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1 Introduction

For simple models, exact inference is possible through algorithms elimination, message passing, and junction
trees. However, these are often computationally infeasible for larger models and it is necessary to use
approximate inference techniques. This lecture focuses on Monte Carlo methods which approach inference
using stochastic simulation through sampling.

To motivate this idea, recall that the distribution of a random variable X can be represented by its pdf p(x).
In simple cases, this expression can be written in closed form. However, it can be difficult to compute due
to the normalizing constant, and quantities that require integrating over the distribution may be computa-
tionally infeasible. For example, computing the expectation of some function f(x) of the random variable
requires integrating over all possible assignments to X.

Ep(f(x)) =

∫
f(x)p(x)dx (1)

Alternatively, we can approximate the distribution of X by maintaining a collection of samples {x1, . . . , xm}
drawn from p(x). Then, the expectation of f(x) can be approximated using the sample mean.

Ep(f(x)) ≈ 1

m

m∑

i=1

f(xi) (2)

Monte Carlo methods work by drawing samples from the desired distribution, which can be accomplished even
when it is not possible to write out the pdf. This results in a stochastic representation of the distribution in
which quantities of interest may be calculated simply using sample averages. By the Law of Large Numbers,
it is clear that this approximation is asymptotically exact and it is easy to apply to arbitrary models.

Despite its simplicity, there are are a number of challenges that are addressed in the remainder of the lecture,
including problems associated with naive sampling in high dimensions, describing how to draw samples from
a given distribution when it is not possible to do so trivially, and introducing methods that improve efficiency
by making better use of samples.

2 Naive Sampling

Consider the binary, 5-dimensional probability distribution defined by the Bayesian Network in Figure 1. Due
to the local conditional dependencies of the model, samples can be easily drawn by following the ordering of
the edges and conditioning locally on parent samples. For example, B and E will be sampled independently,
and the probability of A will be determined by the values of these samples. This process was repeated ten
times for all variables and the resulting samples are shown on the right, where 1 and 0 denote true and false
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1 Introduction

Previous lectures covered both exact inference algorithms (variable elimination, message passing, junction
tree algorithm), and approximate inference algorithms (loopy belief propagation, mean field approxima-
tion). This lecture introduces an additional class of approximate inference algorithms known as stochastic
simulation or sampling methods.

The basic motivation behind these methods stems from the problem that, for a random variable X ∼ P (x),
it may be hard to find a closed form expression for P (x) or for other related quantities of interest such as
E[g(X)]. A potential solution involves using samples z1, . . . , zN ∼ P (x) to estimate quantities of interest,
for example with

E[g(X)] ≈ 1

N

N∑

i=1

g(zi)

This task is further complicated in cases where we only have access to an unnormalized distribution P ∗(x),
where P (x) = 1

ZP
∗(x). The following sections cover a collection of methods for drawing samples from a

distribution or for using random draws to compute quantities of interest.

2 Naive Sampling

In order to draw samples from a target distribution, one intuition is that we could directly draw different
samples uniformly from the state space and evaluate P ∗(x) at these points. However, even though the
samples can be easily evaluated for P ∗(x), it might still work poorly on high-dimensional distributions. To
see why this is the case, consider the following alarm example, and the table on the right displays 10 samples
drawn according to the probabilities given in the BN, where 1 denotes true and 0 denotes false:

EarthquakeBurglary

Alarm

JohnCalls MaryCalls

P(B)
.001

P(E)
.002

A
T
F

P(J)
.90
.05

A
T
F

P(M)
.70
.01

B       E
T       T
T       F
F       T
F       F

P(A)
.95
.94
.29

.001

E0 B0 A0 M0 J0
E0 B0 A0 M0 J0
E0 B0 A0 M0 J1
E0 B0 A0 M0 J0
E0 B0 A0 M0 J0
E0 B0 A0 M0 J0
E1 B0 A1 M1 J1
E0 B0 A0 M0 J0
E0 B0 A0 M0 J0
E0 B0 A0 M0 J0

1Figure 1: An example Bayesian network along with samples from the distribution.

assignments respectively. These samples approximate the joint distribution of the model with probabilities
determined by the frequency counts of each assignment appearing in the samples. Conditional and marginal
probabilities can be similarly computed. For example, P (J = 1|A = 0) = 1/9 since 9 of the samples had
A = 0 but only one of those also had J = 1.

