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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

= P(Xp) P(Xy) P(X5| Xp) PCX,| Xp) P(Xs| X,)
P(Xel X3 X,) POX7| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
POK,, Xy Xg1 Xy Xes Xey Xy Xo)
Cama)x |
= UZ exp{E(X)+EX)+E(X5, XDHE(X,, X)+E(Xs, X)) (™ )~
+ E(Xe: X3, X)FE(X7, XF+E(Xg, X5, X¢)} T e
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Review: independence properties | ss2:
of DAGS oo

e Defn: let I,(&) be the set of local independence properties
encoded by DAG 6, namely:

1(G) = X L Z|Y :dsep (X;Z|Y)]

e Defn: A DAG G is an I-map (independence-map) of P
if I,(6)< I(P)

e A fully connected DAG 6 is an |I-map for any distribution,
since I,(6)=9c I(P)for any P.

e Defn: A DAG G is a minimal I-map for P if it is an I-map for P,
and if the removal of even a single edge from & renders it not
an |-map.

e A distribution may have several minimal I-maps

e Each corresponding to a specific node-ordering
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P-maps °

e Defn: ADAG G is a perfect map (P-map) for a distribution P if
I(P)=I(6).

e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where

ALC|{B,D}, and BL1D |{A,C}.
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.
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P-maps

e Defn: ADAG G is a perfect map (P-map) for a distribution P if
I(P)=I(6).

e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where
ALC|{B,D}, and BL1D |{A,C}.
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.

e The fact that G is a minimal I-map for P is far from a guarantee that G captures
the independence structure in P

e The P-map of a distribution is unique up to l-equivalence between networks. That
is, a distribution P can have many P-maps, but all of them are I-equivalent.
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Undirected graphical models cece
(UGM) os

X, @

e Pairwise (non-causal) relationships

e (Can write down model, and score specific configurations of
the graph, but no explicit way to generate samples

e Contingency constrains on node configurations
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A Canonical Examples: i
understanding complex scene ... | s
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Canonical example o

e The grid model

o000
0000
00010
0000
00000

e Naturally arises in image processing, lattice physics, etc.

o000

e Each node may represent a single "pixel", or an atom

e The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

e Most likely joint-configurations usually correspond to a "low-energy" state
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Social networks
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The New Testament Social Networks
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Protein interaction networks
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Modeling Go

- —— - 4o
W O Tethd e
®=

- ".“n.‘
a8e @

=
.
.
-
- ®
x

——

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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Information retrieval o2
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Representation -

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with the cliques of

H, s.t.
P(X,... X, Hm(x)

ceC
where Z is known as the partition function:

Z = Z [ [y (x)

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.
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Global Markov Independencies o°

e Let Hbe an undirected graph:

X4
X,

e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: I(H) = {A 1 C\B 1Sepy, (A;C\B)}
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Local Markov independencies -

e For each node X; € V, there is unique Markov blanket of X,
denoted MB,;, which is the set of neighbors of X in the graph
(those that share an edge with X;)

e Defn:
The local Markov independencies associated with H is:

I{H): {X;i LV —{X; } = MBy; | MBy; : V 1),

In other words, X; is independent of the rest of the nodes in the graph given
its immediate neighbors
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Summary: Conditional Independence
Semantics in an MRF

Structure: an undirected
graph

« Meaning: a node is
conditionally independent of
every other node in the
network given its Directed
neighbors

* Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

 Glve correlations between
variables, but no explicit way
to generate samples
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|. Quantitative Specification:
Cliques oo

e For G={V,E}, a complete subgraph (clique) is a subgraph
G={V'cV,E'cE} such that nodes in V'are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
"S5V'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

2wws

e Example: e

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons
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Gibbs Distribution and Cligue T
Potential .o

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions i, associated with cliques of H,
s.t.

P(X;,...,X )= HWC (x,) (A Gibbs distribution)

ceC
where Z is known as the partition function:

Z = Z [ [w.(x)

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.
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Interpretation of Cligue Potentials | ¢¢

CO——3)

e The model implies XLZ]Y. This independence statement
implies (by definition) that the joint must factorize as:

p(x.y.z)=py)pxly)p(z|y)

e We can write this as:  PX:V:2)=pXx.y)p(Z1y)  pyt
p(x,y.z)=p(x|y)p(z,y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility”, "goodness" or "happiness” functions
over their variables, but not as probability distributions.
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Example UGM — using max i
cliques oo

e W (Xi24) Ve (Xp34) X

, 1
P* (X, X2, X3, X4) :?WC(X124)XWC(X234)

/ = Z W (X124) X W (Xp34)

X1,X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
iInstead of one 4D table

