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1. Overview

These notes present an overview of Factor Analysis and State Space Models. The factor analysis model is
a simple latent variable model, where the latent variable is assumed to lie on a lower-dimensional linear
subspace of the space of the observed variable. The graphical model for factor analysis is the same as
a mixture model, except that both the observed and latent variables are assumed to be continuous. In
particular, both the latent variable, and the (noisy) observations of that variable, are assumed to have
Gaussian distributions, which makes for relatively simple estimation and inference. Factor Analysis is an old
model, but is much more well understood today, thanks to the unifying framework of graphical models.

The State Space Model (SSM) can be seen as either a linear chain of factor analysis models, or a generalization
of the Hidden Markov Model (HMM), in which the latent variables take on continuous, rather than discrete,
values. The inference problem in both SSMs and HMMs is the same - calculating the probability of the latent
variables given the observations. The model can be used for two types of inference - forward (“filtering”)
and backwards (“smoothing”). Starting with this model will allow us to build more complex models, such
as a Switching SSM, where multiple layers of latent states are controlled by a master switching variable at
each time point.

The notes are organized as follows: Section 2 provides the necessary mathematical background, Section 3
presents Factor Analysis, Section 4 presents the State Space Model in general, and Section 5 covers the
details of Kalman filters.

2. Mathematical Background

In order to work with Gaussian distributions in the context of Factor Analysis and SSMs, it is useful to have
a few mathematical tools in place.

2.1 Marginal and Conditional probabilities of Multivariate Gaussians

First, it is important to remember how a the marginal and conditional probabilities of a joint multivariate
Gaussian can be written in terms of block elements. If we write the distribution of a multivariate Gaussian
as:

p

([
x1

x2

]
|µ,Σ

)
= N

([
x1

x2

]
|
[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(1)

then we can write the marginal and conditional distributions of one of the components as:

p(x1) = N (x1|µ1,Σ11) (2)
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and

p(x1|x2) = N (x1|m1|2,V1|2) (3)

where

m1|2 = µ1 + Σ12Σ−122 (x2 − µ2) (4)

and

V1|2 = Σ11 − Σ12Σ−122 Σ21 (5)

2.2 Matrix Inversion

It is also important to remember how to express matrix inversion in terms of the inverse of simpler block
components of a matrix. In particular, if we consider a matrix:

M =

[
E F
G H

]
(6)

We can write the inverse of this matrix as:

M−1 =

[
E−1 + E−1F (M/E)−1GE−1 −E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1

]
(7)

where we have used the matrix inversion lemma:

(E − FH−1G)−1 = E−1 + E−1F (H −GE−1F )−1GE−1 (8)

2.3 Matrix Algebra

Finally, it is useful to remember a few key formulas involving the trace and determinant.

tr[ABC] = tr[CAB] = tr[BCA] (9)

∂

∂A
tr[BA] = BT (10)

∂

∂A
tr[xTAx] =

∂

∂A
tr[xxTA] = xxT (11)

and

∂

∂A
log |A| = A−1 (12)

3. Factor Analysis

3.1 The Factor Analysis Model

The Factor Analysis model can be thought of as an unsupervised linear regression model. In particular, it
assumes that an unobserved variable, X, is generated from a Gaussian distribution over a linear subspace.
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The observed variable, Y , is then generated from a Normal distribution conditioned on X, in a higher
dimensional space. In other words, we have the following graphical model: X → Y , where Y is observed.
We begin with a marginal probability for X and a conditional probability for Y |X:

p(x) = N (x; 0, I)

p(y|x) = N (y;µ+ Λx,Ψ)

where Λ is called the loading matrix, and Ψ is a diagonal covariance matrix.

Geometrically, this model can be thought of in terms of generating a point, x, on a linear manifold, and
then taking a noisy observation, y centred at x. This process is illustrated in the Figure 1 (from Michael
Jordan’s unpublished notes).

λ1

λ2µ

y1
y2

y3

Figure 1: Dimensionality reduction with the Factor Analysis model

The conventional setting for this type of model is when we wish to project noisy observations into a lower
dimensional space. Modern machine learning, however, is also reversing this, blowing low dimensional spaces
up into high a higher dimensional space.