Note that this sampling procedure implicitly approximates the distribution as a multinomial with 25 dimen-
sions, one for every possible variable assignment, some of which may correspond to very rare events. For
example, our estimate of P (J = 1|A = 1) would be zero since there was only one sample with A = 1 but
J 6= 1 . Similarly, P (J = 1|B = 1) is not even defined since there were no samples that satisfied B = 1 due to
it’s low probability of occurrence. Thus, a good approximation of high-dimensional distributions using naive
sampling might require an extremely large number of samples and could become computationally infeasible.

3 Rejection Sampling

Rejection sampling is a method for sampling from a distribution p(x) = 1
Z p
′(x) that is difficult to sample

from, but whose unnormalized pdf p′(x) is easy to evaluate. This is accomplished by first sampling from a
simpler distribution q(x). This sample is then accepted or rejected so that the samples follow the unknown
distribution p(x). Specifically, q(x) must be chosen along with some constant k so that kq(x) > p′(x) for all
x. Then, a sample x∗ from q(x) is accepted with probability p′(x∗)/kq(x∗). The correctness of this approach
is shown in Equation 3.

P (x∗) =
[p′(x∗)/kq(x∗)] q(x∗)∫

[p′(x)/kq(x)] q(x)dx
(3)

=
p′(x∗)∫
p′(x)dx

= p(x∗)

While this method is guaranteed to generate samples from the desired distribution p(x), it can be very
inefficient, particularly in high dimensions. If the shapes of p′(x) and kq(x) are very different, then the
probability of rejection will be high and most of the samples will be wasted. For example, consider the

d-dimensional target distribution p(x) = N (x;µ, σ
2/d
p ) and the proposal distribution q(x) = N (x;µ, σ

2/d
q ).

Note that the optimal acceptance rate can be accomplished with k = (σq/σp)
d
. With d = 1000 and σq

exceeding σp by only 1%, k ≈ 1/20000 resulting in a large waste in samples. While this can by remedied by
using adaptive rejection sampling in which q(x) is defined by piece-wise envelope functions that are generated
during sampling, this is not very generic and is only really viable in low dimensions.
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4 Importance Sampling

In importance sampling, samples are independently drawn from a proposal density Q(x), which is designed
to be close to the true density P (x). The contribution of each sample x to the Monte Carlo summation is

weighted by an importance P (x)
Q(x) so that, the estimator is unbiased. Depending on whether it is possible to

compute the true density P (x) or a scaled version P ∗ (x) = αP (x) of the true density, we have two versions
of importance sampling called unnormalized importance sampling and normalized importance sampling.

4.1 Unnormalized Importance sampling

Assume that we are equipped with a way to compute the true density P (x) and the proposal density Q(x)
at any given point x. Further, assume that Q dominates P , that is, Q(x) > 0 whenever P (x) > 0. In other
words, the support of Q contains the support of P . For an arbitrary function f , the procedure to compute
E[f(x)] is as follows:

1. Sample xm ∼ Q(x) for m = 1, 2, · · · ,M

2. Compute f̂ = 1
M

∑M
m=1 f(xm)P (xm)

Q(xm)

It is easy to show that f̂ is an unbiased estimator of EP [f(x)] in the measure defined by Q

EQ[f̂ ] = EQ[
1

M

M∑

m=1

f(xm)
P (xm)

Q(xm)
]

=
1

M

M∑

m=1

EQ[f(xm)
P (xm)

Q(xm)
]

= Ex∼Q[f(x)
P (x)

Q(x)
] as xm are i.i.d drawn from Q

=

∫
f(x)

P (x)

Q(x)
Q(x) dx

=

∫
f(x)P (x) dx

= EP [f(x)]

Eventhough f̂ is unbiased, it is in general hard to compute its variance and hence it is hard to decide when
to stop sampling.

