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So far we have been building up the theory and applications of Probabilistic Graphical Models. In this
lecture, we dig into peculiar ways of using them. Particularly, we move away from the view of graphical
models as modeling dependencies of a distribution or as minimizations of a loss function on graphs. We will
look into how graphical methods can be used to model constraints.

1 Genetic Basis of Disease

Though humans are 99.9% same in our genetic make up, there are number of genotype sites we differ at.
Such sites are called Single Nucleotide Polymorphisms (SNP). These sites reflect the differences between us,
e.g. difference in hair color.

Such differences may also be responsible for the cause of hereditary disease. Genetic Association Hypothesis
testing then is the study to find which SNP’s are causal (or associated) vis-a-vis a hereditary disease. Going
site to site we try and associate the genotype with a phenotype. Usually these genetic association mappings
are very sparse, (1 in 1000) and may represent basic differences in body physiology. So far, a number of
standard approaches have been applied to find the causal SNP’s. Some examples of standard approaches
are: using the linkage analysis of selected markers, quantitative trait locus (QTL) mapping conducted over
one phenotype and one marker genotype at a time, which are then corrected for multiple hypothesis testing.
Primitive data mining methods have also been employed, such as the clustering of gene expressions and
the high-level descriptive analysis of molecular networks. Such approaches yield crude, usually qualitative
characterizations of the study subjects. However, many complex disease syndromes, such as asthma and
cancer, consist of a large number of highly related, rather than independent, clinical or molecular phenotypes.
They are the effect of many sites of mutation - multiple causal SNP’s. Attempting to find the top k SNP’s
for complex diseases, using the standard approaches, is not ideal due to interactive effects between the two
SNPS’s. Often the correlation between two SNP’s may have been forced as they are bound by physical
constraints, (if one mutates the other one has to mutate too). So the way forward is by multiple hypothesis
testing. Studying gene expression networks, may tell us what a complex disease like cancer means at a
molecular level.

Thus for understanding genetic variations causal for a disease requires the analysis of multi-correspondence
mapping between multiple SNP’s and (multiple) symptoms/clinical phenotypes.

2 Structured Association

Summarizing earlier section, standard approaches have been trying to map one phenotype to one genotype,
via statistical tests, like cross-entropy etc. Now we consider multiple correlated phenotypes and genotypes
jointly i.e. multiple signals in genotype causing multiple things in the phenotype. We want to thus extract
out the meaningful and thus the sparse associations and mappings between the two. Technically we want to
find the Pleotropic and Epistatic effects. Here, we do sparse learning via sparse linear regression.
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arg min
β

f(β) = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

|βj | (1)

Here β ∈ RJ , could be a few million dimensions. The sparse solution is enforced by the L1-regularization.
In multi-task learning β may be considered to be a matrix: β ∈ RJ×K .

arg min
β

f(β) = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
k

|βjk| (2)

3 Graph Guided Fused Lasso

Figure 1: An illustration of association analysis using the QTN for asthma dataset

We want to leverage the domain knowledge we might have about how the various symptoms/phenotypes are
correlated, e.g. Figure 1. (showing a Quantitative Trait Network (QTN)), demonstrates how these traits are
related for asthma. This has been taken from the actual domain knowledge of a doctor.

In order to estimate the association strengths jointly for multiple correlated traits, while maintaining sparsity,
we introduce another penalty term called graph-guided fusion penalty into the lasso framework. This novel
penalty makes use of the complex correlation pattern among the traits represented as a QTN, and encourages
the traits which appear highly correlated in the QTN to be influenced together. Thus, this new approach
estimate of the regression coefficients reveals joint associations of each SNP with the correlated traits in the
entire subnetwork as well as associations with each individual trait.
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Accordingly, the following two approaches are proposed to enforce these constraints:

Model GcF Lasso : This model uses the graph without considering the edge-weights. The objective function,
consisting of two regularizers (lasso and graph) and a squared error loss term, has the form:

ˆBGc = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
k

|βjk|+ γ
∑

(m,l)∈E

∑
j

|βjm − sign(rml)βjl| (3)

E is the set of edges.

Model GwF Lasso : An advanced version of this model is GwF Lasso. Here, besides exploiting the graph
topology of QTN, the lasso also exploits the edge weights. It weights the fusion penalty by the amount
of correlation between the two traits being fused, so that the amount of correlation controls the amount
of fusion for each edge. More generally,it weights each term in the fusion penalty with a monotonically
increasing function of the absolute values of correlations, and finds an estimate of the regression coefficients,
as follows:

ˆBGw = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
k

|βjk|+ γ
∑
m,l∈E

f(rml)
∑
j

|βjm − sign(rml)βjl| (4)

In the work that is referenced in the lecture, G2
w Lasso is with f(r) = r2 and G1

w Lasso is with f(r) = ‖r‖ .
GcF Lasso is then a special case of GwF Lasso with f(r) = 1.

The regularization parameters (λ and γ) in both above models may be determined by cross-validation or by
using a validation set.

