
10-708: Probabilistic Graphical Models 10-708, Spring 2014

17 : Approximate Inference: Markov Chain Monte Carlo (MCMC)

Lecturer: Eric P. Xing Scribes: Dan Schwartz, Karanhaar Singh

Recap

Recall that Monte Carlo methods are used to solve the following two tasks:

1. Generate samples from some given target probability distribution P (x)

2. Estimate expectations of various functions under this distribution

EP (x) (φ (x)) =

ˆ
P (x)φ (x) dx

These two problems are useful for approximating P (x) itself and for revealing interesting information about
P (x) (such as various moments) respectively. Unfortunately, these are di�cult problems for a variety of
reasons:

• When drawing samples, we typically only have access to an unnormalized distribution

P ∗ (x) =
P (x)

Z

Computation of the normalization factor Z can be a di�cult task since we have to visit every point in
the space of x.

• Drawing samples from P (x) can be very di�cult in high dimensional spaces. It is not obvious to see
how we can sample from P (x) without enumerating all possible states, which exponentially grows with
the number of dimensions. This quickly makes such a task computationally intractable.

In the previous lecture we already discussed three basic Monte Carol methods: uniform sampling, rejection
sampling, and importance sampling. While these methods are useful for certain problems, they come with
limitations:

• Uniform Sampling: This is one of the most basic samplers where we can compute an approximation to
the expectation of some function by uniformly sampling the state space. The problem with this sampler
is that it could take a very long time to hit the typical set (where the majority of the distribution lies),
especially for higher dimensional problems.

• Importance Sampling: This sampler draws samples, x, from an auxiliary proposal density Q (x) and
uses weights to adjust the �importance� of the sampled point to compensate for the fact that we sample
from a di�erent distribution. This sampler requires Q (x) to be a very close approximation to P (x)
for acceptable performance, especially in higher dimensions.

1

2 17 : Approximate Inference: Markov Chain Monte Carlo (MCMC)

• Rejection Sampling: This sampler also draws samples, x, from an auxiliary proposal density Q (x)
but adjusts the importance of the sampled points through rejection. Like importance sampling, this
sampler requires Q (x) to be a very close approximation to P (x) for acceptable performance, especially
in higher dimensions.

All of these methods also su�er from the problem that the variance of the sample can be small even if the
sample is not a good representation of the true distribution.

If we use an adaptive proposal Q
(
x′|x(t)

)
as opposed to a �xed Q (x′), we can relax the requirement imposed

by importance and rejection sampling that Q (x′) must be very similar to P (x′). This intuition motivates
the use of Markov Chain Monte Carol (MCMC) algorithms. Intuitively, we want to move a little away from
the space we have already sampled according to a probability distribution that takes into account both the
true probability and the sampling distribution.

Metropolis-Hastings algorithm

One such MCMC method is the Metropolis-Hastings algorithm:

1. Initialize the starting state x(t) at t = 0

2. Draw a sample x′ from the proposal Q
(
x′|x(t)

)
. Note that this proposal is now a function of the

previously drawn sample x(t) (at time step t)

3. Decide whether we should accept this new state by �rst computing the following ratio of importance
sampling weights of x′ and x(t):

α =
Wx′

Wx(t)

=
P ∗ (x′)Q

(
x(t)|x′

)
P ∗
(
x(t)
)
Q
(
x′|x(t)

)
Where

Wx′ =
P ∗ (x′)

Q
(
x′|x(t)

) ,Wx(t) =
P ∗
(
x(t)
)

Q
(
x(t)|x′

)
We accept the new state with a probability of

A
(
x′|x(t)

)
= min (1, α)

If the new state is accepted, we de�ne the new state to be the value we had just drawn: x(t+1) ← x′,
otherwise, the new state is simply set to be the previous state: x(t+1) ← x(t). Note that because P
is in both the numerator and denominator, we can use the unnormalized P ∗ and there is no need to
�nd the partition function Z. Compare this update to the rejection sampling algorithm where rejected
samples are thrown away. In this case, a rejection results in the same sample being written to the list
of collected samples.

4. Repeat steps 2 and 3 until the samples �converge�. This process is called the burn-in period and the
de�nition of convergence will be covered later in this writeup.