4.2 Normalized Importance sampling

In normalized importance sampling, we assume that, in addition to proposal density Q(x), we are only
equipped with a way to compute P ′(x) = αP (x) for some unknown scaling factor α > 0. The sampling
procedure is similar to the above method, except for the fact that we need to eliminate the α. This is done

by observing that, for r(x) := P ′(x)
Q(x)

EQ[r(x)] = EQ[
P ′(x)

Q(x)
] =

∫
P ′(x)

Q(x)
Q(x) dx =

∫
P ′(x) dx = α
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For an arbitrary function f , the procedure to compute E[f(x)] is as follows:

1. Sample xm ∼ Q(x) for m = 1, 2, · · · ,M

2. Compute scaling factor estimate α̂ = 1
M

∑M
m=1 r(x

m)

3. Compute

f̂ =
1

α̂

1

M

M∑

m=1

f(xm)
P ′(xm)

Q(xm)
=

∑M
m=1 f(xm)r(xm)
∑M

m=1 r(x
m)

(4)

The estimator f̂ is not unbiased. To show this, suppose we sampled just once, that is, M = 1. Then

f̂ =
f(x1)r(x1)

r(x1)
= f(x1)

EQ[f̂ ] = EQ[f(x1)] 6= EP [f(x1)] in general

However, in practice, the variance of the estimator in the normalized case is usually lower than that in the
unnormalized case. Moreover, it is common to have P ′(x) available instead of P (x). For example, In MRFs,
it is more reasonable to assume that the unnormalized density can be computed, rather than the normalized

density, as the normalizing constant Z is generally hard to compute in P (x) = P ′(x)
Z . In Bayes nets, again

it is more reasonable to assume that P ′(x, e) = P (x|e)P (e) is computable, where P (e) is the scaling factor.
Following is an example illustrating this idea.

Applying normalized importance sampling on Bayes Nets
The objective is to estimate the conditional probability of a variable given some evidence, which is of the
form P (Xi = xi|e). For example, in Figure 3, the evidence is e = (G = g2, I = i1) and we want to find the
conditional probability of Xi = xi where Xi is one of the unobserved variables. Note that a subscript indexes
a variable whereas a superscript denotes a sample number. We estimate the probability P (Xi = xi|e) by
normalized importance sampling.

In importance sampling, we estimate expectations. We rewrite the probability P (Xi = xi|e) as the expec-
tation EP (Xi|e)[f(Xi)] where f(Xi) := δ(Xi = xi). Construct a proposal density as follows: Clamp down
the evidence nodes at the evidence values and cut off their incoming edges. Figure 3 gives an illustration of

Figure 2: Normalized importance sampling
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this procedure. Define the proposal density Q(X) = PM (X) to be the density of the remaining Bayes net.
Define P ′(x) = P (x, e) so that it is proportional to P (x|e).
Now we can use Equation (4), to compute the estimate

P̂ (Xi = xi|e) =

∑M
m=1 δ(x

m
i = xi)r(x

m)
∑M

m=1 r(x
m)

where r(xm) = P ′(xm)
PM (xm) .

Figure 3: Illustration of how the proposal density is constructed in likelihood weighting. The evidence
consists of e=(G=g2, I=i1)

In this example, we discussed how to estimate a probability P (Xi = xi|e) using normalized importance
sampling, in a Bayes net. In the following section, we describe a technique to sample all the variables from
a Bayes net.

4.3 Likelihood Weighting

Likelihood weighting is a special case of normalized importance sampling used to sample from a Bayes net.
Suppose X is the set of variables in the Bayes net. Suppose the variables E ⊂ X are observed. A tuple
x of size X is sampled as follows. For each observed variable Xi ∈ E, set xi to the observed value of Xi.
Otherwise, sample from P (Xi|πi) where πi denotes the parents of Xi. The likelihood weighting algorithm
carries out these steps of sampling efficiently by doing a topological sort on the variables upfront. The weight
for the sample x is given by w =

∏
Xi /∈E P (Xi = xi|πi). Each term P (Xi = xi|πi) in this product can be

computed when the algorithm visits Xi using the sampled assignments for its parents, as the topological
visiting order makes sure that the parent variables πi are assigned before Xi.

