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Pros and Cons of i
Procedure Elimination -4

e Algebraic elimination = graphical elimination
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Complexity

e The overall complexity is determined by the number of the
largest elimination clique

e What is the largest elimination clique? — a pure graph theoretic question

e Tree-width k: one less than the smallest achievable value of the cardinality of the
largest elimination clique, ranging over all possible elimination ordering

e “good’ elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

Find the best elimination ordering of a graph --- NP-hard
= Inference is NP-hard

e But there often exist "obvious" optimal or near-opt elimination ordering
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From Elimination to Message
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
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ARG
®© @ ST &

m.(a,c,d)
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(&

e Messages can be reused
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From Elimination to Message i
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

e Another query ...

e Messages m.and m, are reused, others need to be recomputed
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Tree GMs

ANV

Undirected tree: a Directed tree: all Poly tree: can have
unigue path between nodes except the root multiple parents

any pair of nodes have exactly one
parent We will come back to
this later
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Equivalence of directed and T
undirected trees 4+

e Any undirected tree can be converted to a directed tree by choosing a root
node and directing all edges away from it

e A directed tree and the corresponding undirected tree make the same
conditional independence assertions

e Parameterizations are essentially the same.

1
e Undirected tree: p(r) = 7 __d_lb(ﬂiz') V(i ;)
eV (i,)EE
e Directed tree: p(:s):p(mr) H p($j|33:r:)
(i,j)eE
e Equivalence: V(zr) = pla); Y(xi,x;) = plxjla:);

e FEvidence:?
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From elimination to message cece

passing -

e Recall ELIMINATION algorithm:

Choose an ordering £ in which query node f is the final node

Place all potentials on an active list

Eliminate node i by removing all potentials containing i, take sum/product over x;.
Place the resultant factor back on the list
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Elimination on a tree .

Let m;i(x;) denote the factor resulting from
eliminating variables from bellow up to i,
which is a function of x;:

ﬁ m%f(xz) mji(z;) = Z(W%W(%%) 11 mkj(Ij))
T keN(j)\i

This is reminiscent of a message sent
fromjtoi.

m;;(x;) represents a "belief” of x; from x;!
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Message passing on a tree 2

e Elimination on trees is equivalent to message passing along
tree branches!
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From elimination to message
passing

e Recall ELIMINATION algorithm:

e Choose an ordering £ in which query node f is the final node

e Place all potentials on an active list

e Eliminate node i by removing all potentials containing i, take sum/product over x;.
e Place the resultant factor back on the list

e Fora TREE graph:

e Choose query node f as the root of the tree
e View tree as a directed tree with edges pointing towards leaves from f
e Elimination ordering based on depth-first traversal

e Elimination of each node can be considered as message-passing (or Belief
Propagation) directly along tree branches, rather than on some transformed
graphs

- thus, we can use the tree itself as a data-structure to do general inference!!
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The message passing protocol: o°

e A node can send a message to its neighbors when (and only when)
It has received messages from all its other neighbors.
e Computing node marginals:

e Naive approach: consider each node as the root and execute the message
passing algorithm

My (Xy) Computing P(X,)
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The message passing protocol: o°

e A node can send a message to its neighbors when (and only when)
It has received messages from all its other neighbors.
e Computing node marginals:

e Naive approach: consider each node as the root and execute the message
passing algorithm

My,(X,) Computing P(Xy)
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Computing node marginals

e Naive approach:

e Complexity: NC
N is the number of nodes
C is the complexity of a complete message passing

e Alternative dynamic programming approach
e 2-Pass algorithm (next slide =»)
e Complexity: 2C!

© Eric Xing @ CMU, 2005-2014
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The message passing protocol:

e A two-pass algorithm:
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Belief Propagation (SP-algorithm): | $322
Sequential implementation o°

SuM-ProbpucT(7, E)
EVIDENCE(F)
f = CHOOSEROOT(V)
for e € N(f)
CoLLECT(f,€)
for e € N(f)
DISTRIBUTE(f, €)
forieV
COMPUTEM ARGINAL(%)

EVIDENCE(F)
for: e K
$E (i) = P(zi)o(xi, T)
fori¢ I
E — A
w ($Z) N ",b(Tz) C'HLLE('T/ \C'ULLE('T
COLLECT(1, )
for k € N(j)\i i
COLLECT(j, k)
SENDMESSAGE(J, 1) n

SENDMESSAGE T

DISTRIBUTE(%, j)
SENDMESSAGE(7, 7)
for k € N(j)\i
DISTRIBUTE(], k)

SENDMESSAGE l

SENDMESSAGE(7, %)

mjz‘(xi)ZZ(wE(ﬁj)Tﬁ(%%) H My (25))

xj keN (5)\i DISTRIBUTE / \ DISTRIBUTE

COMPUTEMARGINAL(%)
pwi) o P (i) T miiczi) g
JEN() © Eric Xing @ CMU, 2005-2014 17



Belief Propagation (SP-algorithm): eoso
Parallel synchronous implementation | s

S

Z N

e [or a node of degree d, whenever messages have arrived on any subset of d-1
node, compute the message for the remaining edge and send!