© Eric Xing @ CMU, 2005-2014



Example UGM — using subcliques | ¢

mn 1
P (Xl’X21X3’X4):i| |Wij(xij)
ij

1

N ?le (X12)W 14 (X14)W 23 (X23)W 24 (X204 )W 34 (X34)

L= Z Hl//ij(xij)

X1:X2,X3,X4 |]

e We can represent P(X,.,) as 5 2D tables instead of one 4D table
e Pair MRFs, a popular and simple special case
o I(P) wvs. I(P") ? D(P') vs. D(P")
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Example UGM - canonical
representation oo

e P (X, X2, X3, X4)

1
Q.e :ch(X124)X‘//c(X234)

e XW 1o (X12 W14 (X1 W23 (X23)W 24 (X24 )W 34 (X34)
X W (X)W (X)ws (X3)w 4 (X4)

W (X104) ¥ W (X534)

L= Z XW 1o (X12 )W 14 (X12 )W 23 (X23)W 24 (X4 )W 34 (X34)
S Xy (X)W 2 (X)W 3 (X3)w 4 (Xy)

e Most general, subsume P' and P" as special cases
e I(P) vs. I(P') vs. I(P")
D(P) vs. D(P) vs. D(P")
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0000
0000
L N
Hammersley-Clifford Theorem 4
e If arbitrary potentials are utilized in the following product formula for
probabilities,
P (X100 %,) = wa )
L= Z HWC (X

then the family of probability distributions obtained is exactly that set
which respects the qualitative specification (the conditional
independence relations) described earlier

e Thm : Let P be a positive distribution over V, and H a Markov
network graph over V. If H is an I-map for P, then P is a Gibbs
distribution over H.

© Eric Xing @ CMU, 2005-2014



II: Independence properties:
global independencies 4+

e Let us return to the question of what kinds of distributions can
be represented by undirected graphs (ignoring the details of
the particular parameterization).

e Defn: the global Markov properties of a UG H are
I(H)=1{X L Z[¥):sep,, (X;Z]Y)]

X z

e |s this definition sound and complete?
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Soundness and completeness of | s8¢
global Markov property -

e Defn: An UG H is an I-map for a distribution P if I(H) < I(P),
l.e., P entails I(H).

e Defn: Pis a Gibbs distribution over H if it can be represented
as

P(Xl""’xn):ZiHWc(Xc)

ceC

e Thm (soundness): If Pis a Gibbs distribution over H, then H
Is an I-map of P.

e Thm (completeness): If —sep,(X; Z|Y),then X £ Z |Yin
some P that factorizes over H.
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Local and global Markov T
properties revisit -

e For directed graphs, we defined I-maps in terms of local
Markov properties, and derived global independence.

e For undirected graphs, we defined |-maps in terms of global
Markov properties, and will now derive local independence.

e Defn: The pairwise Markov independencies associated with
UG H=(V,E) are

L (H) = {X LYN\{X,Y}:{X,Y}2 E}
* €38, X1J—X5‘{X2’X3’X4}

0000
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Local Markov properties os

e A distribution has the local Markov property w.r.t. a graph
H=(V,E) if the conditional distribution of variable given its
neighbors is independent of the remaining nodes

L(H)={X LV\(X UN, (X))N, (X)): X e V|

e Theorem (Hammersley-Clifford): If the distribution is strictly
positive and satisfies the local Markov property, then it
factorizes with respect to the graph.

e N (X)is also called the Markov blanket of X.




Relationship between local and T
global Markov properties os

e Thm5.5.5.If P|=[(H) then P |= (H).
e Thm 5.5.6. If P = I(H) then P |= I(H).
e Thm5.5.7.1fP>0and P |= [,(H), then P |= I(H).

e Corollary (5.5.8): The following three statements are equivalent for
a positive distribution P:

P |=I{H)
P = 1,(H)
P = I(H)

e This equivalence relies on the positivity assumption.
e We can design a distribution locally
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Perfect maps 4+

e Defn: A Markov network H is a perfect map for P if for any X;
Y;Z we have that

sepy (X;ZY) o PEX LZ|Y)

e Thm: not every distribution has a perfect map as UGM.

e Pf by counterexample. No undirected network can capture all and only the
independencies encoded in a v-structure X > Z < Y.

D U p
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Exponential Form -

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢,(x.):

V. (Xc) - eXp{— ¢c (Xc)}

For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.

e This gives the joint a nice additive strcuture

p(x) = —exp{ W ACE } —eXP{ H (x)}

ceC

where the sum in the exponent is called the "free energy":

H(x) =) ¢.(x,)

ceC

e In physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.