An advantage of this model is that since both X and Y |X are Gaussian, all marginal, conditional, and joint
distributions of interest will also be Gaussian. As a result, we can fully determine any of these distributions
simply by computing its mean and variance. Using the notation developed above, we can represent the joint
distribution of X and Y as:

p

([
x
y

])
= N

([
x
y

]
|
[
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])

We have already assumed values for µx and Σxx, so we can proceed to calculate the remaining quantities of
interest (assuming the noise is uncorrelated with the data, i.e. W ∼ N (0,Ψ)):

µy = E[Y ] = E[µ+ ΛX +W ]

= µ+ ΛE[X] + E[W ]

= µ+ Λ0 + 0 = µ
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Σyy = V ar[Y ] = E[(Y − µ)(Y − µ)T ]

= E[(µ+ ΛX +W − µ)(µ+ ΛX +W − µ)T ]

= E[(ΛX +W )(ΛX +W )T ]

= ΛE[XXT ]ΛT + E[WWT ]

= ΛΛT + Ψ

It is worth noting here that Y is the summation of two parts: a diagonal (covariance) matrix (Ψ), and the
outer product of a tall skinny matrix with itself (Λ). Thus, although Y will be high-dimensional, it may
actually have a low-rank structure.

Finally, we need the covariance between X and Y , which is given by:

Σxy = Cov[X,Y ] = E[(X − 0)(Y − µ)T ]

= E[X(µ+ ΛX +W − µ)T ]

= E[XXT ΛT +XWT ] = ΛT

Thus, the full joint distribution of X and Y can be written as:

p

([
x
y

])
= N

([
x
y

]
|
[

0
µ

]
,

[
I ΛT

Λ ΛΛT + Ψ

])
Using equations (4) and (5) presented above we can now easily compute the conditional probability p(X|Y ) =
N (X|mx|y,Vx|y). Note that we will use the matrix inversion lemma (8) here, because computing (I +
ΛT Ψ−1Λ)−1 will be much easier than computing (ΛΛT + Ψ)−1. The computations follow directly from the
equations presented above:

p(X|Y ) = N (X|mx|y,Vx|y)

Vx|y = Σxx − ΣxyΣ−1yy Σyx

= I − ΛT (ΛΛT + Ψ)−1Λ

= (I + ΛT Ψ−1Λ)−1

mx|y = µx + ΣxyΣ−1yy (Y − µy)

= ΛT (ΛΛT + Ψ)−1(Y − µ)

=
[
(ΛΛT + Ψ)(ΛT )−1

]−1
(Y − µ)

=
[
Λ + Ψ(ΛT )−1

]−1
(Y − µ)

=
[
Ψ(Ψ−1Λ + (ΛT )−1)

]−1
(Y − µ)

=
[
Ψ(ΛT )−1(ΛT Ψ−1Λ + I)

]−1
(Y − µ)

= (I + ΛT Ψ−1Λ)−1ΛT Ψ−1(Y − µ)

= Vx|yΛT Ψ−1(Y − µ)
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Note that the posterior covariance does not depend on the observed data! Moreover, computing the posterior
mean is just a linear operation. This is equivalent to projecting Y onto the subspace ofX, a lower-dimensional
subspace which is spanned by the loading matrix Λ. Since the move out of this subspace is assumed to be
the result of an independent noise term, it thus makes sense that the posterior covariance does not depend
on the observed data.

3.2 Learning Factor Analysis Models

We have now derived how to estimate p(X|Y ), but we still need to learn the parameters Λ, Ψ, and µ. We
would like to solve for these via maximum likelihood estimation. Unfortunately, we have a latent variable,
thus we need to resort to something like expectation-maximization (EM).

The incomplete log likelihood function is given by:

l(θ,D) = −N
2

log |ΛΛT + Ψ| − 1

2

∑
n

(yn − µ)T (ΛΛT + Ψ)−1(yn − µ)

= −N
2

log |ΛΛT + Ψ| − 1

2
tr[(ΛΛT + Ψ)−1S]

where S =
∑

n(yn − µ)(yn − µ)T

Estimating µ is trivial:

µ̂ML =
1

N

∑
n

yn

The remaining variables, unfortunately, are coupled together in a highly non-linear way: (ΛΛT + Ψ)−1. In
this case, we cannot decouple the parameters. However, if we can pretend that everything is observed, that
will give us something that is still coupled, but in a linear fashion. To simplify the derivation, we will assume
that the data has been normalized, i.e. yi ← (yi − µ̂), such that Y |x ∼ N (Λx,Ψ).