A pair of messages have been computed for each edge, one for each direction

All incoming messages are eventually computed for each node
© Eric Xing @ CMU, 2005-2014 18



Correctness of BP on tree :

e Collollary: the synchronous implementation is "non-blocking"

e Thm: The Message Passage Guarantees obtaining all
marginals in the tree

myi(zi) = Z(@D Y(zi, 5) H "Mk xﬂ)

T keN (j)\i

¢ \What about non-tree?

© Eric Xing @ CMU, 2005-2014
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Another view of SP: Factor Graph

e Example 1

2 @ At
fC

.o B o

P(X1) P(X3) P(X5X1,X3) P(Xs|X1,X3)  P(X4]X2Xs3)

i 4 4 4 4

06 Fo(X0) ToXaXpX0) Fa(XeXpXa) FoXaXpiXeo)
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Factor Graphs
e Example 2
fa/®\f
fy

W(X1,Xp,X3) = fo(Xq,X0) T (X0,X3) o (X3,X1)

e Example 3 @
fa
2 2 @ @

Y(X1,X2:X3) = T(X1,X5,X3)
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Factor Tree oo

e A Factor graph is a Factor Tree if the undirected graph
obtained by ignoring the distinction between variable nodes
and factor nodes is an undirected tree

fa

W(X1,X5,X3) = T4(X1,X5,X3)
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Message Passing on a Factor

Tree

e Two kinds of messages

1. v: from variables to factors
2. u: from factors to variables

2 ®-=

8 fs @

Vis(T5) = H piti (i) psi(i) = Z

teN (i)\s T (8)\4
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Message Passing on a Factor sece
Tree, con'd os

e Message passing protocol:

e A node can send a message to a neighboring node only when it has received
messages from all its other neighbors

e Marginal probability of nodes:

2 ®-=

2 fs @

AN M

P(x;) oc 15 ¢ NGy Mei(X)
oC Vis(xi)}/tsi(xi)
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BP on a Factor Tree

(%)

Vid Mo

|::> ::>

X1 <= fd <=
Hd1 Voq

Up2 ﬁ ﬂVZb
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Why factor graph?

e Tree-like graphs to Factor trees

© Eric Xing @ CMU, 2005-2014 26



Poly-trees to Factor trees

CORN S
—_
\®/

(5




Why factor graph? °

e Because FG turns tree-like
graphs to factor trees,

e and trees are a data-structure

\ m— é@ that guarantees correctness of
OECY BP !
@ ®

® ® 1 -
g —> n
N :
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Max-product algorithm: T
computing MAP probabilities o°

‘ max p(x) = Ig%X(w(wf)mif(ﬂjf))
ﬁ mif(ay)

ﬁ m;i(z:) (w(xj)w(%%) I =)
kEN(j)—1
\ % my;(2;)
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Max-product algorithm: seee

computing MAP configurations using a final EE:'
bookkeeping backward pass o

‘ ry = al"gﬂ’i?x(lb(wf)mif(wf)—)
!
‘ r; = argmax (P(z) (]}, wi)myi(zi)
‘ @mf; = argﬂi?X(w(ﬁ?j)w(é’G? y g )i (xg)mg(z;))
d 7\
° of = argmax (Y(z)b(e,z}))

Ty

vy = argmax ((zy)P(zr, 7))
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Summary

e Sum-Product algorithm computes singleton marginal
probabilities on:
e T[rees
e Tree-like graphs
e Poly-trees

e Maximum a posteriori configurations can be computed by
replacing sum with max in the sum-product algorithm
e Extra bookkeeping required

© Eric Xing @ CMU, 2005-2014
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Inference on general GM 4

e Now, what if the GM is not a tree-like graph?

e Can we still directly run
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run
message-passing on it!

