
10-708: Probabilistic Graphical Models 10-708, Spring 2014

13 : Variational Inference: Loopy Belief Propagation

Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta

1 Introduction

The problem of probabilistic inference concerns answering queries about conditional and marginal probabil-
ities in graphical models. Consider two disjoint subsets E and F of the nodes in a graphical model G. A
query regarding marginal distribution p(xF) can be calculated by the marginalization operation

∑
G\F p(x).

A query regarding conditional distribution p(xF |xE) can be calculated by p(xF |xE) = p(xF ,xE)
p(xE) . A query

could also ask to compute a mode of the density x̂ = arg maxx∈Xm p(x). In the previous lectures, we have
learnt many exact inference techniques such as naive brute force marginalization, variable elimination and
family of message passing algorithms such as sum-product, belief propagation and junction tree. In brute
force and variable elimination techniques, individual queries are computed independently and as a result sev-
eral intermediate terms may be computed repeatedly, while the message passing algorithms allows sharing
of intermediate terms and hence is more effective in the long run.

Algorithms like message passing perform well on tree structured graphs. However, for loopy graphs (graph
that contains loops), messages may circulate indefinitely around the loops and hence may not converge.
Even when they converge, the stable equilibrium may not represent the posterior probabilities of the nodes.
To resolve this, we introduce the junction tree algorithm, eliminating the loops by constructing a structure
known as the clique tree. The junction tree algorithm produces the exact solution, but the time complexity is
exponential to the number of nodes in the largest clique. This can make inference intractable for a real world
problem, for example, for an Ising model (grid structure Markov Network), the minimum size of the largest
clique is n, the dimension of the grid. In this lecture,we discuss our first approximate inference technique
- variational algorithm. In particular, we will introduce in detail Loopy Belief Propagation, and give a
relative simple introduction on Mean Field Approximation.

2 Loopy Belief Propagation

The general idea behined Loopy Belief Propagation (LBP) is to run Belief Propagation on a graph containing
loops, despite the fact that the presence of loops does not guarantee convergence. Before introducing the
theoretical groundings of the methods, we first discuss the algorithm, built on the normal Belief Propaga-
tion method. We then introduce a pilot empirical study by Murphy et al. (1999), with a little historical
background.

2.1 Message Passing Revisit: Belief Propagation and Belief Update

The procedure of Message Passing is very simple: A node can send a message to its neighbors when and
only when it has recieved message from all its other neighbors. The message can be calculated simply by

1

2 13 : Variational Inference: Loopy Belief Propagation

(a) Message passing (b) Computing node marginal

Figure 1: Example for Belief Propagation

mutipling the message from all the other nodes, the initial potential of the node itself (singleton), and the
edge potential with its neighbour (doubleton). As an example, the message in Figure 1a is defined by

mi→j(xj) =
∑
xi

ψ(xi)ψ(xi, xj)
∏

k∈Neighbor(i)\j

mk→i(xi)

 (1)

The node marginal can be calculated by multiplying all the messages with its own potential (when it receives
all the messages from its neighbour),2 as given by:

p(xi) ∝ ψ(xi)
∏

k∈Neighbour(i)

mk→i(xi) (2)

The message passing protocol used in the Belief Propagation method (Sum-Product) requires a node to be
ready (receive message from all its neighbours) before sending. The Belief Update algorithm, however, allows
message to be sent along arbitrary edge. The belief update message is done in the following procedure:

σi→j =
∑

Ci−Si,j

βi (3)

βj = βj
σij

µij
(4)

µij = σi→j (5)

The belief βj of a node j is updated by the message δij from its neighbour node i. At every step it is divided
by the previous message µij between them (which can be considered to be stored on the edge). All µ’s
are intilized to 1 and all local belief β are initialized to their local potential. The algorithm can then run
without the message passing protocol constraint. At each update, the previous update will be eliminated by
the division, and hence the algorithm is equivalent to the original Sum-Product scheme.

Similarly, for factor graph, we can compute the message to a factor node a from node i and from a factor
node a to node i in the following way:

mi→a(xi) =
∏

c∈Neighbour(i)\a

mc→i(xi) (6)

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈Neighbour(a)\i

mj→a(xj) (7)

The belief on the factor nodes are computed by multiplying all the incoming message and the local potentials.

