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Pros and Cons of 
Procedure Elimination

 Algebraic elimination  graphical elimination 
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Complexity
 The overall complexity is determined by the number of the 

largest elimination clique

 What is the largest elimination clique? – a pure graph theoretic question

 Tree-width k: one less than the smallest achievable value of the cardinality of the 
largest elimination clique, ranging over all possible elimination ordering

 “good” elimination orderings lead to small cliques and hence reduce complexity 
(what will happen if we eliminate "e" first in the above graph?)

 Find the best elimination ordering of a graph --- NP-hard
 Inference is NP-hard

 But there often exist "obvious" optimal or near-opt elimination ordering  
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 Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree

 Messages can be reused
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From Elimination to Message 
Passing
 Our algorithm so far answers only one query (e.g., on one node), do we 

need to do a complete elimination for every such query? 

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
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Undirected tree: a 
unique path between 
any pair of nodes

Directed tree: all 
nodes except the root 
have exactly one 
parent

Poly tree:  can have 
multiple parents

We will come back to
this later

Tree GMs
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 Any undirected tree can be converted to a directed tree by choosing a root 
node and directing all edges away from it

 A directed tree and the corresponding undirected tree make the same 
conditional independence assertions

 Parameterizations are essentially the same.

 Undirected tree:

 Directed tree: 

 Equivalence:

 Evidence:?

Equivalence of directed and 
undirected trees

7© Eric Xing @ CMU, 2005-2014



From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list
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Elimination on a tree

Let mji(xi) denote the factor resulting from 
eliminating variables from bellow up to i, 
which is a function of xi:

This is reminiscent of a message sent 
from j to i.

mij(xi) represents a "belief" of xi from xj!
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Message passing on a tree
 Elimination on trees is equivalent to message passing along 

tree branches!
f

i

j

k l
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From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards leaves from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as message-passing (or Belief 

Propagation) directly along tree branches, rather than on some transformed 
graphs

 thus, we can use the tree itself as a data-structure to do general inference!!
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The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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Computing P(X2)
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The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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Computing P(X3)

m23(x3) m42(x2)
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The message passing protocol:
 A node can send a message to its neighbors when (and only when) 

it has received messages from all its other neighbors. 
 Computing node marginals: 

 Naïve approach: consider each node as the root and execute the message 
passing algorithm
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Computing node marginals
 Naïve approach:

 Complexity: NC
 N is the number of nodes
 C is the complexity of a complete message passing

 Alternative dynamic programming approach
 2-Pass algorithm (next slide )
 Complexity: 2C!
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The message passing protocol:
 A two-pass algorithm:
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Belief Propagation (SP-algorithm): 
Sequential implementation
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Belief Propagation (SP-algorithm): 
Parallel synchronous implementation

 For a node of degree d, whenever messages have arrived on any subset of d-1 
node, compute the message for the remaining edge and send!
 A pair of messages have been computed for each edge, one for each direction
 All incoming messages are eventually computed for each node
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Correctness of BP on tree

 Collollary: the synchronous implementation is "non-blocking"

 Thm: The Message Passage Guarantees obtaining all 
marginals in the tree

 What about non-tree?
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 Example 1
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Another view of SP: Factor Graph

20© Eric Xing @ CMU, 2005-2014



 Example 2

 Example 3
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x1,x2,x3) = fa(x1,x2)fb(x2,x3)fc(x3,x1)
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Factor Graphs
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Factor Tree 
 A Factor graph is a Factor Tree if the undirected graph 

obtained by ignoring the distinction between variable nodes 
and factor nodes is an undirected tree

x1,x2,x3) = fa(x1,x2,x3)
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X2 X3

fa

X1
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Message Passing on a Factor 
Tree
 Two kinds of messages

1. : from variables to factors
2. : from factors to variables
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Message Passing on a Factor 
Tree, con'd
 Message passing protocol:

 A node can send a message to a neighboring node only when it has received 
messages from all its other neighbors

 Marginal probability of nodes:
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P(xi)  s  N(i) si(xi)

 is(xi)si(xi)
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BP on a Factor Tree
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 Tree-like graphs to Factor trees
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Why factor graph?
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Poly-trees to Factor trees
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Why factor graph?
 Because FG turns tree-like 

graphs to factor trees, 
 and trees are a data-structure 

that guarantees correctness of 
BP !
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Max-product algorithm:
computing MAP probabilities
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Max-product algorithm:
computing MAP configurations using a final 
bookkeeping backward pass
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 Sum-Product algorithm computes singleton marginal 
probabilities on:
 Trees
 Tree-like graphs
 Poly-trees

 Maximum a posteriori configurations can be computed by 
replacing sum with max in the sum-product algorithm
 Extra bookkeeping required 

Summary
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Inference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run
message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing 
will be consistent!

 Then what?
 Construct a graph data-structure from P that has a tree structure, and run 

message-passing on it!

 Junction tree algorithm
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 Recall that Induced dependency during marginalization is 
captured in elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination clique

 Can this lead to an generic 
inference algorithm?