The complete log-likelihood is given by:

lc =
∑
n

log p(xn, yn) =
∑
n

log p(xn) + logp(yn|xn)

= −N
2

log |I| − 1

2

∑
n

xTnxn −
N

2
log |Ψ| − 1

2

∑
n

(yn − Λxn)T Ψ−1(yn − Λxn)

= −N
2

log |Ψ| − 1

2

∑
n

tr[xnx
T
n ]− N

2
tr[SΨ−1]

where S =
1

N

∑
n(yn − Λxn)(yn − Λxn)T

We can replace the unknown variables with their expectations (making use of the law of total variance,
V ar(Y ) = V ar(E(Y |X)) + E(V ar(Y |X)), for 〈XnX

T
n 〉):

〈S〉 =
1

N

∑
n

(yny
T
n − yn〈XT

n 〉ΛT − Λ〈XT
n 〉yTn + Λ〈XnX

T
n 〉ΛT )

〈Xn〉 = E[Xn|yn]

〈XnX
T
n 〉 = V ar[Xn|yn] + E[Xn|yn]E[Xn|yn]T
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where 〈Xn〉 = mxn|yn
and 〈XnX

T
n 〉 = VXn|Yn

+mxn|yn
mT

xn|yn
are our sufficient statistics, as defined above.

These estimates constitute the E-step of our EM algorithm.

For the M-step, we take partial derivatives of the complete log-likelihood function with respect to the two
parameters of interest. After some algerba, we obtain the two update rules for the M-step:

Ψt+1 = 〈S〉

and

Λt+1 =

(∑
n

yn〈XT
n 〉

)(∑
n

〈XnX
T
n 〉

)−1

Finally, we note that there is degeneracy in the Factor Analysis model. Since the loading matrix Λ only
appers in an outer product with itself (ΛΛT ), the model is invariant to rotation and flips of these basis vectors
which define the latent manifold. In particular, we can replace Λ with ΛQ for any orthonormal matrix Q
and the model remains the same: (ΛQ)(ΛQ)T = Λ(QQT )ΛT = ΛΛT .

This means that there is no one best setting for this parameter. If our purpose is to find a low-dimensional
subspace to handle our data, then this suits our purpose. However, if our goal is to seek an implementation
of the process which generated our data (such as using Latent Dirichlet Allocation to generate a lower-
dimensional projection), this is not a very safe practice, because rotation can change the meaning. In
general, these models are called unidentifiable since two people fitting parameters to identical data are not
guaranteed to come up with the same values.

4. State Space Models

A State Space Model (SSM) is a dynamical generalization of the Factor Analysis model. In fact, it is
a collection of factor analysers connected as a chain in the time domain, with one factor analyser model
per time instance. SSMs are structurally identical to Hidden Markov Models - and hence have the same
independence assumptions. The only difference is that the variables in SSM follow continuous (Gaussian)
instead of discrete (Multinomial) distributions as in an HMM. As we will see, despite following continuous
distributions, the derivation for inference under this model does not involve complex calculus, thanks to the
properties of the Gaussian distribution.

Figure 2: Graph for a State Space Model

In this model, we observe a sequence y = (y1, y2, ..., yt, ...) where each yt is a continuous random variable
for an instance of time, t. We assume there is a latent sequence x = (x1, x2, ...xt, ...) that generates this
observation, where each xt is also Gaussian. The graphical model is illustrated in Figure 2.



11 : Factor Analysis and State Space Models 7

We introduce a transition matrix that determines the relationship between the latent variables, such that
the mean of the state at time t, xt is linear in the mean of the state at time t− 1.

xt = Axt−1 +Gwt

Here, wt = N (0, Q) is the Gaussian noise we have introduced into the model. Since a linear combination of
Gaussians is also Gaussian, xt is Gaussian.

To describe the output, we use the Factor Analysis model at each point. The loading matrix, say C is shared
across all xt, yt pairs. We assume that all the data points are in the same low-dimensional space. We have

yt = Cxt + vt

where vt = N (0, R) is some Gaussian noise. Note that we do not make any assumptions on the Q and R
matrices, these could either be full rank or low rank.

Finally, we set the starting point, x0 = N (0,Σ0).

4.1. Application - LDS for 2D tracking

Unlike factor analyzers, SSMs are typically not used for dimensionality reduction. Below we describe an
application for latent space inference.

Consider a point moving in 2D space. The true trajectory x is fully determined by the position and velocity
of the particle (by Newton’s law). Our observation of the trajectory, y, however, is limited to a noisy estimate
of the truth. Thus x is the latent variable sequence corresponding to the true path. The true path is given
by new position = old position + ∆( old velocity )+ noise, whereas our observations are given by observed
position = true position + noise. Since the new position is a linear combination of the old position and the
velocity, in practice, we can apply the SSM (in particular Kalman Filtering) to tracking the trajectory of a
plane when we observe radar signals from it at different points in time.