13 : Variational Inference: Loopy Belief Propagation 3

2.2 LBP: The Algorithm

Loopy Belief Propagation (LBP) is running the same message passing algorithm on a loopy graph. It is in
essential a fixed point iteration procedure that tries to minimize Fbethe (discussed later). The algorithm is
to repeat the following procedure until convergence:

ba(xa) ∝ fa(Xa)
∏

i∈Neighbour(a)

mi→a(xi) (8)

bi(xi) ∝ fi(xi)
∏

a∈Neighbour(i)

ma→i(xi) (9)

mi→a(xi) =
∏

c∈Neighbour(i)\a

mc→i(xi) (10)

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈Neighbour(a)\i

mj→a(xj) (11)

Recall that by using the techniques in Belief Update algorithm, a node does not need to wait for all its other
neighbours to send it message. The algorithm can then be started easily on a loopy graph. However, it is
not guaranteed to converge. As a result, LBP was not popular in the community for a long time. However, a
breakthrough in coding theory by Berrou et al. (1993) called Turbo Code, revived the method. Turbo Code
performs well in practice and the technique was later shown to be an application of Loopy Belief Propagation.
A substantial amount of work has been devoted in understanding its behavior and theoretical background.
In several empirical experiments Murphy et al. (1999), showed that LBP can work on many other types of
graphs, including large graphs and graphs with a lot of loops. Although there are no convergence guarantees,
Murphy et al. (1999) show that good approximations are still achievable if we

1. Stop the algorithm after a fixed number of iteration.

2. Stop when no significant difference in belief update.

3. When the solution converges, it is usually a good approximation.

Murphy et al. (1999) observed that small priors and small weights can cause oscillation. However, the actual
causes of oscillation versus converge are still being studied. For practioners, Koller et al. (2009) suggest a few
skills to make help LBP work better, including specific techniques such as message scheduling, residual belief
propagation or standard techniques to resolve local maximal, such as heuristical initialization and multiple
restarts.

2.3 LBP: The Bethe Approximation

While running LBP in a loopy graph, there is a possibility that the algorithm runs indefinitely without
convergence. However, empirically a good approximation is achieved when it does converge (Murphy et. al
1999) making it a popular algorithm for approximate inference. Running an algorithm which is not even
guaranteed to converge may seem like a hack to the first time reader, but in this section we will show that
the LBP approximation is mathematically principled.

To understand the theory behind LBP, let us first define the true distribution (P) over a graphical model as:

P (X) =
1

Z

∏
fa∈F

fa(Xa) (12)

4 13 : Variational Inference: Loopy Belief Propagation

where Z is the partition function, F denotes the set of all factors and P is the product of the individual factors
in the the factor graph. Since, calculating P is intractable in many cases, we wish to find a distribution Q
which approximates P . To measure the distance between Q and P , we can use the information-theoretic
measure KL-divergence which is defined as:

KL(Q||P) =
∑
X

Q(X) log
Q(X)

P (X)
(13)

Note that the KL metric is asymmetric, is non-negative and has the mininmum value when P=Q. The above
equation can be written as:

KL(Q||P) =
∑
X

Q(X) logQ(X)−
∑
X

Q(X) logP (X) (14)

= −HQ(X)− EQ logP (X) (15)

If P (X) is replaced with the definition in Eq.(13), we get:

KL(Q||P) = −HQ(X)− EQ log (
1

Z

∏
fa∈F

fa(Xa)) (16)

= −HQ(X)− log
1

Z
−
∑
fa∈F

EQ log fa(Xa) (17)

= −HQ(X)−
∑
fa∈F

EQ log fa(Xa) + logZ (18)

From Eq.(18) we can see that KL(Q||P), can be computed without performing inference on P (unknown
and intractable to compute in many cases). This would not be the case had we tried to compute KL(P ||Q),
as the first and second terms on the right hand side of Eq.(18) would have had expectations over P (X)
instead of Q(X). We can define a separate quantity for the first two terms in Eq.(18) as:

F (P,Q) = −HQ(X)−
∑
fa∈F

EQ log fa(Xa) (19)

The physicists define F (P,Q) as the “Gibbs free energy”. In order to compute
∑

fa∈F EQ log fa(Xa), we need
to calculate the expectation (wrt Q) of log of individual factors which is relatively cheap computationally
(especially if the scope of the each factor is small). However, computing HQ(X) requires summation over
all possible values. Therefore, computing F (P,Q) is hard in general. One approach to tackle this is to
approximate F (P,Q) with an easy to compute F̂ (P,Q).