The optimization problems in Equation 3 and Equation 4 are convex. They may be formulated as a quadratic
programming problem (QPP). There are many publicly available software packages that efficiently solve the
QPP. However, the issues with using software packages for the above QPP are:

• These approaches do not scale in terms of computation time to a large problem involving hundreds or
thousands of traits, as is the case in a typical multiple-trait association study.

• Difficulty arises in directly optimizing Equation 3 and Equation 4, as this is a non-smooth function of
the L1-norm.

We thus transform this problem to an equivalent form that involves only smooth functions, and use a fast
coordinate-descent algorithm to find the estimates of regression coefficients.

We restate the problem as follows:

ˆBGQPP = minβk,djk,djml

∑
k

(yk−Xβk)T (yk−Xβk)+λ
∑
j,k

β2
jk

djk
+γ

∑
m,l∈E

f(rml)
2
∑
j

(βjm − sign(rml)βjl)
2

djml

(5)

subject to:

∑
j,k

djk = 1 (6)
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∑
m,l∈E

∑
j

djml = 1 (7)

Here, djk ≥ 0, for all j,k and djml ≥ 0, for all j,(m, l) ∈ E.

We solve the above equation by coordinate-descent, iteratively updating βk, djk and djml, until there is little
improvement in the value of the objective function. Using this approach, we first fix values of djk and djml,
and then update for βjk by differentiating the objective function in Equation 5 with respect to each βjk and
setting it to 0.

The following update equations result:

βjk =

∑
i xij(yik −

∑
j 6=t xitβtk) + γ(

∑
k,l∈E f(rkl)

2 sign(rkl)βjl

djkl
+
∑
m,k∈E f(rmk)2

sign(rmk)βjm

djmk
)∑

i x
2
ij + λ

djk
+ γ(

∑
k,l∈E

f(rkl)2

djkl
+

∑
m,k∈E

f(rmk)2

djmk
)

(8)

djk =
‖βjk‖∑
p, q‖βpq‖

(9)

djml =
f(rml)|βjm − sign(rml)βjl|∑

p,q∈E f(rpq)
∑
t |βtp − sign(rpq)βtq|

(10)

4 Tree-guided Group Lasso

4.1 Background

In a univariate-output regression setting, sparse regression methods that extend lasso have been proposed
to allow the coefficients to reflect the underlying structural information among the inputs. Particularly,
if the coefficients are positive they signify an underlying mapping. Group lasso apply an L1 norm of the
lasso penalty over groups of inputs, while using an L2 norm for the input variables within each group.
This L1/L2 norm for group lasso has been extended to a more general setting to encode prior knowledge
on various sparsity patterns, where the key idea is to allow the groups to have an overlap. However, the
overlapping groups in their regularization methods can cause an imbalance among different outputs, because
the regression coefficients for an output that appears in large number of groups are more heavily penalized
than for other outputs with memberships to fewer groups. So the tree-guided group lasso for multi-task
regression with structured sparsity has been proposed.

Since tree represents a hierarchical clustering structure, it is important to have methods to to recover the
common set of relevant inputs for each output cluster. Comparing a graph with O(|V |2) edges, a tree has
only O(|V |) edges which makes it scalable to a very large number of phenotypes. In tree-guided group lasso,
we consider the problem of learning a sparse multi-task regression, where the structure in the outputs can
be represented as a tree with leaf nodes as outputs and internal nodes as clusters of the outputs.

4.2 Sparse Regression and Multi-task Learning

The multi-task sparse regression is similar to the linear regression problem and it can be treated as multiple
linear regression at the same time. Here is the definition of the Multi-task sparse regression using the similar
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setting of variables as earlier:

yk = Xβk + εk (11)

where βk is a vector of J regression coefficients (β1
k, ..., β

J
k )T for the k-th output, and εk is a vector of N

independent error terms having mean 0 and a constant variance.

Let B = (β1, ..., βk), ˆBlasso is obtained by solving the following optimization problem:

ˆBlasso = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
k

|βjk| (12)

While the general linear regression solves a vector of coefficients, this optimization function for multi-task
sparse regression is to solve the coefficients matrix. In the optimization function above, the parameter λ
controls the sparsity of the solution. Larger λ will lead to a smaller number of non-zero regression coefficients.

4.3 Examples of Embedding Prior Knowledge

The L1-penalized regression assumes that all of the outputs in the problem share the common set of relevant
input variables. However, in many real-world applications, different outputs are related in a complex manner.
Having this prior knowledge of the complex structure of the data, we can definitely improve the learning
performance. Here is an example of such prior knowledge. Suppose we know the hierarchical tree clustering
of the genes as a-priori, we can use this prior knowledge as follows. In a simple case of two genes, low
clustering height from nodes to their parents means a higher correlation between the genes, while a large
height means a weak correlation between them which is shown in the following figure.