4.4 Weighted resampling(Sampling-Importance-Sampling)

In this procedure, the final samples are resampled according to importance weights from the samples drawn
from Q. The steps are as follows:

1. Draw x1, x2, · · · , xN from Q

2. Compute the weights wm = rm∑N
m=1 rm

for m = 1, 2, · · · , N

3. Resample M times from (x1, x2, · · · , xN ) according to the weights (w1, w2, · · · , wN ).
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The idea is that the resampling is equivalent to a drawing from a fat tailed modification of Q.

5 Particle Filters

Particle Filters, or sequential Monte Carlo, is a method to find approximate the distribution P (Xt|Y1:t) in
an state space model, SSM, such as the model in figure .

The distribution of interest is:
P (Xt|Y1:t) = P (Xt|Yt,Y1:t)

By definition of conditional probability:

P (Xt|Yt,Y1:t) =
p(Xt, Yt|Y1:t−1)

p(Yt|Y1:t−1)

The denominator can be replaced as a marginal probability:

P (Xt|Yt,Y1:t) =
p(Xt, Yt|Y1:t−1)∫
p(Xt, Yt|Y1:t−1)dXt

By applying the chain rule,:

P (Xt|Yt,Y1:t) =
p(Xt|Y1:t−1)p(Yt|Xt,Y1:t−1)∫
p(Xt|Y1:t−1)p(Yt|Xt,Y1:t−1)dXt

Because of the independencies of the SSM p(Yt|Xt,Y1:t−1) = p(Yt|Xt), thus:

P (Xt|Yt,Y1:t) =
p(Xt|Y1:t−1)p(Yt|Xt)∫
p(Xt|Y1:t−1)p(Yt|Xt)dXt

Since there is no closed from solution for the previous equation, Particle Filters uses an approximation
represented by:

Xm
t ∼ p(Xt|Y1:t−1), wm

t =
p(Yt|Xm

t )
∑M

m=1 p(Yt|Xm
t )

where wm
t is the weight for sample m. The initial weights, wm

0 , are initialized to be equal for each sample
m.

The sampling procedure at each time t is done with a Time Update and Measurement Update.

5.1 Time Update

At this step, the distribution of interest is:

p(Xt+1|Y1:t) =

∫
p(Xt+1|Xt)p(Xt|Y1:t)dXt

which is approximated by:

p(Xt+1|Y1:t) =
∑

m

wm
t p(Xt+1|Xm

t )

Specifically, new m particles, Xm
t+1, are sampled from the old particles, Xm

t , using the given transition model
p(Xt+1|Xt).
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5.2 Measurement Update

At this step, the weights, wm
t+1, are updated for the new m particles, Xm

t+1, using the given emission model
p(Yt|Xt). Thus, for each particle, Xm

t+1,

wm
t+1 =

p(Yt+1|Xm
t+1)

∑M
m=1 p(Yt+1|Xm

t+1)

The denominator only ensures that
∑M

m=1 w
m
t+1 = 1.

Then, a new set of particles are sampled using weighted sampling:

Xm
t+1 ∼ p(Xt+1|Y1:t), w

m
t+1 =

p(Yt+1|Xm
t+1)

∑M
m=1 p(Yt+1|Xm

t+1)

And this distribution was the goal of Particle Filters.

6 Particle Filters for switching State Space Models

Particles filters can be used to estimate P (Xt|Y1:t, S1:t) in a SSM.

The overview of the method, at each time t, would be:

• Sample a new particle, Sm
t , from each old particle m using the transition parameters P (St|Sm

t−1).

• Apply Kalman Filter to the old belief state, ( x̂mt−1|t−1, P
m
t−1|t−1 ), for each particle m.

• The result will be the new belief P (Xt|Y1:t, S1:t).

More detailed information can be found in slides 19 and 20 of lecture 16.

7 Rao-Blackwellised sampling

Rao-Blackwellised sampling is a sampling method, similar to Particle Filters, for high dimensional spaces.
The main difference with Particle Filters is that instead of sampling all the variables, X, Rao-Blackwellised
only samples from a subset of variables, Xp. The m samples for the variables Xp are sampled using Particle
Filters. Finally, there is an additional step in which the expected value of the distribution is calculated with:

Ep(X|e)[f(X)] =
1

M

∑

m

Ep(Xd|xm
p ,e)[f(xmp , Xd)]