4.2. Inference problems

The inference problem in this model is the same as that of the Factor Analysis model, i.e. how to compute
p(x|y) where y is an observed variable and x is a latent variable. However, now x is a sequence of random
variables, x1, x2, ...xt, ... and similarly y is y1, y2, ..., yt, ..., where t is an instance of time. This changes the
inference problem slightly and we discuss the two variations here.

Filtering: Compute p(xt|y1:t)

Smoothing: Compute p(xt|y1:T ) where t < T

In our 2D tracking problem for planes using an SSM, we could attempt to infer the plane’s true position
at a given time based on a series of observations up to that time (“filtering”), or where the plane was at
a previous point in time, based on previous and subsequent observations (“smoothing”). Filtering provides
an acceptable estimate, but smoothing improves this estimate substantially as seen in the left and the right
graphs of Figure 3. The circles represent the Gaussian distribution of the observed radar.
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Figure 3: 2D tracking

5. Kalman Filtering

Given a sequence of observations y1, y2, ..., yt, we have to infer the latent state at time t. This inference
problem is also known as Kalman Filtering. Historically, Kalman Filtering used to be considered a stand-
alone inference technique. However after graphical models gained popularity, it was clear that it is only a
Gaussian analogue of the forward inference for HMMs (see Figure 4). The following equation shows this
analogy:

p(xt|y1:t) = αt
i ∝ p(yt|xt)Σxt−1

p(xt|xt−1)αj
t−1

Figure 4: Kalman Filtering as Forward Inference on SSMs

Kalman Filtering for inference is widely applied in psychology. Our observation of the world through visual
images, say y, is in two dimensional space even though the truth, x is in three dimensional space. This
means y is a noisy version of the ground truth. However, when our brains recreate this observation, they do
so in three-dimensional space. This happens dynamically in time as the brain cannot look forward in time
before recreating the images. Hence, this is the Kalman Filtering estimation of p(xt|y1:t).

5.1 Kalman Filtering derivation

The key observation in the SSM is that every distribution in it is Gaussian. Therefore, the distribution
of interest p(xt|y1:t) is also a Gaussian. The task is then to estimate the mean, µ1:t = E(xt|y1:t) and the
covariance, P1:t = E(xt − µ1:t)

T (xt − µ1:t) of this distribution.
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The estimation is done in two steps to simplify computation.

• Predict step - Compute p(xt+1|y1:t) from p(xt|y1:t). This is equivalent to moving one step ahead of the
current observation sequence. It is also called time update.

• Update step - Update the prediction in the previous step by including the new evidence in the data. The
new evidence is computed according to a new observation yt+1 and the model parameter p(yt+1|xt+1).

The high level idea behind the estimation is the following: We are given two Gaussian vectors z1 and z2,
which are distributed as below:

[
z1
z2

]
∼
[
µ1

µ2

] [
Σ11 Σ12

Σ21 Σ22

]

We shall use z1 to generate the joint z1, z2 and either marginalize the joint to obtain z2 or use the marginal
to compute the conditional distribution, z2|z1.

In the prediction step, we start with p(xt|y1:t) and use the transition information of the model, xt =
Axt−1 +Gwt to compute p(xt+1|y1:t).

In the update step, we obtain p(yt+1|xt+1) using the emission information of the model, yt = Cxt + vt. We
use this evidence to obtain a joint p(xt+1, yt+1|y1:t). Finally, we invert the model to obtain p(xt+1|y1:t+1).

5.1.1. Predict step

To calculate the mean, µt+1|t and the variance, Pt+1|t of the joint distribution p(xt+1, yt+1|y1:t) for the
Dynamical Model, we proceed as below:

Mean:

E(xt+1|y1:t) = E(Axt +Gwt) = Aµ1:t + 0 = µ1:t+1|t

Covariance:

E(xt+1 − µt+1|t)
T (xt+1 − µt+1|t) = E(Axt +Gwt − µt+1|t)

T (Axt +Gwt − µt+1|t)
= AE(xt − µt+1|t)

T (xt − µt+1|t)A
T +GQGT

= APt+1|tA
T +GQGT

To calculate the mean and the variance of the joint distribution P (xt+1, yt+1|y1:t) for the Observation
Model, we proceed as below:

Mean:

E(yt+1|y1:t) = E(Cxt+1 + vt+1|y1:t) = Cµt+1|t

Covariance:

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
T |y1:t] = CPt+1|tC

T +R
E[(yt+1 − ŷt+1|t)(xt+1 − µt+1|t)

T |y1:t] = CPt+1|t
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5.1.2. Update step

From the quantities computed in the previous step, we proceed here to compute the mean and the variance
of the conditional distribution, p(Xt+1|Yt+1) using the formulae for conditional Gaussian distributions. µt|t
and Pt|t are the mean and covariance respectively of the distribution p(Xt|Yt).

