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1 Introduction and Motivation

The application of classical optimization techniques to Graphical Models has led to specialized derivations
of powerful paradigms such as the class of EM algorithms, variational inference, max-margin and maximum
entropy learning. This view has also sustained a conceptual bridge between the research communities of
Graphical Models, Statistical Physics and Numerical Optimization. The optimization perspective has many
advantages, based on a mature and diverse field that allows for problems to be easily formulated, efficiently
solved, and approximated in a principled manner via convex relaxations. But it poses several challenges too,
which are particularly limiting to problems that involve non-parametric continuous variables or non-convex
objectives.

An alternate view, based on principles of linear algebra is a solution to this problem, and the central topic of
this lecture. In contrast to the optimization perspective, it offers a basis for dealing with Graphical Models
that involve non-Gaussian continuous variables and local minima free learning of latent variable models. It
also bridges the theoretical gap between Graphical Models, Kernels in machine learning, and Tensor Algebra.
The representational power of this alternative view, however, comes at the cost of expressive intuitiveness.

In the optimization paradigm, parametric distributions in general, and Gaussians in particular, present
several modelling advantages. They permit characterization using very simple sufficient statistics. They also
allow for easy manipulation on marginalization and conditioning operations that lead to convenient closed-
form solutions. An arbitrary distribution is harder to characterize. We could potentially calculate its mean.
But many different distributions have the same mean. It might be still better to additionally calculate its
variance. While the first two moments completely define a Gaussian distribution, these statistics may not
be sufficient for arbitrary distributions. Higher order moments bring increasingly greater resolution power
for characterizing arbitrary distributions, which leads to the intuition that an infinite dimensional vector
consisting of moments will absolutely capture any distribution.

This is, of course, practically infeasible, since storing or manipulating a vector of infinite dimensions is
impossible. It however motivates the use of Hilbert Space embeddings, and the kernel trick to solve this
infinite dimensional representation scenario. In particular, the Hilbert Space envisaged for this problem
needs to satisfy two basic desiderata: it should create a one-to-one mapping between distributions and the
embeddings of their statistics, and it should be cleverly constructed so that the kernel trick can be applied
for practical and efficient computation.

In what follows, we introduce Hilbert Spaces and show how distributions can be embedded in them. We
also derive several useful linear algebraic techniques to deal with joint as well as conditional distributions.
Mathematical detail, as well as intuitive insight are presented as appropriate.
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2 Hilbert Spaces

Hilbert spaces are now formally presented and their characteristics and suitability to embedding distributions
is discussed.

2.1 Definition of Hilbert Space

A Hilbert space, named after David Hilbert, is an extension of a vector space. Regular vector spaces
are sets of objects that are closed under linear combination. That is, given a vector space V, we have
v, w ∈ V =⇒ αv + βw ∈ V. While one normally thinks of these objects as finite dimensional vectors, they
could potentially be infinite dimensional vectors, and as such should be treated as functions.

A Hilbert Space is a complete vector space equipped with an inner product, which yields a number when
input with two functions from the space. An example of an inner product might be: < f, g >=

∫
f(x)g(x)dx.

It should be noted that this is just an example, and an inner product need not have an integral.

2.1.1 Basic Properties

The inner product < f, g > in a Hilbert Space must respect the following properties:

1. Symmetry: < f, g >=< g, f >

2. Linearity: < αf1 + βf2, g >=< αf1, g > + < βf2, g >

3. Non-negativity: < f, f >≥ 0

4. Zero: < f, f >= 0⇒ f = 0

2.1.2 Operators, Adjoints and the Outer Product

Given this basic definition of a Hilbert Space, we can now define a fundamental concept that is an operator.
An operator C maps a function f in one Hilbert Space to another function g in the same or another Hilbert
Space. Mathematically this corresponds to:

g = Cf

This operator has the following property:

C(αf + βg) = αCf + βCg

As an analogous intuition one can think of functions as vectors and operators as matrices. In linear algebraic
terms a matrix typically projects a set of vectors or bases to another set of vectors or bases. Therefore the
effect of the operator is to transform a function in a Hilbert Space to another function in another Hilbert
Space.

We can similarly define an adjoint (or transpose) of an operator. Formally, the adjoint C> : G → F of an
operator C : F → G is defined such that the following always holds:

< g,Cf >=< C>g, f >,∀f ∈ F , g ∈ G
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This is analogous to the transpose or conjugate transpose for real or complex matrices:

w>Mv = (M>w)v

Finally, also consider the Hilbert Space Outer Product f ⊗ g, which is implicitly defined such that:

f ⊗ g(h) =< g, h > f

.

Again, as an analogy, consider the vector space outer product which is simply defined by:

vw>(z) =< w, z > v

3 Reproducing Kernel Hilbert Spaces

We now introduce Reproducing Kernel Hilbert Spaces, that are special Hilbert Spaces with even more nice
properties. A Reproducing Kernel Hilbert space (RKHS) is a Hilbert space, in which each point of the space
is a continuous linear function. It is a infinite dimensional vector space where even more things behave like
the finite case.