Consider the Markov network shown in Fig.(2a). The factor graph resulting from such a network is essentially
a tree. The probability distribution for this tree (or any factor tree in general) can be factored as:

b(x) =
∏
a

ba(xa)
∏
i

bi(xi)
1−di (20)

where the first product term is over the doubleton factors, the second product term is over the singleton
factors and di is the number of direct neighbors of a singleton node Xi. The entropy of this distribution is
given by:

Htree = −
∑
a

∑
xa

ba(xa) log ba(xa) +
∑
i

(di − 1)
∑
xi

bi(xi) log bi(xi) (21)

13 : Variational Inference: Loopy Belief Propagation 5

(a) Markov network with tree-structured factor graph (b) Markov network with a general factor graph

Figure 2: An illustration of tree-structured and general factor graphs

Thus, using Eq.(19) the Gibbs free energy for a tree-structured distribution Q can be written as:

Ftree =
∑
a

∑
xa

ba(xa) log (
ba(xa)

fa(xa)
) +

∑
i

(1− di)
∑
xi

bi(xi) log bi(xi) (22)

= F12 + F23 + ...+ F67 + F78 − F1 − F5 − F2 − F6 − F3 − F7 (23)

The above equation (Eq. (22)) only involves summation over edges and vertices and is therefore easy to
compute. We want to use a similar form to approximate the Gibbs free energy for any general factor graph.
Consider a more general Markov network (Fig. (2b)). The factor graph here is not a tree, and the distribution
cannot be “exactly” factorized as in Eq.(20). However, we can still “approximate” it to be the same. This
approximation is known as the Bethe approximation and the corresponding free energy (known as the Bethe
free energy) is given by:

HBethe = −
∑
a

∑
xa

ba(xa) log ba(xa) +
∑
i

(di − 1)
∑
xi

bi(xi) log bi(xi) (24)

FBethe =
∑
a

∑
xa

ba(xa) log (
ba(xa)

fa(xa)
) +

∑
i

(1− di)
∑
xi

bi(xi) log bi(xi) (25)

= F12 + F23 + ...+ F67 + F78 − F1 − F5 − 2F2 − 2F6 − ...− F8 (26)

The Bethe free energy (FBethe) is equal to the Gibbs free energy (F (P,Q)) for tree-structured graphs, but
for general graphs HBethe is not the same as Htree. In the latter case, we can only approximate F̂ (P,Q)
to be FBethe. The advantage of FBethe is that it is relatively easy to compute. The major disadvantage is
that it may or may not be connected to the actual F (P,Q). It could, in general, be greater or smaller than
F (P,Q). The form of Eqs.(24) and (25) match the design of a Bethe cluster graph (Fig. 3).

Now we want to minimize FBethe, with doubleton (ba’s) and singleton(bi’s) potentials as parameters. The

Figure 3: A Bethe cluster graph

6 13 : Variational Inference: Loopy Belief Propagation

optimization problem with constraints can be written in the Lagrangian dual form as:

L = FBethe +
∑
i

γi

{
1−

∑
xi

bi(xi)

}
+
∑
a

∑
i∈N(a)

∑
xi

λai(xi)

bi(xi)− ∑
Xa\xi

ba(Xa)

 (27)

Setting the derivate with respect to the paramaters to zero:

∂L

∂bi(xi)
= 0 =⇒ bi(xi) ∝ exp

(1

di − 1

∑
a∈N(i)

λai(xi)
)

(28)

∂L

∂ba(Xa)
= 0 =⇒ ba(Xa) ∝ exp

(
− log fa(Xa) +

∑
i∈N(a)

λai(xi)
)

(29)

If we set λai(xi) = logmi→a = log
∏

b∈N(i)\amb→i(xi), we obtain:

bi(xi) ∝ fi(xi)
∏

a∈N(i)

ma→i(xi) (30)

ba(Xa) ∝ fa(Xa)
∏

i∈N(a)

∏
c∈N(i)\a

mc→i(xi) (31)