This ratio, A
(
x′|x(t)

)
, is the ratio of the probability of going from x′ to x(t) versus going from x(t) to x′.

When the ratio is higher, x′ is a good place to move in the sample space. When the ratio is low, the algo-
rithm mostly will stay at x(t), but the kernel Q still spreads the area we may move to around the sample space.

17 : Approximate Inference: Markov Chain Monte Carlo (MCMC) 3

The Metropolis-Hastings algorithm will seize events that are rare under Q but have high probability under P ,
causing a dramatic shift in the proposal distribution Q. One issue with the algorithm is that it can be hard
to move from one high probability space to another across a low probability space. Although Metropolis-
Hastings will converge to the true distribution, with certain exceptions, there are no guarantees to when. In
practice, 5000-10000 iterations are typically used as the burn-in period.

Metropolis-Hastings example

Consider the task of sampling from a bimodal distribution P (x). We can de�ne our adaptive proposal
distribution, Q

(
x′|x(t)

)
, to be a Gaussian distribution whose mean is the previous state x(t) and whose

standard deviation is �xed.

In this �gure, x(0) is the initial state serving as the mean of the adaptive proposal distribution in this state.
We sample x′, accept this sample based on the criteria detailed above, set the next state x(1) to be this
accepted state, update the mean of the adaptive proposal distribution, and repeat. Note that x(3) marks a
rejected sample since this state is set to be the previous state, x(2).

Metropolis-Hastings convergence

Recall that in rejection sampling all accepted points are independently drawn samples from the target
distribution. This desirable property comes at the cost of having a low acceptance rate, especially when
the proposal distribution is not a good approximation of the target distribution. The Metropolis-Hastings
algorithm, on the other hand, will generate samples based on a Markov process. Since a given sample is
dependent on the state of the previous sample, the samples generated are clearly not independent from each
other. In order to obtain samples that are e�ectively independent, we may need to run the algorithm for a
considerable amount of time. A good rule of thumb is that if the largest length scale of the state space of
the target distribution is L and the smallest length scale of the state space of the proposal distribution is ε,
we can de�ne a lower bound on the number of iterations of the Metropolis-Hastings method:

T ≈
(
L

ε

)2

4 17 : Approximate Inference: Markov Chain Monte Carlo (MCMC)

Adjusting the length scale of the proposal distribution results in a trade-o� between the acceptance rate and
the level of dependence between consecutive samples. Recall that in high dimensional spaces, most of the
mass tends to be concentrated in small portions of the state space. Thus if the length scale ε is too large,
the sampler will tend to pick points in low probability parts of the true distribution and the rejection rate
will be high. However, if the length scale is too small, the sampler will take longer to explore the state space
and therefore take longer to converge. Intuitively, we can set ε to be a number smaller than, but on a similar
order of magnitude, to L, but we do have to be careful as selection of the optimal ε is highly dependent on
the properties of the target distribution.

We can monitor convergence by plotting samples over multiple runs of a Metropolis-Hastings sampling
method. If the resultant chains are well mixed, then we can state that samples have probably converged,
otherwise we should continue the burn in process.

One problem with visualizing the chains in this way is that visualizing all dimensions of random variables
becomes hard as we increase the dimensionality of the problem. One way to mitigate this issue is to plot the
complete log-likelihood function, which is dependent on all model random variables over time. Typically, we
will see the log-likelihood plateau once we approach convergence.

17 : Approximate Inference: Markov Chain Monte Carlo (MCMC) 5

Markov chains

At its core, the Metropolis-Hasting method is based on states selected by a Markov chain. A Markov
chain is a sequence of random variables that satisfy the Markov property which states that each variable is
conditionally independent of its ancestors given its parent. De�ne p(t) (x) to be the probability distribution of
the state at time step t and π (x) as the true distribution. We de�ne a Markov chain by an initial probability
distribution p(0) (x) and a transitional probability T (x′|x) .