An RKHS is constructed on the basis of a Mercer Kernel. A Mercer Kernel K(x, y) is a function of two
variables, such that: ∫ ∫

K(x, y)f(x)f(y)dxdy > 0,∀f

This is a generalization of a positive definite matrix:

x>Ax > 0,∀x

The most common kernel that we will use is the Gaussian RBF Kernel:

K(x, y) = exp
(‖x− y‖22

σ2

)
Consider holding one element of the kernel fixed. The result is a function of one variable which we call a
feature function. The collection of feature functions is called the feature map.

φx := K(x, :)

For a Gaussian Kernel the feature functions are unnormalized Gaussians. Here are two examples:

φ1(y) = exp
(‖1− y‖22

σ2

)
φ1.5(y) = exp

(‖1.5− y‖22
σ2

)
The inner product of feature functions in an RKHS is defined as:

〈φx, φy〉 = 〈K(x, ·),K(y, ·)〉 = K(x, y) (1)
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Intuitively, this quantity is the dot product between two feature vectors, and is thus a scalar. Because of the
symmetric property of kernels it is easy to see that φx(y) = φy(x) = K(x, y).

Having defined feature functions, consider the space composed of all functions that are a linear combination
of these feature functions. In effect let:

F0 =

f(z) :

k∑
j=1

αjφxj (z),∀k ∈ N+ and xj ∈ X

 (2)

Then, define a Reproducing Kernel Hilbert Space F to be the completion of the set F0 defined above. The
feature functions thus form a spanning set basis (albeit over-complete) for this space F . Indeed, any object
in the RKHS can be obtained as a linear combination of these feature functions, by definition.

With this definition in place, the space F exhibits the nice Reproducing property, from which the RKHS
derives its name. Mathematically this is denoted by: f(x) = 〈f, φx〉, where f is some function. What
this means is that to evaluate a function at some point in infinite dimension, one does not explicitly have
to operate in infinite dimensions but can instead simply take the inner product of that function with the
feature function mapping of the point. The proof of this property is as follows:

〈f, φx〉 = 〈
∑
j

αjφxj , φx〉 by definition of the RKHS

=
∑
j

αj〈φxj
, φx〉 because of the linearity of the inner product

=
∑
j

αjK(xj , x) by definition of a kernel in an RKHS

=
∑
j

αjφxj
(x) by the property of kernels

= f(x)

(3)

Recall how this property is used to great advantage in SVMs, where data points are symbolically mapped to
RKHS feature functions. However, operationally, they are only evaluated with inner products, so that this
symbolic mapping never has to be explicited.

4 Embedding Distributions in Reproducing Kernel Hilbert Spaces

We now turn to the problem of embedding entire distributions in RKHS. The theory will be developed for
embedding distributions of single variables as well as joint distributions and conditional distributions for two
variables. Analogies to linear algebra in the case of finite distributions will be drawn when appropriate.

4.1 The Mean Map – Embedding Distributions of One Variable

We first show how to embed distributions of one variable in RKHS. Consider the mean map defined as:

µX(·) = EX∼D[φX ] =

∫
pD(X)φX(·)dX (4)
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This is effectively the statistic computed over the feature function mappings of the distribution into the
RKHS. It corresponds, intuitively to the “Empirical Estimate” of the data. In the finite case this is simply

the first moment: µ̂X =
1

N

N∑
n=1

φxn
. It can be shown that when the kernels are universal, the mapping

from distributions to embeddings is one-to-one. The Gaussian RBF Kernel and the Laplacian Kernel are
examples of universal kernels.

As an illustrative example consider the finite dimensional case of an RKHS embedding for a distribution that
takes on discrete values from 1 to 4. In its explicit form, the moments of this distribution can be computed
directly from the data, but leads to loss of information. The nature of the discrete distribution implies that
distinction between values is lost. Moreover, the computed statistic is simply a number. Now consider an
RKHS mapping of the data into R4. The feature functions then become:

φ1 =


1
0
0
0

, φ2 =


0
1
0
0

, φ3 =


0
0
1
0

, φ4 =


0
0
0
1

,

Given this mapping it is easy to see that the mean map is:

µX = EX [φX ] = P[X = 1]φ1 + P[X = 2]φ2 + P[X = 3]φ3 + P[X = 4]φ4

Or equivalently in vectorial form:

µX =


P[X = 1]
P[X = 2]
P[X = 3]
P[X = 4]


which is the marginal probability vector in the discrete case. It is evident that the mean map thus defined
is a more expressive statistic than the empirical mean calculated in the simplistic case.