Time Updates:

µt+1|t = Aµt|t

Pt+1|t = ATPt|tA+GQGT

Measurement updates:

µt+1|t+1 = µt+1|t +Kt+1(yt+1 − Cµt+1|t)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t

where Kt=1 is the Kalman gain. This quantity calibrates or adjusts the observed yt such that our prediction
for the next state is not biased. Kalman gain provides a trade-off between the prior and any new observation
because in cases where either the prior is unreliable or the observations are noisy. The term (yt+1−Cµt+1|t)
is called the innovation, because it brings in additional information to the model.

Being independent of the data, the Kalman Gain can be precomputed using the following:

Kt+1 = Pt+1|tC
T (CPt+1|tC

T +R)−1

5.2. 1D example

Consider noisy observations of a 1D particle doing a random walk. We have an initial estimate, which is a
Gaussian centered at our best guess as to the true location, with some uncertainty as represented by the
variance.

xt|t−1 = xt−1 + w,w ∼ N (0, σx)

yt = xt + v, v ∼ N (0, σy)

Note that both the transition matrix, A and the loading matrix, C are equal to the identity matrix I here.

Pt+1|t = ATPt|tA+GQGT = σt + σx

µt+1|t = Aµt|t = µt|t

Kt+1 = Pt+1|tC
T (CPt+1|tC

T +R)−1 = (σt + σx)(σt + σx + σy)

µt+1|t+1 = µt+1|t +Kt+1(yt+1 − Cµt+1|t) =
(σt + σx)yt + σyµt|t

σt + σx + σy

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t =
(σt + σx)σy
σt + σx + σy
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After a time update, our estimate of the mean will not change, but the uncertainty (variance) will increase.
After a measurement update, we will update our belief about the mean, based on new information, and
decrease our uncertainty (variance).

5.3. Complexity

Let xt ∈ <Nx and yt ∈ <Ny . Computing the new variance from the old variance takes O(N2
x) time:

Pt+1|t = ATPt|tA+GQGT

Pre-computing the Kalman Gain takes O(N3
y ) time:

Kt+1 = Pt+1|tC
T (CPt+1|tC

T +R)−1

Hence, the overall time complexity is max(O(N2
x), O(N3

y )). This makes Kalman Filtering quite an expensive
inference algorithm for moderately high dimensional problems.

Kalman Filters are not popular these days due to high complexity. For instance, consider signals from
1000 aircraft coming at the same time. We need to consider all of them independent, and predicting each
different trajectory is going to be highly expensive. In such cases, we should consider more complex models
like Switching SSMs, which have multiple sequences of latent variables and a particular observation might
depend on any combination of the latent sequences.

5.4 Smoothing

As described above, the smoothing problem is to estimate xt(t < T ) given y1, . . . , yT . This is the Gaussian
analog of the backwards algorithm for HMMs. This process is known as the Rauch-Tung-Strievel smoother.
The inference takes the following form:

p(Xt = i|y1:T ) = γit ∝
∑
j

a tip(Xj
t+1|X

j
t )γjt+1

We proceed in a manner similar to the Kalman Filtering process to get the estimates of the posterior
distribution, p(Xt = i|y1:T ), the details of which are not covered in this document.

6. Conclusion

The above sections have presented an overview of Factor Analysis (FA) and State Space models (SSM),
the analogues of Mixture and Hidden Markov Models (HMM) for the case where the latent variables take
on continuous, rather than discrete, values. To summarize, Factor Analysis assumes a latent variable is
generated from a Gaussian distribution in a linear subspace, and that a noisy observation is generated from
a conditional Gaussian distribution in a higher-dimensional space, centered about the true value. SSMs are
a dynamic generalization of FA models, in the form of a linear chain, where each latent state is a linear
function of the previous state, plus an independent Gaussian noise term. As with HMMs, we can decompose
the inference problem into a forward and a backward problem. The former is known as Kalman filtering,
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and the later can be thought of as smoothing. Kalman filters are still a useful tool in time series analysis,
and there is much to be explored beyond the scope of these notes.