For sampling, we consider only homogeneous Markov chains, where T (x′|x) is independent of the time step
t. In the case of Metropolis-Hastings, the transition probability is: T (x′|x) = A(x′|x)Q(x′|x)

It is often helpful to think of an MCMC sampler as moving from one distribution of states to another, rather
than from one state to another. This can be formalized:

p(t+1)(x′) =
´
T (x′|x)p(t)(x)dx

When designing a Markov chain for sampling, we must ensure that the following properties hold:

1. The target distribution must be an invariant distribution of the chain. Formally:

π (x′) =

ˆ
T (x′|x)π (x) dx ∀x′

2. The Markov chain must be ergodic. Intuitively, this means that we can reach the �nal stationary
distribution no matter what initial distribution we start with. Formally:

∀p(0) (x) , as t→∞ :

p(t) (x)→ π (x)

In order for a Markov chain to be ergodic, the following two properties must hold:

(a) The chain must be irreducible. Speci�cally, we must be able to reach all parts of the state space
in a �nite number of steps. This property ensures that the sampler can populate the whole state
space.

(b) The chain must be aperiodic. Speci�cally, the chain will not tend towards a periodic limit-cycle
where we can only reach a certain subset of states at any time step. In other words, we must
be able to reach all states at any given time step. This property ensures that the sampler does
not get stuck in a cycle. A simple example of a periodic limit-cycle is the random walk along the
edges of a square - we cannot move to the vertex across the diagonal of the square at any given
time step.

The detailed balance property is de�ned as follows:

T (x′|x)P (x) = T (x|x′)P (x′)∀x, x′

Markov chains that satisfy this property are called reversible Markov chains. We can actually prove that
all reversible Markov chains will converge to the target distribution, in other words, all reversible Markov
chains have a stationary distribution. Detailed balance is a su�cient, but not necessary condition for having
a stationary distribution:

T (x′|x)P (x) = T (x|x′)P (x′)∀x, x′

Take the sum over the space of x′ on both sides∑
x′

T (x′|x)P (x) =
∑
x′

T (x|x′)P (x′)∀x, x′

6 17 : Approximate Inference: Markov Chain Monte Carlo (MCMC)

Pull out P (x), which is not a function of x′

P (x)
∑
x′

T (x′|x) =
∑
x′

T (x|x′)P (x′)∀x, x′

Note that summation over the entire space of any probability distribution is 1, so we can eliminate the �rst
summation

P (x) =
∑
x′

T (x|x′)P (x′)∀x, x′

This is the de�nition of a stationary distribution.

Metropolis-Hastings is an example of a reversible Markov chain:

T (x′|x) = Q(x′|x)A(x′|x)

A(x′|x) = min

(
1,
P (x′)Q(x|x′)
P (x)Q(x′|x)

)
Assume without loss of generality

A(x′|x) ≤ 1⇒ A(x′|x) =
P (x′)Q(x|x′)
P (x)Q(x′|x)

⇒ P (x)Q(x′|x)A(x′|x) = P (x′)Q(x|x′)

Note:

A(x′|x) ≤ 1⇒ P (x′)Q(x|x′)
P (x)Q(x′|x)

≤ 1⇒ P (x)Q(x′|x)

P (x′)Q(x|x′)
≥ 1⇒ A(x|x′) = 1

Therefore (multiplying by a special form of 1)

P (x)Q(x′|x)A(x′|x) = P (x′)Q(x|x′)A(x|x′)

This is detailed balance

P (x)T (x′|x) = P (x′)T (x|x′)

One way to construct Markov chains is by mixing base transition functions, B, to de�ne our transition
matrix T . When transitioning to a new state, we pick a base transition function at random de�ned by a
set of probabilities associated with each base transition function. The individual base transition functions
do not need to be ergodic but all must keep the invariance property satis�ed.

Gibbs Sampling

Gibbs sampling is a special case of the Metropolis-Hastings method where the proposal distributions are
tractable conditional distributions on P (x). Speci�cally, we assume that the conditional distributions hold
the following form: P (xi| {xj} ∀j 6= i)∀i. This form of the proposal distribution �ts very nicely with various
probabilistic graphical models such as mixture models and Latent Dirichlet allocation models. The algorithm
of the Gibbs sampler is very similar to the standard Metropolis-Hastings algorithm:

1. For a model that contains K variables, initialize the starting states x
(t)
1 , . . . , x

(i)
K at t = 0

17 : Approximate Inference: Markov Chain Monte Carlo (MCMC) 7

2. For some ordering of the K variables, draw samples one parameter at a time:

x
(t+1)
1 ∼ P

(
x′1|x

(t)
2 , ...x

(t)
K

)
...

x
(t+1)
K ∼ P

(
x′k|x

(t)
1 , ...x

(t)
K−1

)
3. Repeat until convergence.