The mean map can be conveniently evaluated by using an inner product as well – rather than dealing with
the symbolic infinite dimensional vector. Indeed: EX∼D[f(X)] = 〈f, µX〉. The proof is as follows:

〈f, µX〉 = 〈f,EX∼D[φX ]〉 by definition of the mean map

= EX∼D[〈f, φx〉] because of the linearity of expectation

= EX∼D[f(X)] by virtue of the reproducing property in RKHS

(5)

4.2 Cross-Covariance – Embedding Joint Distributions of Two Variables

Now consider the problem of embedding joint distributions of two variables in RKHS. Begin by implicitly
defining the cross-covariance operator CY X such that CY X = EY X [f(X)g(Y )]. We will show that this
definition leads to the following property:

〈g, CY Xf〉 = EY X [f(X)g(Y )] ∀f ∈ F ,∀g ∈ G (6)

Note that the two Hilbert spaces F and G no longer need to be analogous, and indeed are likely to be
different. It is hypothesized that CY X is then the joint embedding of the distribution over X and Y . CY X
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now has the shape of an infinite dimensional matrix, and thus intuitively corresponds to the joint probability
table associated with the mapping of the distribution of P (X,Y ). In linear algebraic terms, it is an operator
that converts from one basis to another.

Let us flesh out these ideas more clearly and formally. Suppose we have φX ∈ F and ψY ∈ G, which are
the feature functions of the two RKHS. In the discrete case, the uncentered covariance of two variables is:
COV (X,Y ) = EY X [Y X]. In the infinite dimensional case, this translates to: CY X = EY X [ψY ⊗ φX ], where
⊗ is the tensor product operator. This operator effectively creates a new space by taking the cross-product
of the feature functions in the spaces F and G.

Intuitively, in the finite case, this corresponds to taking the outer (or cross) product of the elements of two
finite sets to obtain a third set that is their tensor product. As a warning, this example should not be taken
too literally, because finite sets don’t necessarily form vector spaces. Nevertheless this leads to a formal
characterization of the tensor product of the two Hilbert spaces:

H = {h : ∃f ∈ F , g ∈ G such that h = f ⊗ g} (7)

The expectation of this new space is then the cross-covariance operator. The proof of correctness of the cross
covariance operator property is now given below:

〈g, CY Xf〉 = 〈g,EY X [ψY ⊗ φX ]f〉 by definition of the cross covariance operator

= EY X [〈g, [ψY ⊗ φX ]f ] by moving the expectation outside the inner product

= EY X [〈g, 〈φX , f〉ψY ] by the definition of the outer product

= EY X [〈g, ψY 〉〈f, φX〉] by redistributing the arguments in the inner product

= EY X [f(X)g(Y )]by the reproducing property in RKHS

(8)

4.2.1 Autocovariance

As an important note consider the cross-covariance of in RKHS of a distribution with itself. This leads to
the auto covariance operator defined as: CXX = EXX [φX ⊗ φX ]. In the discrete case, this would be the
uncentered variance of a random variable X: E[X2]. Similarly as CY X was intuitively a matrix, CXX can
also be thought of as a matrix. It is, however, a diagonal matrix, whose diagonal elements characterize the
distribution of X.

4.3 Product of Cross-Covariances – Embedding Conditional Distributions of 2
Variables

Given what we know about cross-covariance and auto-covariance, we can now proceed to explicit a form
for the embedding of conditional distributions of two variables. In simple probabilistic terms we have

P (X,Y ) =
P (Y |X)

P (X)
. In linear algebraic operations, the conditional distribution then emerges as: P (Y |X) =

P (Y,X)×Diag(P (X))−1.

But we already know that the embedding of a joint distribution P (X,Y ) is cross covariance operator CY X
and the embedding of a distribution P (X) in a diagonalized matrix form is the auto covariance operator
CXX . It follows that the embedding of a conditional distribution is then also an operator. Specifically we
have:



22 : Hilbert Space Embeddings of Distributions 7

CY |X = CY XC
−1
XX (9)

It can be shown that this operator has the following property: EY |x[φY |x] = CY |Xφx, which can be thought
of as the slicing operation on a conditional probability table of two variables. That is just selecting a single
row of interest from this table: P (Y |X = x) = P (Y |X)δx

5 Conclusion and Future Material

In summary this lecture showed how Hilbert Space embeddings (specifically RKHS embeddings) can be
effectively used to compute sufficient statistics for arbitrary distribution without the need to make any
parametric assumptions about them. A theory for embedding marginal, joint and conditional distributions
has been developed and explicited. Analogies with the finite case, specially as regards linear algebraic
operations have been noted.

In future lectures this theory will be further developed to allow for defining graphical models on these
embedded distributions, as well as perform probabilistic inference on them. Two important results will be
shown: the fact that the probabilistic sum rule and chain rule have counterparts in RKHS embeddings, and
they can be neatly represented as combinations of functions and operators. Indeed for the sum rule it will
be shown that:

P (X) =

∫
Y

P (X,Y ) =

∫
Y

P (X|Y )P (Y )⇐⇒ µx = CX|Y µY (10)

And for the chain rule it will be shown that:

P (X,Y ) = P (X|Y )P (Y ) = P (Y |X)P (X)⇐⇒ CY X = CY |XCXX = CX|Y CY Y (11)