—> Junction tree algorithm

© Eric Xing @ CMU, 2005-2014
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Elimination Clique

e Recall that Induced dependency during marginalization is
captured in elimination cliques
e Summation <-> elimination
e Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(gle)P(hle, f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(gle)dnle, [)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(fla)dy(e)odn e, [)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)ps(a,e)
= P(a)P(b)P(c|b)P(d|a)d.(a,c,d)
= P(a)P(b)P(c|b)¢ala. c)
= P(a)P(b)¢c(a,b)
= P(a)dp(a)
= ¢(a)

e Can this lead to an generic
inference algorithm?
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Moral Graph -

e Note that for both directed GMs and undirected GMs, the joint
probability is in a product form:

BN:P(X) =] [ P(X;|X,) MRF: P(X)=%HWC(XC)

i=1:d ceC

e So let's convert local conditional probabilities into potentials; then
the second expression will be generic, but how does this operation
affect the directed graph?

e We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three
variables A, B, and C (we get a real number of each configuration):

( ()
© o
e P(C|A,B) e HA,B,C) = P(C|A,B)

e Problem: But a node and its parent are not generally in the same clique in a BN
e Solution: Marry the parents to obtain the "moral graph"

© Eric Xing @ CMU, 2005-2014 34



Moral Graph (cont.) :

e Define the potential on a clique as the product over all conditional
probabilities contained within the clique

e Now the product of potentials gives the right answer:

B S NP
L% = Dl s
O~ O
P(X,, X5, X3, X4, X5, X¢)
= P(X)P(X,)P(X5] Xy, X)P(X4 | X5)P(X5 | X3)P(Xq [ X4, X5)

=y (X, Xo, X3y (X5, Xy X5 )y (X4, X5, X)
Note that here the

where v (X1, Xz, X3) = P(X)P(X;)P(X51 Xy, X;) | interpretation of potential

IS ambivalent:
X3, X4, X5) = P(X4 | X5)P(X5| X . - i
v (X3, X4, X5) (X4 | X35)P(X5]X5) it can be either marginals

w(Xy, Xg, Xg)=P(X | X4, X5) or conditionals
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Clique trees S

e A clique tree is an (undirected) tree of cliques

e Consider cases in which two neighboring cliques V and W have an
overlap S (e.g., (X;, X,, X;) overlaps with (X5, X,, X:) ),

v(V)  #0) w (W)

G5 G

e Now we have an alternative representation of the joint in terms of
the potentials:

© Eric Xing @ CMU, 2005-2014 36



Clique trees S

e A clique tree is an (undirected) tree of cliques

e The alternative representation of the joint in terms of the potentials:

P(Xp X2’ X3’ X4’ X5’ Xe)
- P(Xl)P(Xz)P(X3 | X1’ Xz)P(X4 | X3)P(X5 | Xs)P(Xé | X4, X5)
P(X3’ X4’ X5) P(X4, X5’ Xe)

P(X3) P(X4,Xs)

= P(Xp Xza X3)

Now each potential is

Xa, X4, X Xy Xg, X : :

=V/(X1,X2,X3)W( ;(x“) 5)W(¢(;‘( ; )6) isomorphic to the cluster
’ He marginal of the attendant

HC we(Xe) set of variables

[1,¢s(Xs)

© Eric Xing @ CMU, 2005-2014 37

e Generally: P(X) =




Why this is useful? .o

e Propagation of probabilities

e Now suppose that some evidence has been "absorbed" (i.e., certain values of
some nodes have been observed). How do we propagate this effect to the rest of
the graph?

DNy ORGP
A ® = u(] e
O O
e What do we mean by propagate?

Can we adjust all the potentials {4}, {#} so that they still represent the correct
cluster marginals (or unnormalized equivalents) of their respective attendant

variables? @ w E

o Utility?  P(X;|Xs=%)= > w(X;, Xz, X5)

X2:X3
P(X3]Xg =%)=¢(X;) Local operations!
P(Xe) = ZW(XM X5 %)

X4,X5 © Eric Xing @ CMU, 2005-2014 38



Local Consistency

e We have two ways of obtaining p(S)

P(S)=2 vw() P(S)=2 yW)

VS WAS

and they must be the same

v(V)  40)

y(W)

G351

_
—

e The following update-rule ensures this:

e Forward update: ¢; = Zw*v w\fv ==Y,

VA\S

e Backwardupdate @5 =D Wy Wy =

WA\S

A
7,
b
g

e Two important identities can be proven

LW =D W =4

VA\S WAS

Local Consistency

** **

VW _ W W _ VW

P P P

Invariant Joint

© Eric Xing @ CMU, 2005-2014
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Message Passing Algorithm

yV) 4 wW) 5 -
oG
— s =

D vy

VA\S

2V W

WAS

_4
n Yw

sy

P

e This simple local message-passing algorithm on a clique tree

defines the general probability propagation algorithm for

directed graphs!

e Many interesting algorithms are special cases:

Forward-backward algorithm for hidden Markov models,

Kalman filter updates
Pealing algorithms for probabilistic trees

e The algorithm seems reasonable. Is it correct?