© Eric Xing @ CMU, 2005-2014



Example: Boltzmann machines

2NpS

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x, € {~1,+1}or x, €{0,1}) is called a
Boltzmann machine

1 )
P(X;, X5, X3, X4) = ?exp< Z¢ij (xij)}
L]

:%exp Zeijxixj+2aixi+c}
ij i
e Hence the overall energy function has the form:
H(x) =D (X =)0 (x; — 1) = (x= 1) O(x ~ p)
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Restricted Boltzmann Machines °f

hidden units

)")‘\"\

visible units

p(x.h10) = expl 264, (x)+ 20,6,(h))+ 26, 4, (x.h))- A®) }



Restricted Boltzmann Machines °f

The Harmonium (Smolensky —'86)

)") \ l\

hidden units

visible units

History:

Smolensky ('86), Proposed the architechture.

Freund & Haussler ('92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton ('02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan ('02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), “Product of Student-T Distributions” (super-Gaussian)



Properties of RBM oo

e Factors are marginally dependent. m

e Factors are conditionally
independent given observations on
the visible nodes.

P(Clw)=1I; P(£; | w)

h~ p(h|x)
4

e lterative Gibbs sampling.

v
X~ p(x|h)

e Learning with contrastive
divergence




A Constructive Definition ees
h.
¢J

X.

s (0) [ exp{ 6,g;(h;) |

x how do we couple them?

Ping (X) OCH exp{ 0, 1,(x) }
p(x.h10) =expl 20,f(x)+ Z7,d,(h)+ 2T (x)W, ,4,(h)) }



000
0000
X X X
. L eoe
A Constructive Definition :
h.
v pxIh) =] p(x In),
p(x 1) = exp{ 26, f.(x)+A{6.}) }
0= 0.+ D0 LG, (h) =60, + 2W,)g,(h))
Xi x) = | x vector of local
coupling in the p(h]x) l_J[ p(hjl ) sufficient statistics

log-domain with

shifted parameters p(h; |x) = expl 24,0, (h)+B,({A,})
b

} (features)

/:t\jb = Ayt 20, f (%) = A+ Z\/\_iijbﬂ(xi)

ia ia
ia i

They map to the RBM random field:

p(x.h10) =expl 20,f(x)+ Z7,d,(h)+ 2T (x)W, ,4,(h)) }



An RBM for Text Modeling o°

h; = 3: topic ] has strength 3
hER, (h)= ZW, X

X; = n: word I has count n

X; €1

words counts

p(h|x) = H Normalhj[ ZVVU. X1 ]

p(x|h) =] Bi, [ N, SXaotn)

= p(x) ccexp{ %, X, -log (%) -log (N - x))+ £ &, (W, x F |

i j N



Conditional Random Fields
G e Discriminative
) ) ) .. (9 pg(y|x)=Z(;’X)exp{gafc(x,yc)}
e Doesn’t assume that features
are independent
%) ) &) . &
4

e When labeling X; future

@{ @ observations are taken into

account

© Eric Xing @ CMU, 2005-2014
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Conditional Models .

e Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation
sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models
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Conditional Distribution o2

e Ifthe graph G =(V, E) of Y is a tree, the conditional distribution over
the label sequence Y =Yy, given X = x, by the Hammersley Clifford
theorem of random fields is:

P, (Y [X) ocexp Z A f (&Y, X) + Z 149 (v, Y, X)

ecEk veV k
— xis a data sequence Gl@\
— Yy is alabel sequence $
— vis avertex from vertex set V = set of label random variables Xy o X,

— eis an edge from edge set E over V

— f.and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the number of features

- O=(A, Ay A iy, 1) A, and g, are parameters to be estimated
— Y|, is the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v
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Conditional Distribution (cont’d) | s¢

e CRFs use the observation-dependent normalization Z(x) for
the conditional distributions:

P, (Y[ X) :ieXp(Z Af (&Y, X)+ Z /ngk(V,YL/’X)j

Z (X) ecEk veV k

e Z(x)is a normalization over the data sequence x
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Conditional Random Fields ot

1
Z 0.5 exp{ch 0.1, (x,yc)}

Pe()’|x):

e Allow arbitrary dependencies
on input

e Clique dependencies on labels

e Use approximate inference for
general graphs

© Eric Xing @ CMU, 2005-2014

42



Summary .

e Undirected graphical models capture “relatedness”,

7 13 7 13

“coupling”, “co-occurrence”, “synergism”, etc. between entities

e Local and global independence properties identifiable via
graph separation criteria

e Defined on clique potentials

e Generally intractable to compute likelihood due to presence of
“partition function”

e Therefore not only inference, but also likelihood-based learning is difficult in
general

e Can be used to define either joint or conditional distributions

e Important special cases:
e Ising models
e RBM
e CRF

© Eric Xing @ CMU, 2005-2014