Figure 2: Two genes example of selecting β1 and β2 in different ways accoding to the height

According to the figure above, it is intuitive to think that we can jointly select the βjks of child nodes if
the genes are in tight correlation and separately if the genes are in weak correlation. Thus, selecting βjks
according to the difference in height is important prior knowledge we want to embed into our optimization
function. Then how do we take into account this prior knowledge into our optimization problem? Here is a
intuitive modification on the lasso.

ˆBTree = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

[h(|βj1|+ |βj2|) + (1− h)(
√
β2
j1 + β2

j2)] (13)
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In the optimization formula above, we have made some changes as compared to the normal L1-penalization.

The first part of the penalization |βj1|+|βj2| is from the original L1 penalty while the second part
√
β2
j1 + β2

j2

represents the L2 penalty. It is important to notice that the L1 penalty means we select the βjks for two
nodes separately while the L2 penalty means we select the βjks jointly. By adding the height information
h as the balance parameter, the penalization then represents what we wanted to embed in the optimization
problem.

Figure 3: A general tree for penalty extension

As for a more general tree in the figure above, we can easily extend our penalty using the same form.

ˆBTree = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

[h2(|C1|+ |βj2|) + (1− h2)(
√
β2
j1 + β2

j2 + β2
j3)] (14)

In the optimization formula above, the C1 can be extended recursively as follows:

C1 = h1(|βj1|+ |βj2|) + (1− h1)(
√
β2
j1 + β2

j2) (15)

4.4 Definition of Tree-guided Group Lasso

We now discuss the tree-guided group lasso. Given this tree T over the outputs, we generalize the L1/L2

regularization to a tree regularization as follows. We expand the L2 part of the L1/L2 penalty into a group-
lasso penalty, where the group is defined based on tree T. Each node v ∈ V of tree T is associated with
group Gv, whose members consist of all of the output variables (or leaf nodes) in the subtree rooted at node
v. Given these groups of outputs that arise from tree T, tree-guided group lasso can be written as follows:

ˆBTree = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
v∈V

ωv||βjGv
||2 (16)

In the formula above, βjGv
is a vector of regression coefficients. Each group of regression coefficients βjGv

is
weighted with ωv that reflects the strength of correlation within the group.

In order to define the weights of ωv, we first associate each internal node v of the tree T with two quantities
sv and gv that satisfy the condition sv+gv = 1. Comparing to the examples in the previous section, the sv is
similar to the height value h representing the weight for selecting the output variables associated with each
of the children of node v separately, and the gv, is similar to (1 − h), representing the weight for selecting
them jointly.
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Given an arbitrary tree T, we recursively apply a similar operation starting from the root node towards the
leaf nodes as follows: ∑

j

∑
v∈V

ωv||βjGv
||2 = λ

∑
j

Wj(vroot) (17)

where

Wj(v) =


sv ×

∑
c∈Children(v)

|Wj(c)|+ gv × ωv||βjGv
||2 if v is an internal node

∑
m∈Gv

|βjm| if v is a leaf node
(18)

4.5 Parameter Estimation

In order to estimate the regression coefficients in tree-guided group lasso, an alternative formulation of the
problem can be used.

ˆBTree = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ

∑
j

∑
v∈V

ωv||βjGv ||2

2

(19)

Since the L1/L2 norm in the original optimization equation is a non-smooth function, it is not trivial to
optimize it directly. We make use of the fact that the variational formulation of a mixed-norm regularization
is equal to a weighted L2 regularization as follows:

∑
j

∑
v∈V

ωv||βjGv ||2

2

≤
∑
j

∑
v∈V

ω2
v ||βjGv

||22
dj,v

(20)

where
∑
j

∑
v dj,v = 1, dj,v ≥ 0

Thus we can re-write problem so that it contains only smooth functions:

ˆBTree = arg min
β

∑
k

(yk −Xβk)T (yk −Xβk) + λ
∑
j

∑
v∈V

ω2
v ||βjGv

||22
dj,v

(21)

In this parameter estimation method, we actually take the advantage of the additional variables di,j to
smooth our function. This optimization problem can be solved by optimizing βk and di,j alternately until
convergence. In each iteration, we first fix the values for βk, and update di,j , where the update equations
for di,j are given below.

dj,v =
wv||βj,v||2∑

j

∑
v∈V wv||βj,v||2

(22)

Then, we hold di,j as constant, and optimize for βk. We differentiate the objective in Equation (21) with
respect to βk, set it to zero, and solve for βk to obtain the following update equation:
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βk = (XTX + λD)−1XTyk (23)

where D is a J × J diagonal matrix with
∑
v∈V w

2
v/dj,v in the jth element along the diagonal.

Disclaimer: Some portions of the content have been taken directly/paraphrased from the required reading
papers12 and last years scribe notes3. The authors do not claim the scribe to be a completely original work.

1https://www.cs.cmu.edu/~epxing/papers/2009/kim_xing_PlosG2009.pdf
2http://arxiv.org/pdf/1005.4717.pdf
3https://www.cs.cmu.edu/~epxing/Class/10708-13/lecture/scribe25.pdf