© Eric Xing @ CMU, 2005-2014
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A problem -

e Consider the following graph and a corresponding clique tree

e Note that C appears in two non-neighboring cliques

e Question: with the previous message passage, can we ensure
that the probability associated with C in these two (non-
neighboring) cligues consistent?

e Answer: No. It is not true that in general local consistency
Implies global consistency

e What else do we need to get such a guarantee?

© Eric Xing @ CMU, 2005-2014 41



Triangulation

e A triangulated graph is one in which no cycles with
four or more nodes exist in which there is no chord

e We triangulate a graph by adding chords:

e Now we no longer have our global inconsistency
problem.

e A clique tree for a triangulated graph has the running
intersection property: If a node appears in two cliques,
it appears everywhere on the path between the cliques

e Thus local consistency implies global consistency

© Eric Xing @ CMU, 2005-2014
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Junction trees

e A clique tree for a triangulated graph is referred to as a junction tree

e In junction trees, local consistency implies global consistency. Thus

the local message-passing algorithms is (provably) correct

e |Itis also possible to show that only triangulated graphs have the
property that their cligue trees are junction trees. Thus if we want
local algorithms, we must triangulate

e Are we now all set?

How to triangulate?

The complexity of building a

JT depends on how we triangulate!!

Consider this network:

it turns out that we will need to pay an O(24)

or O(2%) cost depending on how we triangulate!

© Eric Xing @ CMU, 2005-2014
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How to triangulate ;

e A graph elimination algorithm

B W B W B W B W B W B LA ® @ @ @
Gl
e & e G O .

P

moralization graph elimination

e Intermediate terms correspond to the cliques resulted from
elimination

e “good’ elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found
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A junction tree




Message-passing algorithms

collect

e Message update

The Hugin update

The Shafer-Shenoy update

© Eric Xing @

distribute

. . qﬁ*
g5 = ZWV Yw = _SWW
s ds

miaj(sij) = Z WCiHmkai(Ski)

CMU, 2005-2014
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A Sketch of the Junction Tree 444

Algorithm -

e The algorithm

Moralize the graph (trivial)
Triangulate the graph (good heuristic exist, but actually NP hard)

1
2
3. Build a clique tree (e.g., using a maximum spanning tree algorithm
4

Propagation of probabilities --- a local message-passing protocol

e Results in marginal probabilities of all cliques --- solves all queries
In a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique --- a
good elimination order often leads to small maximal clique, and
hence a good (i.e., thin) JT
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Recall the Elimination and
Message Passing Algorithm os

e Elimination = message passing on a clique tree

m.(a,c,d)

= Z p(e | C, d)mg (e)mf (a’e)

ONONORENO k

atk = p(X | ytk = l)zati—lai,k
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Shafer Shenoy for HMMs

e Recap: Shafer-Shenoy algorithm

e Message from clique i to clique j :

Hisi= Z WCiH:uk—)i(Ski)

. : C;\S; k#
e Clique marginal F :

p(C) . H Hi i (Syi)

© Eric Xing @ CMU, 2005-2014
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] XYY
0000
Message Passing for HMMs
o000
| X
(cont.) ;
e A junction tree for the HMM
(Y1, X1) vy Y.) v (Y2:Ys) v (Yryr)
D2 D O e D T
@ @ @ @ ¢lyr)
° nghtward paSS v (Y2 X2) v (ys: X3) w(yr . Xr)
/ut—>t+1(yt+1) ZW(yt’ yt+1)/ut 1—>t(yt)/utT(yt+1) My 1ﬁt()’t) v (YY) /zHM(ym)
= Z P(Year | Yo) a5 (V) Pt | Vi) t
:uﬁ()’tﬂ)
- p(Xt+1 | yt+1)z yt,yHll‘ut—lﬁt(yt)
This is exactly the forward algorithm! W (Year Xea1)
¢ Leftward paSS e He gt (Ve) V/(Yt’yﬂl) He e 1 (Yeo1)
Hae (V) = 2 W Ve Vo) M (Vo) r (Vier)
Y1 Her (Ve 1)
- Z p()’t+1 | yt ):ut<—t+1(y1f+1)p(xt+1 | Yt+1)
This ié”éxactly the backward algorithm! (Vs Xon)
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Summary 4

e Junction tree data-structure for exact inference on general
graphs

e Two methods
e Shafer-Shenoy
e Belief-update or Lauritzen-Speigelhalter

e Constructing Junction tree from chordal graphs
e Maximum spanning tree approach
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