Additionally, this is done while
satisfying the expected margin constraint, which is the probabilistic version of SVM’s margin constraint:

min
p(Θ)

KL[p(Θ)||p0(Θ)]

s.t.

∫
p(Θ)[yiF (x;w)− ξi]dΘ ≥ 0,∀i.

(23)

Θ is the parameter w when ξ are kept fixed or the pair (w, ξ) when we want to optimize over ξ. This
innovative approach showed to perform slightly better than SVMs and presented higher stability. However,
the improvement in performance was not significant enough to overcome the additional complexity of the
model and, therefore, did not become very popular.

4.2 Maximum Entropy Discrimination Markov Networks

MED was successful in proposing a probabilistic version of SVMs. Is it possible to use a similar process to
create a probabilistic version of maximum-margin Markov networks like the M3N? Answering this question
led to the creation of the Maximum Entropy Discrimination Markov Networks (MaxEnDNet or MEDN)
by [5]. A similar design principle was used to formulate the learning problem of the structured maximum
entropy discrimination (SMED) model:

min
p(w),ξ

KL[p(w)||p0(w)] + U(ξ)

s.t. p(w) ∈ F1, ξi ≥ 0,∀i.
(24)

In this case, instead of learning wF (x), the structured features are used [wTF (x,y)]. The constraint is
defined over the space of all possible distributions, and each of these must respect the expected margin
constraint:

F1 =

{
p(w) :

∫
p(w)[∆Fi(y;w)−∆`i(y)]dw ≥ −ξi,∀i,∀y 6= yi

}
(25)

The resulting posterior distribution can then be used in a structured SVM fashion:

h1[x; p(w)] = arg max
y∈Y(x)

∫
p(w)F (x,y;w)dw (26)

Lagrangian theory could be used to find a closed-form solution for the general learning problem. A Lagrangian
needs to be built with both the loss and the constraint functions and then a variational derivative is taken.
The closed-form solution for the posterior distribution is as follows:
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p(w) =
1

Z(α)
p0(w) exp

∑
i,w

αi(y) [∆Fi(y;w)−∆`i(y)]

 (27)

Notice that the solution is not strictly Bayesian in the sense that the factor that multiplies the prior is not
the likelihood of the observations. Instead, it is defined in terms of the margins over the training data. The
resulting posterior distribution thus belongs to the exponential family and corresponds to a weighted sum of
the support vectors. The weights αi are obtained by solving the following dual optimization problem, which
corresponds to solving a SVM problem where only a few αi are non-zero, as given by the complementary
slackness effect of the KKT conditions:

max
α

− logZ(α)− U∗(α)

s.t. αi(y) ≥ 0,∀i,∀y.
(28)

U∗(·) is the conjugate of the U(·), i.e., U∗(α) = supξ[
∑
i,y αi(y)ξi−U(ξ)]. Different instances of MaxEnDNet

can be used by selecting the function F (·) and the desired prior p0(w).

4.2.1 Gaussian MaxEnDNet

If we assume a dot product function as in the structured SVM F (x,y;w) = wTf(x,y), U(ξ) = C
∑
i ξi, and

a standard Gaussian prior p0(w) = N (w|0, I), we obtain the following solution to the posterior distribution:

p(w) = N (w|µw, I) (29)

Here µw =
∑
i,w αi(y)∆fi(y). The weights αi are computed in the same way as in the structured SVM

M3N. The predictive rule becomes:

h1(x) = arg max
y∈Y(x)

wTf(x,y) (30)

Therefore, the Gaussian MaxEnDNet is, in essence, a probabilistic version of M3N that computes the pos-
terior probability of the weights w instead of just their mean w∗. This means that MaxEnDNet is a more
general framework that can take the form of proven models like the M3N but offers the advantages of being
probabilistic.

These advantages include the guarantees offered by the possibility of obtaining a generation bound on the
error using the PAC-Bayesian theory, the ability to being generalized to incorporate hidden variables and
structures given the probabilistic definition of the model, and, similarly, the ability to deal with partially
labeled data.

4.2.2 Laplace MaxEnDNet

A Laplacian prior can be used instead of a Gaussian one:

p0(w) =

K∏
k=1

√
λ

2

K

e
−
√
λ
∣∣∣wk∣∣∣ =

(√
λ

2

)K
e
−
√
λ
∥∥∥w∥∥∥

(31)
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This version of MaxEnDNet is called Laplace MaxEnDNet [5]. The learning problem becomes:

min
p(w,ξ),ξ

√
λ

K∑
k=1

(√
µ2
k +

1

λ
− 1√

λ
log

√
λµ2

k + 1 + 1

2

)
+ C

N∑
i=1

ξi

s.t. µT∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,∀i,∀y 6= yi

(32)

The spiked nature of the prior has a regularization effect over the weights w, resulting in an l1 shrunk version
of M3N. The parameter λ controls the values of the coefficients; as λ increases, the model becomes more
regularized. This can be seen in the means of the posterior parameter vector w:

∀k, 〈wk〉p =
2ηk

λ− η2
k

(33)

The vector η is a linear combination of the “support vectors”:

η =
∑
α

αi(y)∆fi(y) (34)

The KL norm imposed by this model is parameterized by λ, and can be adjusted to represent any intermediate
step between an equivalent l1 norm and an l2 norm as shown in Figure 7 for a two-dimensional case. The
smooth transition between these two types of regularization gives the Laplace MaxEnDNet great flexibility.

Figure 7: The KL norm on the right allows for a smooth transition between the l1 and l2 norms (left)
depending on the value of the parameter λ.

The Laplace MaxEnDNet is a model that is primal sparse due to the Laplace shrinkage effect. This means
that the weight vector w is forced to have a big number of coefficients equal to zero. Additionally, the model
is also dual sparse, as the M3N, thanks to being a maximum-margin Markov network. This means that the
posterior is decided by a controlled number of support vectors, an aspect that efficiently selects only the
most important features [6].

Figure 8 shows the comparison in accuracy of the Laplace MaxEnDNet in the problem of Optical Character
Recognition (OCR). The algorithm is compared to different versions of Conditional Random Fields (CRF)
and to M3N. The algorithms shown include regularized versions of CFRs with both an l1 norm and an l2
norm, and an l1 version of M3N [7]. M3N original formulation already uses an l2 norm. The comparison
shows that Laplace MaxEnDNet achieves the smallest error rate in all of the four scenarios.
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Figure 8: Error rate of different classification algorithms on four different randomly constructed Optical
Character Recognition (OCR) problems.

Figure 9 shows the actual features used for generating the model and the features selected by each of the
algorithms. We can appreciate the improved response of the Laplace MaxEnDNet over the competing
algorithms through its ability to efficiently assign weights of zero to irrelevant features while maintaining a
dominant performance.
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Figure 9: Feature selection in the OCR problem. Var and W at the top two panels are the parameters of
the model used to generate the data; note that most of the features do not contribute to the classification
problem but can lead to overfitting by non-regularized models. The other panels show the features selected
by each of the competing algorithms.