Now, if we use the fact that ma→i(xi) =
∑

Xa\xi
ba(Xa), where we are excluding the message mi→a:

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈N(a)\i

∏
b∈N(j)\a

mb→j(xj) (32)

The above equations are exactly the same as the LBP algorithm updates (Eqs. (8), (9), (10), and (11)).
Therefore, the doubleton and singleton potentials in the Bethe optimization problem can be interpreted as
beliefs at each iteration of LBP. Morever, the analysis shows that belief propagation on factor graphs is
equivalent to minimizing the Bethe energy function. Similarly, the LBP algorithm would converge to true
values in case of tree-structured graphs and may only approximate the true values in case of general graphs.

2.4 LBP: The General Theory

From the above discussion, it can be seen that LBP is an approximate inference method that allows us to
approximate a distrbution p(X|θ) over a complex graph which makes computing marginal (or conditional)
probability over arbitrary sets of random variables intractable, by another tractable distribution q(X|θ).
The problem can be cast into an optimization problem:

q? = arg min
q∈S
{F (p, q)} (33)

As was shown in Section 2.3, we do not need to optimize explicitly for q(X) over the entire space of possibilities
(S). We can just focus on the set of doubleton and singleton beliefs b = {bi,j = τ(xi, xj), bi = τ(xi)} and
relax the optimization objective:

b? = arg min
b∈Mo

{FBethe(p, b)} (34)

13 : Variational Inference: Loopy Belief Propagation 7

where Mo is a relaxed feasible set:

Mo =

{
τ ≥ 0 |

∑
xi

τ(xi) = 1,
∑
xi

τ(xi, xj) = τ(xj)

}
(35)

LBP is a fixed-point iterative procedure that tries to solve for b?.

3 Mean Field Approximation

In many situations, the true distribution p(X|θ) does not factorize and exact inference is diffcult to compute
due to intractable summations or integrals. The mean field approximation is a variational approximate
inference technique that assumes a class of distributions q(X|θ) of the fully-factorizable form. That is,

q(x1....xm) =
∏
i

qi(xi) (36)

More generally, we do need to assume a separate factor for each variable. Factorization into disjoint clusters
of all variables {C1, C2...Cm} is also permitted. That is,

q(x1....xm) =
∏
Ci

qi(XCi) (37)

This is known as the mean field approximation. On one hand, the approximation of p(X|θ) as fully factored
distribution is likely to lose a lot of information in the distribution. On the other hand, this approximation
is computatinally attractive, since we can evalute any query on q(X|θ) as a product over the terms that
involve variables in the scope of the query.

The problem now is similar to LBP, that is, finding a fixed-point characterization for the Gibbs free energy
F (P,Q). We again have to use the Lagrange multipliers to derive a characterization of the stationary points
of F (P,Q). If we assume Q to factorize according to Eq.(36), the optimization problem becomes:

maximize F (P,Q) = −HQ(X)−
∑
fa∈F

EQ log fa(xa) (38)

subject to q(x1....xm) =
∏
i

qi(xi) (39)

and
∑
xi

qi(xi) = 1 ∀i (40)

The two terms in the right hand side of Eq.(38) can be simplified as:

HQ(X) =
∑
i

HQ(Xi) (41)

EQ log fa(xa) =
∑
xa

(∏
Xi∈Xa

qi(xi)
)

log fa(xa) (42)

It is evident from the above simplification that the optimization problem can be solved using a coordinate
descent procedure in each of the qi coordinates. Specifically, to optimize for qi(xi) we define the Lagrangian

8 13 : Variational Inference: Loopy Belief Propagation

that consists of all terms in F (P,Q) that involve qi(xi):

Li(qi) = −HQ(Xi)−
∑
xa

EQ log fa(xa) + λ
∑
xi

qi(xi)− 1 (43)

where the second term involves summation over all factors fa whose scope Xa is such that Xi ∈ Xa.

References

Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and
decoding: Turbo-codes. 1. Proceedings of ICC ’93 - IEEE International Conference on Communications,
2.

Koller, D., Friedman, N., and Kollar, D. (2009). Probabilistic Graphical Models: Principles and Techniques
(Adaptive Computation and Machine Learning series), volume 2009.

Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999). Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of Uncertainty in AI, volume 9, pages 467–475.