To see that Gibbs sampling is a special case of Metropolis-Hastings:

De�ne xi to be the ith element of the feature vector x and x−i to be all other elements. Let

Q(x′i, x−i|xi, x−i) = P (x′i|x−i)

then

A(x′i, x−i|xi, x−i) = min

(
1,
P (x′i, x−i)Q(xi, x−i|x′i, x−i)
P (xi, x−i)Q(x′i, x−i|xi, x−i)

)

= min

(
1,
P (x′i, x−i)P (xi|x−i)
P (xi, x−i)P (x′i|x−i)

)

= min

(
1,
P (x′i|x−i)P (x−i)P (xi|x−i)
P (xi|x−i)P (x−i)P (x′i|x−i)

)
= min(1, 1) = 1

Thus, A(x′|x) is always 1 in the Gibbs special case of Metropolis-Hastings, so every sample is accepted.

If we are performing Gibbs sampling on a distribution that can be modeled by a probabilistic graphical
model, the complicated form of the conditional distribution can be simpli�ed by conditioning only on the
Markov Blanket. Since Gibbs sampling is a Metropolis-Hastings method, it will produce samples that are not
independent from each other meaning that it may take a considerable amount of time before the algorithm
generates an independent sample. Speci�cally, the lower bound on the number of iterations required to

generate an independent sample is
(
L
ε

)2
.

Rao-Blackwell/Collapsed Gibbs

Rao-Blackwell is a very general method that can be applied to many types of sampling. When parts of a
distribution can be computed analytically, some random variables can be integrated out of the distributions
of interest to reduce the variance of the sampling procedure. This can have a large e�ect on the number of
samples that need to be taken before convergence.

One example of Rao-Blackwell is the collapsed Gibbs sampler inference algorithm used by Gri�ths and
Steyvers for �nding word-topic assignments in their mixture model for �nding scienti�c topics. The key
insight to this sampler is that we can integrate out certain random variables such that we only need to

8 17 : Approximate Inference: Markov Chain Monte Carlo (MCMC)

sample the variable of interest, the word-topic assignments z.

Since we have integrated over the topics and topic vectors, only samples of z need to be taken. Since π and
B are drawn from Dirichlet distributions, they can be integrated out of the conditional distribution of zi.

Thus, after integration, the conditional probability distribution, P (zi|z−i, w), is the product of two Dirichlet-
Multinomial conditional distributions (note that after integrating out π, the {zi} become dependent on each
other).

P (zi = j|z−i, w) ∝

[
n
(wi)
−i,j + β

n
(·)
−i,j +Wβ

][
n
(di)
−i,j + α

n
(·)
−i,· + Tα

]
The �rst term of this equation represents the word-topic term and the second represents the doc-topic term.
Each n term represents the number of word positions within the domain speci�ed by the superscript for a
given topic j (excluding wi).

Auto-correlation

Given an execution of a Markov chain, we can plot the auto-correlation of the resultant states. The auto-
correlation function gives us a measure of how correlated nearby samples are to each other. This can help
us determine when two samples are �far enough� to be considered independent draws. We de�ne the auto-
correlation function as follows:

Rx (k) =

∑n−k
t=1 (xt − x̄) (xt+k)∑n−k

t=1 (xt − x̄)

We can also de�ne the Sample Size In�ation Factor (SSIF) which is based on two adjacent draws:

sx =
1 +Rx (1)

1−Rx (1)

The SSIF gives us a measure of �e�ective sample size�. We can de�ne the e�ective sample size as n
s where a

higher auto-correlation gives us a smaller e�ective sample size.

17 : Approximate Inference: Markov Chain Monte Carlo (MCMC) 9

Acknowledgments

Portions of these scribe notes have been taken directly from

• Eric Xing's Probabilistic Graphical Models Lecture 17 notes from Spring 2014

• Information Theory, Inference, and Learning Algorithms by David J. C. Mackay, Chpt 29

• D. Mackay, Introduction to Monte Carlo Methods

All �gures have been taken from Eric Xing's Probabilistic Graphical Models Lecture 17 notes from Spring
2014.