Elimination Clique
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Moral Graph
 Note that for both directed GMs and undirected GMs, the joint 

probability is in a product form:

 So let’s convert local conditional probabilities into potentials; then 
the second expression will be generic, but how does this operation 
affect the directed graph?
 We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three 

variables A, B, and C (we get a real number of each configuration):

 Problem: But a node and its parent are not generally in the same clique in a BN
 Solution: Marry the parents to obtain the "moral graph"  
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Moral Graph (cont.)
 Define the potential on a clique as the product over all conditional 

probabilities contained within the clique
 Now the product of potentials gives the right answer:
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Note that here the 
interpretation of potential 
is ambivalent: 
it can be either marginals 
or conditionals
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Clique trees
 A clique tree is an (undirected) tree of cliques

 Consider cases in which two neighboring cliques V and W have an 
overlap S (e.g., (X1, X2, X3) overlaps with (X3, X4, X5) ),

 Now we have an alternative representation of the joint in terms of 
the potentials:
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Clique trees
 A clique tree is an (undirected) tree of cliques

 The alternative representation of the joint in terms of the potentials:

 Generally:
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Now each potential is 
isomorphic to the cluster 
marginal of the attendant 
set of variables
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Why this is useful?
 Propagation of probabilities

 Now suppose that some evidence has been "absorbed" (i.e., certain values of 
some nodes have been observed). How do we propagate this effect to the rest of 
the graph?

 What do we mean by propagate?
Can we adjust all the potentials {}, {} so that they still represent the correct 
cluster marginals (or unnormalized equivalents) of their respective attendant 
variables?

 Utility? 
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Local Consistency
 We have two ways of obtaining p(S)

and they must be the same

 The following update-rule ensures this:

 Forward update:

 Backward update

 Two important identities can be proven
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Message Passing Algorithm

 This simple local message-passing algorithm on a clique tree 
defines the general probability propagation algorithm for 
directed graphs!

 Many interesting algorithms are special cases:
 Forward-backward algorithm for hidden Markov models,
 Kalman filter updates
 Pealing algorithms for probabilistic trees

 The algorithm seems reasonable. Is it correct?
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A problem
 Consider the following graph and a corresponding clique tree

 Note that C appears in two non-neighboring cliques

 Question: with the previous message passage, can we ensure 
that the probability associated with C in these two (non-
neighboring) cliques consistent?

 Answer: No. It is not true that in general local consistency 
implies global consistency

 What else do we need to get such a guarantee?

A B

C D

A,B B,D

A,C C,D
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Triangulation
 A triangulated graph is one in which no cycles with 

four or more nodes exist in which there is no chord

 We triangulate a graph by adding chords:

 Now we no longer have our global inconsistency 
problem.

 A clique tree for a triangulated graph has the running 
intersection property: If a node appears in two cliques, 
it appears everywhere on the path between the cliques

 Thus local consistency implies global consistency

A B

C D

A B

C D

A,B,C

B,C,D

42© Eric Xing @ CMU, 2005-2014



Junction trees
 A clique tree for a triangulated graph is referred to as a junction tree

 In junction trees, local consistency implies global consistency. Thus 
the local message-passing algorithms is (provably) correct

 It is also possible to show that only triangulated graphs have the 
property that their clique trees are junction trees. Thus if we want 
local algorithms, we must triangulate

 Are we now all set?
 How to triangulate?
 The complexity of building a 

JT depends on how we triangulate!!
 Consider this network:

it turns out that we will need to pay an O(24) 
or O(26) cost depending on how we triangulate!
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moralization
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graph elimination

How to triangulate
 A graph elimination algorithm

 Intermediate terms correspond to the cliques resulted from 
elimination
 “good” elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

 finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 

44© Eric Xing @ CMU, 2005-2014



E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

A junction  tree

45© Eric Xing @ CMU, 2005-2014



Message-passing algorithms

 Message update

 The Hugin update

 The Shafer-Shenoy update
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A Sketch of the Junction Tree 
Algorithm 
 The algorithm

1. Moralize the graph (trivial)

2. Triangulate the graph (good heuristic exist, but actually NP hard)

3. Build a clique tree (e.g., using a maximum spanning tree algorithm   

4. Propagation of probabilities --- a local message-passing protocol

 Results in marginal probabilities of all cliques --- solves all queries 
in a single run

 A generic exact inference algorithm for any GM

 Complexity: exponential in the size of the maximal clique --- a 
good elimination order often leads to small maximal clique, and 
hence a good (i.e., thin) JT
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 Elimination  message passing on a clique tree
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Message Passing Algorithm
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Shafer Shenoy for HMMs
 Recap: Shafer-Shenoy algorithm

 Message from clique i to clique j :

 Clique marginal 
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Message Passing for HMMs 
(cont.)
 A junction tree for the HMM

 Rightward pass

 This is exactly the forward algorithm!

 Leftward pass …

 This is exactly the backward algorithm! 
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Summary
 Junction tree data-structure for exact inference on general 

graphs
 Two methods

 Shafer-Shenoy
 Belief-update or Lauritzen-Speigelhalter

 Constructing Junction tree from chordal graphs
 Maximum spanning tree approach
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